52.25.Fi Transport properties
Refine
Document Type
- Doctoral Thesis (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Plasmaphysik (2)
- Driftwellen (1)
- Fusion plasmas (1)
- Fusionsplasma (1)
- Impurities (1)
- Kinetic Transport Theory (1)
- Kinetische Transporttheorie (1)
- Kontrolle (1)
- Turbulenz (1)
- Verunreinigungstransport (1)
Institute
Impurity ions pose a potentially serious threat to fusion plasma performance by affecting the confinement in various, usually deleterious, ways. Due to the creation of helium ash during fusion reactions and the interaction of the plasma with the wall components, which makes it possible for heavy ions to penetrate into the core plasma, impurities can intrinsically not be avoided. Therefore, it is essential to study their behaviour in the fusion plasma in detail. Within the framework of this thesis, different problems arising in connection with impurities have been investigated. 1. Collisional damping of zonal flows in tokamkas: The effect of impurities on the collisional damping of zonal flows is investigated. Since the Coulomb collision frequency increases with increasing ion charge, heavy, highly charged impurities play an important role in this process. The effect of such impurities on the linear response of the plasma to an external potential perturbation, as caused by zonal flows, is calculated with analytical methods and compared with numerical simulations, resulting in good agreement. 2. Impurity transport driven by microturbulence in tokamaks: Fine scale turbulence driven by microinstabilities is a source of particle and heat transport in a fusion reactor. A semi-analytical model is presented describing the resulting impurity fluxes and the stability boundary of the underlying mode. The results are compared with numerical simulations. Both the impurity flux and the stability boundary are found to depend strongly on the plasma parameters such as the impurity density and the temperature gradient. 3. Pfirsch-Schlüter transport in stellarators: Due to geometry effects, collisional transport plays a much more prominent role in stellarators than in tokamaks. Analytical expressions for the particle and heat fluxes in an impure, collisional plasma are derived from first principles. Contrary to the tokamak case, where collisional transport is exclusively caused directly by friction, in stellarators an additional source of transport exists, namely pressure anisotropy. Since this term is, contrary to the contribution from friction, non-ambipolar, it plays an important role regarding the ambipolar electric field. Furthermore, the behaviour of heavy impurities in the presence of strong radial temperature and density gradients is studied, which lead to a redistribution of the impurities on the flux surfaces. As a consequence, the radial impurity flux is decreased considerably compared with a plasma in which the impurities are evenly distributed on the flux surfaces.
Turbulence is a state of a physical system characterized by a high degree of spatiotemporal disorder. Turbulent processes are driven by instabilities exhibiting complex nonlinear dynamics, which span over several spatial as well as temporal scales. Apart from fluids and gases, turbulence is observed in plasmas. While turbulent mixing of a system is sometimes a desired effect, often turbulence is an undesired state. In hot, magnetically confined plasmas, envisaged for energy generation by thermonuclear fusion, plasma turbulence is clearly a problem, since the magnetic confinement time is drastically deteriorated by turbulent transport. Hence, a control mechanism to influence and to suppress turbulence is of significance for future fusion power devices. An important area of plasma turbulence is drift wave turbulence. Drift waves are characterized by currents parallel to the ambient magnetic field, that are tightly coupled to a coherent mode structure rotating in the perpendicular plane. In the present work, the control of drift waves and drift wave turbulence is experimentally investigated in the linear magnetized helicon experiment VINETA. Two different open-loop control systems - electrostatic and electromagnetic - are used to drive dynamically parallel currents. It is observed that the dynamics of the drift waves can be significantly influenced by both control schemes. If the imposed mode number as well as the rotation direction match those of the drift waves, classical synchronization effects like, e.g., frequency locking, frequency pulling, and Arnold tongues are observed. These confirm the nonlinear interaction between the control signal and the drift wave dynamics. Finally, the broadband drift wave turbulence, and thereby turbulent transport, is considerably reduced if the applied control signal is sufficiently large in amplitude.