52.35.Ra Plasma turbulence
Refine
Document Type
- Doctoral Thesis (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Turbulenz (2)
- Driftwellen (1)
- Fluktuationen (1)
- Intermittenz (1)
- Kontrolle (1)
- Plasma (1)
- Plasmadynamik (1)
- Plasmaphysik (1)
- Transport (1)
- anomal transport (1)
Institute
Turbulence is a state of a physical system characterized by a high degree of spatiotemporal disorder. Turbulent processes are driven by instabilities exhibiting complex nonlinear dynamics, which span over several spatial as well as temporal scales. Apart from fluids and gases, turbulence is observed in plasmas. While turbulent mixing of a system is sometimes a desired effect, often turbulence is an undesired state. In hot, magnetically confined plasmas, envisaged for energy generation by thermonuclear fusion, plasma turbulence is clearly a problem, since the magnetic confinement time is drastically deteriorated by turbulent transport. Hence, a control mechanism to influence and to suppress turbulence is of significance for future fusion power devices. An important area of plasma turbulence is drift wave turbulence. Drift waves are characterized by currents parallel to the ambient magnetic field, that are tightly coupled to a coherent mode structure rotating in the perpendicular plane. In the present work, the control of drift waves and drift wave turbulence is experimentally investigated in the linear magnetized helicon experiment VINETA. Two different open-loop control systems - electrostatic and electromagnetic - are used to drive dynamically parallel currents. It is observed that the dynamics of the drift waves can be significantly influenced by both control schemes. If the imposed mode number as well as the rotation direction match those of the drift waves, classical synchronization effects like, e.g., frequency locking, frequency pulling, and Arnold tongues are observed. These confirm the nonlinear interaction between the control signal and the drift wave dynamics. Finally, the broadband drift wave turbulence, and thereby turbulent transport, is considerably reduced if the applied control signal is sufficiently large in amplitude.
Turbulenz ist allgegenwärtig in der Natur. Ein wichtiges Charakteristikum sind Fluktuationen auf einer Vielzahl von räumlichen und zeitlichen Skalen, die sowohl in neutralen Fluiden und gasförmigen Systemen, als auch in Plasmen beobachtet werden. Obwohl der elektromagnetische Charakter von Plasmen eine erhöhte Komplexität von Plasmaturbulenz bedingt, sind die grundlegenden Eigenschaften universell. In magnetisch eingeschlossenen Plasmen führen fluktuierende Plasmaparameter zu turbulentem Transport von Plasmateilchen und Energie, der die Einschlusszeit verringert und wichtige Aspekte zukünftiger Fusionskraftwerke beeinflusst. Der intermittente Charakter dieses konvektiven Teilchenflusses ist verbunden mit turbulenten Strukturen mit großen Amplituden, auch "blobs" genannt, die radial durch das Magnetfeld propagieren. Intermittente Fluktuationen im Randplasma von Experimenten mit linearer Magnetfeldgeometrie werden ebenfalls propagierenden turbulenten Strukturen zugeschrieben. Dabei ist der Mechanismus der radialen Propagation kaum verstanden. In dieser Arbeit wird die Bildung und Propagation von turbulenten Strukturen im linear magnetisierten Helikonexperiment Vineta untersucht. Durch Messungen der Fluktuationen in der azimuthalen Ebene mit multi-dimensionalen Sonden wird gezeigt, dass turbulente Strukturen in Driftwellenturbulenz im Gebiet des maximalen Dichtegradienten entstehen. Die turbulenten Strukturen propagieren hauptsächlich azimuthal in Richtung der Hintergrund ExB-Drift, aber sie besitzen auch eine starke radiale Geschwindigkeitskomponente. Die radiale Propagation wird durch das selbstkonsistente Potential der turbulenten Struktur verursacht, dass zu einem fluktuations-induzierten radialen Transport führt. Im Plasmarand werden die turbulenten Strukturen als intermittente Dichteeruptionen mit großen Amplituden beobachtet. Ein Vergleich der experimentellen Ergebnisse mit numerischen dreidimensionalen Fluid-Simulationen mit abgestimmten Geometrie- und Randbedingungen zeigt Übereinstimmung. Die Bildung der turbulenten Strukturen ist kausal mit einer quasi-kohärenten Driftmode verbunden und ihre radiale Propagation wird durch das selbstkonsistente elektrische Feld verursacht, dass aus der dreidimensionalen Dynamik resultiert. Zum Vergleich wird die Propagation von turbulenten Strukturen im Randplasma vom National Spherical Torus Experiment (NSTX) untersucht und mit theoretischen Propagationsmodellen verglichen.