52.20.Hv Atomic, molecular, ion, and heavy-particle collisions
Refine
Document Type
- Doctoral Thesis (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Abstimmbarer Laser (1)
- Atomabsorptionsspektroskopie (1)
- Edelgas (1)
- Fluid-Modellierung (1)
- Gasentladung (1)
- Glimmentladung (1)
- Helium (1)
- Hochfrequenzplasma (1)
- Kaltes Plasma (1)
- Kontraktion (1)
Institute
In the present work, a time- and radial-dependent fluid model has been developed to describe the glow-to-arc transition of the positive column in the course of constriction. The self-consistent model comprises the particle balance equations for the relevant species, the balance equation of the mean electron energy and the heavy particle temperature in the plasma, the Poisson equation for the space-charge potential, and a current balance determining the axial electric field. The model adopts the nonlocal moment method, i.e., the system of the balance equations resulting from the moments of the radially dependent Boltzmann equation is solved. The electron transport and rate coefficients are adapted as functions of the mean energy of the electrons, the gas temperature and the ionization degree. The model is applied to a description of the constriction of the dc positive column in argon, for a wide range of pressures and applied currents. Pronounced nonlocal features of the mean electron energy balance are found and their influence on the constricted argon positive column is analyzed. Different assumptions concerning the electron velocity distribution function (EVDF) have been considered in the present model. The assumption of a Maxwellian distribution for the electrons was found to be inappropriate, while the assumption of a Druyvesteyn distribution for the electrons was found to be suitable for describing qualitatively the glow-to-arc transition. However, the standard model using the EVDF obtained from the solution of the steady-state, spatially homogeneous electron Boltzmann equation including electron-electron collisions allows to describe the constriction effect and provides best agreement with experimental data and other available modelling results. The fluid model has also been used to study a medium-pressure pulsed positive column in xenon at conditions of the contracted discharge. The simulation results provide a detailed insight in the physical mechanisms of xenon discharges in pulsed mode. The stepwise ionization of the excited atoms, the conversion of the atomic ions into molecular ions as well as the dissociative recombination of the molecular ions are found to be the most important processes for the pulsed positive column in xenon plasmas at conditions of the contracted discharge. The comparison of the model predictions with experimental results generally shows good agreement. In particular, the model predictions are suitable for qualitative reproduction of the significant increase of low-lying atomic levels densities as well as of the higher and of the relaxed lowest vibrational states of the Xe2* excimers in the afterglow phase of the pulse.
Asymmetrical capacitively coupled RF discharges in oxygen, argon and hydrogen have been experimentally investigated with the innovative technique of the phase resolved optical emission spectroscopy. This diagnostic tool allows to measure spatio-temporally resolved emission intensities of electronically excited species with a high resolution. The spatial (axial) resolution was better than 1 mm and a temporal resolution of about 1.5 ns has been achieved. Therefore the plasma induced optical emission within the RF cycle (TRF = 73.75 ns) from the RF sheath region with a typical mean sheath thickness of about 5mm has been studied. Spatio-temporally resolved optical emission patterns of the following optical transitions have been measured for a total gas pressure in the range of 20 to 100 Pa and self-bias voltages between -50 and -550 V: Oxygen plasma Emission at 777.4 nm and 844.6 nm (atomic oxygen) Argon plasma Emission at about 751 nm and 841 nm (argon) Hydrogen plasma Emission at 656.3nm (atomic hydrogen, H alpha-line) These transitions are the most prominent ones of the investigated excited species in these plasmas as could be shown from overview spectra of the plasma induced optical emission in the range from 350 to 850 nm. For the first time such extensive PROES measurements in oxygen CCRF plasmas are presented in this work. The additional investigations of argon and hydrogen plasmas serve as a reference and for a direct comparison with results from the literature. The temporal behavior of the emission intensity is influenced by the effective lifetime of the emitting states which is on the order of the nanosecond time scale of the RF cycle. Therefore, it does not represent the real temporal behavior of the excitation. A simple method has been applied to calculate relative excitation rates from the measured emission intensities to distinguish different excitation mechanisms and their correct relative temporal behavior. In a close collaboration within the framework of the Sonderforschungsbereich Transregio 24 'Fundamentals of Complex Plasmas' a newly 1d3v PIC-MCC code for simulations of capacitive RF discharges in oxygen has been developed by Matyash et al. The very close coupling of experiment and modeling allowed a really detailed and microscopic understanding of the processes and dynamics from the sheath to the bulk plasma in CCRF discharges. The spatio-temporally resolved excitation rate profiles show four different excitation structures (I-IV). Excitation processes due to the following mechanisms in CCPs could be identified and characterized: I Electrons expelled from growing sheath II Electrons detached from negative ions (collisions with neutrals) + secondary electrons from the electrode surface (ion bombardment) III Field-reversal effect, reduced mobility of electrons (electron-neutral collisions) IV Heavy-particle collisions These excitation mechanisms are characterized by different temporal and spatial behaviors of the excitation rate within the RF cycle. Additionally it has been shown that the excitation by electron impact in the investigated oxygen plasmas results mainly from dissociative electron impact excitation (O2 + e -> O + O* + e) and not from direct electron impact excitation (O + e -> O* + e). Actinometry measurements show that the results are not really credible. Thus actinometry is not applicable on the investigated oxygen RF plasma. A challenge in interpretation is the observed excitation pattern IV. Pattern IV has to be caused in connection with heavy particle collisions nearby the electrode surface and could be observed in all the three plasmas oxygen, argon and hydrogen. It is located directly in front of the powered electrode and appears during almost the whole RF cycle. The temporal modulation is nearly sinusoidal and weak in comparison to the first three patterns. This is due to the weak RF modulation of the ion flux towards the electrode surface which has been proven by a PIC simulation. It could be shown that the modulation degree of pattern IV depends on the transition time of the corresponding positive ions through the RF sheath which is influenced by the ion mass. In oxygen as well as in argon CCRF plasmas pattern IV is less modulated than in hydrogen CCRF plasmas due to the heavier ions in oxygen and argon. Additionally the modulation degree increases with increasing pressure due to the more confined plasma at higher pressures which is yielding in a stronger modulated ion current towards the powered electrode.
Diese Arbeit untersucht experimentell den Einfluss des metastabilen Zustandes Xe(1s3) und des Resonanzzustandes Xe(1s2) auf die VUV-Strahlungserzeugung in Helium-Xenon-Glimmentladungen (He:Xe = 98:2). Für die Bestimmung der Atomdichten wurde eine experimentelle Anordnung geschaffen, mit der, basierend auf der Methode der Laser-Atom-Absorptionsspektroskopie, orts- und zeitaufgelöste Messungen von optischen Dichten im Säulenplasma durchgeführt wurden. Als Hintergrundstrahlungsquelle kam ein durchstimmbarer Diodenlaser zum Einsatz. Die bereitgestellten Laserwellenlängen von 820 nm bzw. 826 nm entsprechen optischen Übergängen zwischen den Xenonzuständen 6s' 1/2[1/2]0 --> 6p' 1/2[3/2]1 (1s3 --> 2p4) und 6s' 1/2[1/2]1 --> 6p' 1/2[1/2]1 (1s2 --> 2p2).
Den Ausgangspunkt der Untersuchungen stellte die Messung der Absorptionslinienprofile beider Nahinfrarot-Übergänge dar. In Abhängigkeit von den Entladungsparametern Gasdruck, Entladungsstrom und Betriebsweise (Gleichstrom-, gepulste und Wechselstromentladung) wurden daraus die Dichten der angeregten Atome auf der Entladungsachse ermittelt. Durch die Analyse des Abklingens der Besetzungsdichten im Afterglow von gepulst betriebenen Entladungen mit Hilfe eines Systems von gekoppelten Ratengleichungen konnten die dominanten Stoßprozesse für die betrachteten Zustände identifiziert werden. Erstmalig ist in dieser Arbeit die radiale Verteilung der angeregten Spezies Xe(1s3) und Xe(1s2) in He-Xe-Glimmentladungen untersucht worden. Damit ist die VUV-Strahlungsleistung der 129 nm-Linie aus der Dichteverteilung der Resonanzatome ermittelbar.