52.27.Lw Dusty or complex plasmas; plasma crystals
Refine
Document Type
- Doctoral Thesis (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Komplexes Plasma (3)
- Hochfrequenzplasma (2)
- Plasma (2)
- Cluster (1)
- Computersimulation (1)
- Dusty Plasma (1)
- Dynamik (1)
- ExB-Drift (1)
- ExB-drift (1)
- Finite Systeme (1)
Institute
This thesis is devoted to experiments on three-dimensional dust clouds which are confined in low temperature plasmas. Such ensembles of highly electrically charged micrometer-sized particles reveal fascinating physics, such as self-excited density waves and vortices. At the same time, these systems are challenging for experimental approaches due to their three-dimensional character. In this thesis, new optical diagnostics for dusty plasmas have been developed and, in combination with existing techniques, have been used to study these 3D dusty plasmas on different size and time scales.
The main issue of this thesis was the investigation of dusty plasmas in magnetic fields. We made use of spherical paramagnetic as well as non-magnetic plastic particles in the micrometer range, so-called dust particles. The particles were then trapped in the sheath region of the driven lower electrode of an rf discharge. The plasma chamber was surrounded by coils to apply a horizontal magnetic field with field strengths of up to B=50mT at the particles’ position. In this configuration the sheath electric field and the external magnetic field were perpendicular to each other. Only the electrons could be magnetized but this leads to several forces acting on the dust particles. In some aspects the dust clusters with the magnetic particles show a behavior that is in complete contrast to those consisting of the standard non-magnetic plastic particles. Both types of particles have in common that the dust clusters were found to move either towards the positive or negative ExB-direction as a reaction to the magnetic field. Whether the positive or negative direction was preferred depended on the experimental conditions. The forces that lead to this transport are plasma-based forces induced by the magnetic field. These investigations were performed on two-dimensional horizontal particle systems. Vertically aligned dust particles due to the ion focus interaction have also been studied to determine the influence of horizontal magnetic fields on the stability of such dust pairs. Under certain conditions the vertical alignment can be broken up by the magnetic field. Some additional experiments on the interaction of non-magnetic dust particles in a plasma with UV irradiation were performed, but a significant decrease of dust charge due to a photoelectric effect was not detected. In summary, even relatively weak horizontal magnetic fields have a strong influence on dust particle systems.
During the past decade, various physical properties of the Yukawa ball, like structure and energy states, were unraveled using experiments. However, the dynamical features served further attention. Therefore, the main aim of my thesis was to investigate and understand how a finite system-represented by Yukawa clusters-evolves from a solid, crystalline structure to a liquid-like system, how it behaves in this phase and in what manner the reordering back into the solid state can be described. As a method of choice to reach this goal, laser heating has been proven successful. Moreover, the special importance of wakefields for dust clusters confined at low neutral gas pressure was addressed. Melting of finite dust clouds can be induced in two ways, either by altering the properties of the ambient plasma or by laser heating. The latter was shown to be a generic melting scenario, allowing to estimate a critical coupling parameter at the melting point. Moreover, the melting transition of finite 3D dust systems was found to be a two-step process where angular order is lost before the radial order starts to diminish at higher energies. Next, the mode dynamics of finite 3D dust ensembles in the solid and the liquid phase was studied. Crystal and fluid modes revealed the main spectral properties of the system. The normal modes are mainly suited to describe crystalline states. Fluid modes were excited naturally and via laser heating, with excitation frequencies almost independent of the coupling parameter in the solid and the liquid-like regime. Tuning the plasma parameters can be used to vary the particle-particle interaction via the ion focus. Both methods, even though assuming equilibrium situations, allowed to hint at these wakefields. The corresponding peaks in the fluid and normal mode spectra were no eigenmodes, confirming the nonequilibrium character of the ion focusing effect. First steps to extend the normal mode theory to achieve the dynamics of wake-affected nonequilibrium dust clusters were presented. Statistical quantities were obtained evaluating long-run experiments and transport coeffcients for finite dust systems were calculated via the instantaneous normal mode technique. Diffusion was found considerably higher for 3D than for 2D dust clusters. Using the configurational entropy, we have shown that in 2D and 3D disorder increases with increasing size of the system, in agreement with simulations. The temperature dependence of the configurational entropy differs for 2D and 3D dust clouds, with a threshold behavior found for finite 2D ensembles only. Finally, using instantaneous normal modes to reveal the total fraction of unstable modes, the predictive connection of Keyes (Phys Rev E 62, p7905, 2000), between transport and disorder was tested and verified for 2D, but not for 3D clusters. The reason for this has to be left open. Finally, laser-mediated recrystallization processes of finite 3D dust clouds were investigated. First, the temporal evolution of the Coulomb coupling parameter was traced during heating and recrystallization. A cooling rate has been determined from the initial phase of recrystallization. This cooling rate is lower than damping by the neutral gas, in agreement with simulations. We have observed a large fraction of metastable states for the final cluster configurations. Further, we have revealed that the time scale for the correlation buildup in the finite 3D ensemble was on even slower scales than cooling. Thus, different time scales can be attributed to the fast emergence of the shells and to the slower individual ordering within the shells.
In this thesis, a stereoscopic camera system is presented that is designed for the use on parabolic flights for the investigation of dusty plasmas under microgravity conditions. This camera system consists of three synchronously triggered high-speed cameras observing a common volume of approximately (15 × 15 × 15) mm³ size. In this volume, the three-dimensional trajectories of a large number of particles surrounded by a dense dust cloud were reconstructed. For this task an intricate set of reconstruction algorithms has been developed, including a four-frame linking algorithm and a complex combined 2D/3D tracking algorithm for a reliable tracking of 3D particles. Furthermore, these algorithms effectively suppress so-called ghost particles in the evaluation process which are reconstructed from falsely identified 2D particle correspondences. Dusty plasmas under microgravity conditions are of special interest due to their complex structure and the variety of observable dynamic phenomena. Under typical discharge conditions, a central dust-free void is formed, surrounded by a dense particle cloud. Since the void is inherently dust-free, particles shot into the void can be uniquely identified and used to probe plasma properties inside this region. In the dust cloud itself, processes like self-excited dust-density waves can be observed under suitable experimental conditions. Using the presented camera setup and reconstruction algorithms, two parts of a dusty plasma under microgravity on parabolic flights are investigated. Initially, the force field creating and sustaining the central void is deduced and characterized. The combination of ion drag and electric field force is measured and compared to current models of the ion drag, showing a good agreement with these models. While previous investigations on the forces were limited to two-dimensional slices through the void, our measurements represent the first three-dimensional quantitative analysis of a large fraction of the void region. From this analysis the structure of the force field is determined and separated into a radial and a non-radial (or orthogonal) contribution. It is shown that the radial contribution dominates in the central void, while non-radial forces increase in magnitude close to the void edge. The radial domination is also observed in the velocity distribution of the probe particles which is significantly shifted to radially outward directed velocities for particles leaving the void. Assuming a strictly radial force profile in the horizontal mid-plane of the void, the friction coefficient determining the interaction of the probe particles with the neutral gas background is experimentally determined and shown to match the theoretical expectation. Subsequently, particles at the outer surface of the dust cloud are reconstructed. There, the particles are found to oscillate due to dust-density waves propagating through the high-density dust cloud. For the investigation of the correlation between waves and oscillating particles, the instantaneous wave and oscillation properties are determined and the instantaneous phase difference is obtained. Modeling the probe particles as driven, damped harmonic oscillators, these phase differences between waves and particles are interpreted with respect to the resonance frequency of the oscillating particles. Spatial variations of the phase difference are observed that may be attributed to different frequencies of the dust-density waves, or to changes of the resonance frequency induced by changing local plasma parameters. From a few measurements of particles oscillating at their resonance frequency, information about the surrounding plasma or properties of the particles themselves can be deduced. However, a larger number of reconstructed trajectories is necessary in order to interpret the phase differences on a reliable data basis. The presented camera setup in combination with the evaluation algorithms is a flexible system for the investigation of three-dimensional dusty plasmas. Its robust construction allows the operation of the system in challenging environments such as on parabolic flights, where spatial limitations and vibrations produced by the aircraft make special demands on such a diagnostic tool. This versatility makes our stereoscopic camera setup and the reconstruction process a suitable standard diagnostic for the application with dusty plasmas; this system will therefore be used in future research amongst other things for the investigation of boundary layers in extended three-dimensional dust clouds under microgravity.
This thesis constitutes a computational study of charge and ion drag force on micron-sized dust particles immersed in rf discharges. Knowledge of dust parameters like dust charge, floating potential, shielding and ion drag force is very crucial for explaining complex laboratory dusty plasma phenomena, such as void formation in microgravity experiments and wakefield formation in the sheaths. Existing theoretical models assume standard distribution functions for plasma species and are applicable over a limited range of flow velocities and collisionality. Kinetic simulations are suitable tools for studying dust charging and drag force computation. The main aim of this thesis is to perform three dimensional simulations using a Particle-Particle-Particle-Mesh ($P^3M$) model to understand how the dust parameters vary for different positions of dust in rf discharges and how these parameters on a dust evolve in the presence of neighboring dust particles. At first, rf discharges in argon have been modelled using a three-dimensional PIC-MCC code for the discharge conditions relevant to the dusty plasma experiments. All necessary elastic and inelastic collisions have been considered. The plasma background is found collisional, charge-exchange collisions between ions and neutrals being dominant. Electron and ion distributions are non-Maxwellian. The dominant heating mechanism is Ohmic. Then, simulations have been done to compute the dust parameters for various sizes of dust located at different positions in the rf discharges. Dust charge and floating potential in the presheath are slightly larger than the values in the bulk due to the higher electron flux to the dust particle in the presheath. From presheath to the sheath the charge and floating potential values decrease due to the decrease of the electron current to the dust. A linear dependence of dust potential on dust size has been found, which results in a nonlinear dependence of the dust charge with the dust size when the particle is assumed to be a spherical capacitor. This has been verified by independently counting the charges collected by the dust. %where indeed it has been noted that the dust charge %scales nonlinearly with the dust size. The computed dust parameters are also compared with theoretical models. Simulated dust floating potentials are comparable to values obtained from Allen-Boyd-Reynolds (ABR) and Khrapak models, but much smaller than the values obtained from Orbit Motion Limited (OML) model. The dust potential distribution behaves Debye-H\"{u}ckel-like. The shielding lengths are in between ion and electron Debye lengths. % indicating shielding by both ions and electrons. Further, the orbital drag force is typically larger than the collection drag force. The total drag force for the collisional case is larger than for the collisionless case and it scales nonlinearly with the dust size. The collection drag values and size-scaling agrees with Zobnin's model. The charging and drag force computation is then extended to two and multiple static dust particles in the rf discharge to study the influence of neighboring dust particles on the dust parameters. Initially, the dust parameters on two dust particles are computed for various interparticle separation distances and for dust particles placed at different locations in the rf discharge. It is observed that for dust separations larger than the shielding length the dust parameters for the two dust particles match with the single dust particle values. As the dust separation is equal to or less than the shielding length the ion drag force increases due to the buildup of a parallel drag force component. However, the main dust properties like charge, potential, vertical component of ion drag are not affected considerably. This is attributed to the smaller collection impact parameter values compared to the dust separation. %This is because the %collection impact parameter values in the sheath and the presheath are smaller %than the smallest dust separation and in case of the dust in the bulk, the %collection impact parameter is comparable with the dust separation. Then the dust charges on multiple dust particles located at different positions in the discharge and arranged along the discharge axis are also computed. It is found that the charges of the multiple dust particles in the bulk or presheath do not differ much from the single particle values at that location. But the dust charges of multiple dust particles located in the sheath drastically differ from the single dust parameter values. Due to ion focusing from dust particles in the upper layers, the ion current increases to dust particles in the lower layers resulting in smaller charge values. This is as well the case where dust particles are vertically aligned as in the standard experiments of dusty plasmas. In conclusion, this work used a fully kinetic (PIC and MD or $P^3M$) model to study the physics of dust charging in rf plasmas. Our simulations revealed that the dust parameters vary considerably from the bulk to the sheath. The CX collisions increase flux to the dust thereby affecting the dust parameters and their scaling with dust size. Also, a dust particle affects the charging dynamics of its neighbor only when their separation is within the shielding length. In the plasma sheath, ion focussing can cause great reduction in dust charges.