Institut für Physik
Refine
Year of publication
Document Type
- Doctoral Thesis (153)
- Article (71)
- Conference Proceeding (17)
Has Fulltext
- yes (241)
Is part of the Bibliography
- no (241)
Keywords
- - (83)
- Plasma (24)
- Plasmaphysik (24)
- Plasmadiagnostik (14)
- Stellarator (12)
- Komplexes Plasma (7)
- Polyelektrolyt (7)
- Kernfusion (6)
- Wendelstein 7-X (6)
- dusty plasma (6)
Institute
- Institut für Physik (241)
Publisher
- IOP Publishing (55)
- MDPI (12)
- Frontiers Media S.A. (4)
- IOP Science (3)
- European Geosciences Union (2)
- John Wiley & Sons, Ltd (2)
- APS (1)
- IOP (1)
- IOP Scince (1)
- IoP (1)
Ion traps such as Paul traps and MR-ToF (multi-reflection time-of-flight) devices are indispensable tools at radioactive ion beam facilities for the preparation of high-quality radioactive ion beams for subsequent experiments or for precise measurements of the properties of radioactive ions, such as nuclear binding energies or nuclear charge radii.
Within the work of this thesis, Doppler- and sympathetic cooling is implemented in a linear Paul-trap cooler-buncher enabling a reduction of the longitudinal emittance of radioactive ion beams resulting in a significant improvement of the ion beam quality. Moreover, a next-generation MR-ToF device is conceptualized in order to achieve isobaric pure beams with a higher ion intensity than state-of-the-art MR-ToF devices can provide. Once fully constructed and commissioned, it will operate at an unprecedented ion beam energy of 30 keV. Both of these advances are expected to become important for a wide range of experimental programs pursued at low-energy branches of RIB facilities ranging from fundamental symmetry studies, nuclear structure, rare isotope studies with antimatter, searches of physics beyond the standard model to material science and the production of medical isotopes.
The next-generation MR-ToF mass separator is based on MIRACLS’ 30-keV MR-ToF device for highly sensitive and high-resolution collinear laser spectroscopy. By storing the ions in the Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy (MIRACLS), the same ion bunch is probed by a spectroscopic laser for thousands of times compared to a single passage in traditional collinear laser spectroscopy (CLS). Dedicated simulation studies show that the accuracy and resolution will be close to traditional single-passage CLS while the sensitivity is significantly enhanced. Hence, measurements of nuclear properties via fluorescence-based CLS of very rare radionuclides as well as highly sensitive and high-precision measurements of electron affinities via laser-photodetachment-threshold spectroscopy of negatively-charged (radioactive) ions will become possible.
First measurement campaigns employing MIRACLS’ 1.5-keV MR-ToF device confirm the outstanding boost in signal sensitivity and provide confidence in the application of the MIRACLS technique for the measurement of scarcely produced radioactive ions that have been so far beyond the reach of conventional techniques. Furthermore, the electron affinity of 35Cl was measured, which is in perfect agreement with the literature value. These measurements will serve as important benchmarks for modern atomic and nuclear theory, especially in its description of nuclear charge radii.
In summary, the implementation of Doppler and sympathetic cooling at RIB facilities, the conceptualization of a 30-keV MR-ToF apparatus for highly selective and high-flux mass separation as well as for highly sensitive and high-resolution fluorescence-based laser spectroscopy and the expansion of the MIRACLS technique for the study of negatively-charged ions will enable unprecedented new measurement opportunities at RIB facilities.
Polyelektrolyt-Multischichtfilme (PEMs) werden durch schichtweise (eng. Layer by Layer, LbL)
sequentielle Ablagerung von entgegengesetzt geladenen Polyelektrolyten auf einer
geladenen Oberfläche hergestellt. Die LbL Methode kann auf verschiedene Weise zur
Herstellung von PEM eingesetzt werden, z.B. durch Tauchen, Rotation, Sprühen oder
Beschichten mit elektromagnetischen und fluidischen Methoden. In allen Artikeln dieser
Dissertation wurde die Tauchmethode verwendet. Durch zyklische Wiederholung der
Abscheidungsschritte kann die Dicke der PEM leicht gesteuert werden. Die Oberflächen und
Grenzflächen des Films können mit der LbL Technik auch durch die elektrostatische
Wechselwirkung zwischen positiv und negativ geladenen Polyelektrolyten modifiziert werden.
Auf diese Weise lassen sich einige Eigenschaften des Films optimieren, beispielsweise
Oberflächenadhäsion und Biokompatibilität, z. B. in der Gewebezüchtung oder es kann
eine Monoschicht als Barriere an der Grenzfläche des Films adsorbiert werden, um die
Diffusion von Molekülen im Film zu begrenzen z.B. bei Aufnahme oder Freisetzen von
Medikamenten.
Daher wurde die Rolle einiger Faktoren, wie die molare Masse der Polyelektrolyte und das
Vorhandensein von Salzionen in der Präparationslösung auf die interne Struktur sowie die
Oberfläche der PEMs untersucht.
Für alle Untersuchungen dieser Dissertation wurde das häufig verwendete Modell-System aus
dem positiv geladenen Polyelektrolyten Polydimethyldiallylammonium (PDADMA), und dem
negativ geladenen Polyelektrolyten Polystyrolsulfonat (PSS), verwendet. Die Dicke der Filme
wurde mit Röntgenreflektometrie, Ellipsometrie, UV-Vis-NIR-Spektrometrie bestimmt die
interne Struktur mit Neutronenreflektometrie und die Oberflächentopografie mit Rasterkraftmikroskopie
(eng. AFM) und Rasterelektronenmikroskopie (eng. SEM).
In Artikel 1 wurde mit Hilfe der Neutronenreflektometrie die Struktur des Filmes und die
Diffusion des Polyanions PSS (DPSS) senkrecht zur PEM Oberfläche untersucht. Variiert wurde
die molare Masse des Polykations PDADMA und die Salzkonzentration der
Präparationslösung. PEMs wurden aus drei verschiedenen NaCl-Konzentrationen in der
Abscheidelösung hergestellt: 10 mmol/L, 100 mmol/L und 200 mmol/L. Die Salzkonzentration
in der Polyelektrolytlösung bestimmt die Konformation der Polyelektrolyte während der
Adsorption. Die Ketten werden weniger flach adsorbiert, wenn mehr Salzionen in der
Adsorptionslösung vorhanden sind und die Filme werden dicker.
Die Diffusion nahm mit zunehmender molarer Masse von PDADMA in Filmen, die aus 10
mmol/L, 100 mmol/L und 200 mmol/L hergestellt wurden, um mindestens drei Größenordnungen
ab, denn die Zunahme der Kettenlänge, erhöht den Vernetzungsgrad im Film. Dabei zeigten Filme aus 10 mmol/L (NaCl) mit einer niedrigen molaren Masse von PDADMA
die größte Diffusion (DPSS = 4.9 × 10−20 m2/s). Der Diffusionskoeffizient DPSS als Funktion des
Polymerisationsgrades folgt zwei Potenzgesetzen mit einem Übergang bei einem
Polymerisationsgrad von 288. Bei kürzeren Ketten stimmt der Exponent des Potenzgesetzes
gut mit dem Modell der Sticky Reptation überein. Bei längeren Ketten war der Exponent viel
größer, was vermuten lässt, dass die PSS-Ketten in einem zunehmend komplexen
Polymernetzwerk gefangen sind. Wir verstehen den Übergang als Verschränkungsgrenze für
das untersuchte System.
Bei PEMs, die aus 100 mmol/L hergestellt wurden, konnte kein Potenzgesetz festgestellt
werden. DPSS nahm sprunghaft um drei Größenordnungen ab, wenn die molare Masse von
PDADMA von 45 kDa auf 72 kDa erhöht wurde.
In Artikel 2 wurden die Oberfläche von PEMs aus Polyelektrolyten unterschiedlicher molarer
Massen untersucht. Die Oberflächenrauhigkeit und die Dicke des Films wurden mit
Röntgenreflektometrie und Ellipsometrie bestimmt. Die Oberflächentopografie wurde mit AFM
und SEM aufgenommen. Alle PEMs wurden aus PE-Lösungen mit 0,1 mol/L NaCl hergestellt.
Die Oberfläche der PEM, präpariert aus langem PSS und kurzem PDADMA oder langem PSS
und langem PDADMA, war immer flach. Bei einer Filmzusammensetzung aus langen
Polykationen (Mw (PDADMAlang) = 322 kDa) und kurzen PSS Molekülen (Mw (PSSkurz) = 10,7
kDa) wurden drei Wachstumsregime identifiziert: exponentiell, parabolisch und linear. Im
exponentiellen Wachstumsregime bildet sich nach etwa sieben Beschichtungsschritten von
PDADMA/PSS (eng. bilayers, bl) eine granulare Oberflächenstruktur aus mit einer
Oberflächenrauigkeit von 1,6 nm und einer lateralen Periodizität von 70 nm. Mit zunehmender
Schichtzahl nimmt die Oberflächenrauhigkeit sowie die laterale Periodizität zu. Im
parabolischen Wachstumsbereich aggregieren die Strukturen zu Säulen, mit einer
Oberflächenrauigkeit bis zu 23 nm und einer lateralen Periodizität bis zu 210 nm. Im linearen
Wachstumsregime sind die säulenförmigen Domänen vollständig ausgebildet und die
Oberflächenstruktur ändert sich nicht mehr. Diese Strukturen wurden schon während der
Präparation, bereits vor dem Trocknen beobachtet. Dies zeigt, dass sich die Strukturen
während der Abscheidung von PDADMA/PSS bilden.
Bei Beobachtungen im Vakuum (SEM) war im linearen Bereich die Säulenstruktur bei der
PDADMA terminierten PEM ausgeprägter als bei der PSS terminierten.
Diese Strukturen bilden sich nur im Film mit anfänglichem exponentiellem Wachstum, d.h.
wenn kurzen Ketten durch den ganzen Film diffundieren können. Das legt nahe, dass es für
die Strukturbildung nicht ausreicht, dass der Polyelektrolyt kurz ist, sondern dass es auch
beweglich sein muss. Um dies näher zu untersuchen wurde in Manuskript 1 die molare Masse des PSS variiert. Es
wurden PEMs aus langem 322 kDa PDADMA und kurzem 6,5 kDa und 3,9 kDa PSS
hergestellt und mit den Messungen von PEMs aus 10,7 kDa PSS verglichen.
Die Verkürzung von PSS hat subtile Auswirkungen auf den Filmaufbau und die
Selbststrukturierung. Für PEM aus PSS mit einer molaren Masse von 6,5 kDa konnten nur
zwei Wachstumsregime ermittelt werden: ein exponentielles und ein lineares Wachstumsregime.
Der Übergang vom exponentiellen zum linearen Wachstum erfolgte bei 28
Doppelschichten. Bei PEMs, die aus 3,9 kDa PSS hergestellt wurden, wurde bis zu 29 bl nur
ein exponentielles Wachstum beobachtet. Dies zeigt, dass eine Verringerung der molaren
Masse von PSS das exponentielle Wachstum auf eine größere Anzahl von abgeschiedenen
Doppelschichten ausdehnt. Dies ist auf die zunehmende PSS-Diffusion zurückzuführen.
In allen Filmen wurden Selbststrukturierungen beobachtet. Der Abstand und die Höhe der
säulenartigen Domänen nehmen mit jeder abgeschiedenen PDADMA/PSS-Doppelschicht
deutlich zu. Der durchschnittliche Domänenabstand ändert sich weniger und korreliert mit den
vertikalen Wachstumsregimen. Der Domänenabstand schwankt zwischen 70 nm und 750 nm.
Die größten lateralen Abstände und ein längeres exponentielles Wachstumsregime wurden
mit dem kürzesten PSS (3,9 kDa) erreicht, was auf die hohe Mobilität des PSS zurückgeführt
wird. Die Domänenhöhe ist immer kleiner als der Domänenabstand. Wenn die PEM mit
PDADMA terminiert ist, sind die Oberflächenrauhigkeit und der durchschnittliche Abstand
größer als bei PSS terminierten Filme in Wasser und nach dem Trocknen.
Darüber hinaus wurden zwischen den Domänen Filamente beobachtet. Die Filamente
bestehen aus PDADMA/PSS-Komplexen. Eine mögliche Vermutung ist, dass diese Komplexe
zwischen den Domänen diffundieren und ihren Abstand anpassen.
Die Oberflächenstruktur des Films aus PSS 10,7 kDa zeigt eine symmetrische gaußförmige
Höhenverteilung in allen drei Wachstumsregimen von 5 bis 40 bl. Für die kurze PSS war eine
solche Verteilung nur bis 15 bl (6,5 kDa) bzw. 20 bl (3,9 kDa) zu beobachten. Danach wurde
für 6,5 kDa schiefe Verteilung mit Ausläufern zu größeren Höhen beobachtet. 3,9 kDa PSS
zeigte dann sogar eine bimodale Höhenverteilung.
Die lineare Ladungsdichte von PDADMA ist etwa halb so groß wie die von PSS. Folglich
adsorbiert PDADMA in einer bürstenartigen Konformation. Wenn die oberste Schicht
PDADMA ist, dann ist das PDADMA-Molekül nicht fest an die Oberfläche gebunden. Daher ist
die durch die Oberflächenspannung erzeugte Kraft für PDADMA groß genug, um zu einer
Veränderung der Oberflächenmorphologie und folglich zu einer kleineren Gesamtoberfläche
zu führen.Außerdem sind die Domänen in 1 M NaCl-Lösung stabil, schrumpfen aber in 2 M NaCl enorm,
während ihr Abstand leicht zunimmt.
Diese Untersuchungen zeigten, dass die Mobilität des Polyelektrolyten PSS die
Voraussetzung für den Aufbau einer strukturierten Oberfläche in einem PEM-System aus
PDADMA/PSS ist. Diese Ergebnisse zeigten auch, dass die Verkürzung der Kette der PSS Moleküle
die Herstellung von Filmen erleichtert, deren Dicke und Selbststrukturierung je nach
dem gewünschten Zweck angepasst werden kann. Solche Filme können in der Medizin und
Biologie als geeignetes Substrat zur Optimierung der Adsorption von Zellen und anderen
Molekülen oder als Nanofilter effektiv eingesetzt werden.
In dieser Dissertation konnte ich zeigen, wie die Verkürzung der Kette der PSS-Moleküle zur
Bildung einer lateralen selbststrukturierten Oberfläche führt und wie die zunehmende Mobilität
der PSS-Moleküle die Oberflächenmorphologie signifikant beeinflusst.
Interplay of reactive oxygen species with the mechanical properties of cells and mitochondria
(2023)
Cell mechanical properties are a popular label-free method for understanding basic cellular processes. In this thesis, I used Real-time deformability cytometry (RT-DC), a high-throughput microfluidic technology, to investigate the mechanical properties of cells and mitochondria under various conditions such as increased reactive oxygen species (ROS) levels and the application of different ligand coated gold nano-particles (Au-Nps) effect on cells. Initially, we showed the possibility to measure organelles, cells, and tissue-like structures (spheroids) in a single system by constructing a virtual fluidic channel. We investigated a potential application using cytochalasin D (cyto D) treatment, which revealed increased deformation and decreased stiffness in both the normal and virtual channels. Using mechanics as a marker, I investigated the effect of excessive ROS on the mechanical properties of human myeloid precursor cells (HL60). My findings suggest that the mechanical response of HL60 cells to increased ROS levels is mediated by re-localization of microtubules toward the cell center and F-actin to the cell periphery. Interestingly, I also observed intracellular acidification, which is a largely unexplored mechanism that may have contributed to our findings. I then extended our ROS and mechanics assay to investigate cell-AuNP interactions, demonstrating that cell properties vary depending on the cell culture media and ligand coating. The results showed that dextran coated gold nano-particels (Au-Nps) had low cytotoxicity, lower ROS release, and no change in cell mechanics, indicating a potential application for dextran Au NPs. Finally, I expanded our assays to include high-throughput microfluidic characterization of isolated mitochondria. Using both exogenously and endogenously induced ROS, we found an increase in mitochondrial deformation and a decrease in their size, which could have implications on mitochondrial function, i.e., fission and fusion. We believe that advanced applications of RT-DC technology will improve the comparability of results across different sample sizes while also promoting it as a disease detection technique.
In this work, 2-dimensional measurements in the THz frequency range with self-made spintronic THz emitters were presented. The STE were used to optimize the spatial resolution and determine the magnetization in geometric shapes. At the beginning, various combinations of FM and NM layers were produced and measured to achieve an optimal composition of the STE. The layer thickness of the ferromagnetic CoFeB layer and the nonmagnetic PT layer was also varied. The investigations have shown that a layer combination of 2 nm thick CoFeB and 2 nm thick Pt, applied to a fused silica glass substrate and covered with a 300 nm thick SiO2 layer, emits the highest THz amplitude. Based on these, a structured sample, consisting of an STE and an additional layer system of 5 nm Cr and 100 nm Au, was produced. Further, three wedge-shaped structures were removed from the gold layer by an etching process so that the THz radiation generated by the STE can pass through these areas. This enables the optimization of the resolution of the system. For this purpose, the sample was moved perpendicular to the laser beam by two stepping motors with a step size of 5 μm and imaged 2-dimensionally. By reducing the step size to 0.2 μm, the beam diameter could be measured at the edge of the structure using the knife-edge method. Based on this measurement, the resolution of the system could be determined as 5.1 ± 0.5 μm at 0.5 THz, 4.9 ± 0.4 μm at 1 THz, and 5.0 ± 0.5 μm at 1.5 THz. These results are confirmed by simulations considering the propagation of THz wave packets through the SiO2. The expansion of the FWHM of the waves, passing through the 300 nm thick layer, is about 1%. Only a SiO2 layer with a thickness in the μm range occurs an expansion of around 10%. This shows that it is possible to perform 2-dimensional THz spectroscopy with a resolution in the dimension of the exciting laser beam by using near-field optics. Afterward, the achieved spatial resolution was used to investigate the influence of external magnetic fields on the STE and the emitted THz radiation. By implementing a pair of coils above the sample, an external magnetic field could be applied parallel to the pattern. The used sample was designed in such a way that only certain geometric areas on the fused silica glass substrate were coated with an STE so that THz radiation is emitted only in those areas. The 2-dimensional images show the geometric structures for f = 1.0 THz and f = 1.5 THz clearly. By applying a permanent, positive magnetic field (+M), a positive course of the THz amplitude can be seen. A rotation of the magnetic field by 180° (-M) leads to a reversal of the orientation of the emitted THz radiation, whereby the magnetic field does not influence the corresponding frequency spectrum. By using minor loops, the sample was demagnetized by the constant reduction of the magnetic field strength with alternating magnetic field direction. The 2-dimensional representation of the pattern with a step size of 10 μm shows that the sample was demagnetized since both, positively and negatively magnetized structures, could be imaged. In addition, in the 2nd row from the top, a completely demagnetized circle and a rectangle with a division into two domains can be seen. These structures have both positive and negative magnetized areas, which are separated by a domain wall. To investigate this in more detail a 2-dimensional measurement of the divided regions was made with a step size of 2.5 μm. These images confirm the division of the structures into positive and negative domains, separated by a domain wall, which was verified by Kerr-microscope measurements. Both data show a similar course of the domains and the domain wall. However, to be able to examine the domain wall more precisely using 2-dimensional THz spectroscopy, the resolution of the system must be improved to a range of a few nm, because the expected domain wall width is between 𝑙𝑊 = 12.56 nm and 𝑙𝑊 = 125.6 nm. The improved resolution would make it possible to image foreign objects, such as microplastics in biological cells or tissue. For this purpose, different plastics, such as polypropylene, polyethylene, and polystyrene, were investigated in the THz frequency range up to 4 THz. While no specific absorption could be determined for PP, characteristic absorption peaks were found for PE and PS. The energy of the photons with a frequency of about 2.2 THz excites lattice vibrations in the PE. Therefore, this frequency is specifically absorbed, and the intensity in the transmission spectrum is lower than for other frequencies. PS absorbs especially THz radiation with a frequency of 3.2 THz. In addition, all of the investigated plastics are mostly transparent for THz radiation, which makes imaging of these materials feasible. Based on these basic properties, it will be possible to image and identify these types of plastic.
A novel method for time-resolved tuned diode laser absorption spectroscopy has been developed. In this paper, we describe in detail developed electronic module that controls time-resolution of laser absorption spectroscopy system. The TTL signal triggering plasma pulse is used for generation of two signals: the first one triggers the fine tuning of laser wavelength and second one controls time-defined signal sampling from absorption detector. The described method and electronic system enable us to investigate temporal evolution of sputtered particles in technological low-temperature plasma systems. The pulsed DC planar magnetron sputtering system has been used to verify this method. The 2" in diameter titanium target was sputtered in pure argon atmosphere. The working pressure was held at 2 Pa. All the experiments were carried out for pulse ON time fixed at 100 (is. When changing OFF time the discharge has operated between High Power Impulse Magnetron Sputtering regime and pulsed DC magnetron regime. The effect of duty cycle variation results in decrease of titanium atom density during ON time while length of OFF time elongates. We believe that observed effect is connected with higher degree of ionization of sputtered particles. As previously reported by Bohlmark et al., the measured optical emission spectra in HiPIMS systems were dominated by emission from titanium ions [1].
Application of quantum cascade laser absorption spectroscopy to studies of fluorocarbon molecules
(2009)
The recent advent of quantum cascade lasers (QCLs) enables room-temperature mid-infrared spectrometer operation which is particularly favourable for industrial process monitoring and control, i.e. the detection of transient and stable molecular species. Conversely, fluorocarbon containing radio-frequency discharges are of special interest for plasma etching and deposition as well as for fundamental studies on gas phase and plasma surface reactions. The application of QCL absorption spectroscopy to such low pressure plasmas is typically hampered by non-linear effects connected with the pulsed mode of the lasers. Nevertheless, adequate calibration can eliminate such effects, especially in the case of complex spectra where single line parameters are not available. In order to facilitate measurements in fluorocarbon plasmas, studies on complex spectra of CF4 and C3F8 at 7.86 μm (1269 – 1275 cm-1) under low pressure conditions have been performed. The intra-pulse mode, i.e. pulses of up to 300 ns, was applied yielding highly resolved spectral scans of ∼ 1 cm-1 coverage. Effective absorption cross sections were determined and their temperature dependence was studied in the relevant range up to 400 K and found to be non-negligible.
Fluorocarbon containing capacitively coupled radio frequency (cc-rf) plasmas are widely used in technical applications and as model systems for fundamental investigations of complex plasmas. Absorption spectroscopy based on pulsed quantum cascade lasers (QCL) was applied in the mid-IR spectral range of 1269-1275 cm-1. Absolute densities of the precursor molecule CF4 and of the stable product C3F8 were measured with a time resolution of up to 1 ms in pulsed CF4/H2 asymmetrical cc-rf (13.56 MHz) discharges. For this purpose both the non-negligible temperature dependence of the absorption coefficients and the interference of the absorption features of CF4 and C3F8 had to be taken into account in the target spectral range. Therefore, at two different spectral positions composite absorption spectra were acquired under the same plasma conditions in order to discriminate between CF4 and C3F8 contributions. A total consumption of∼ 12 % was observed for CF4 during a 1 s plasma pulse, whereas C3F8 appeared to be produced mainly from amorphous fluorocarbon layers deposited at the reactor walls. A gas temperature increase by ∼ 100 K in the plasma pulse was estimated from the measurements. Additionally, not yet identified unresolved absorption (potentially from the excited CF4 molecule) was found during the àon-phase'.
We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.
In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.
A quantum kinetic approach is presented to investigate the energy relaxation of dense strongly coupled two-temperature plasmas. We derive a balance equation for the mean total energy of a plasma species including a quite general expression for the transfer rate. An approximation scheme is used leading to an expression of the transfer rates for systems with coupled modes relevant for the warm dense matter regime. The theory is then applied to dense beryllium plasmas under conditions such as realized in recent experiments. Special attention is paid to the influence of correlation and quantum effects on the relaxation process.