## 510 Mathematik

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (48)
- Final Thesis (1)

#### Has Fulltext

- yes (49)

#### Is part of the Bibliography

- no (49)

#### Keywords

- Numerische Mathematik (4)
- Optimale Kontrolle (4)
- Fraktal (3)
- Optimale Steuerung (3)
- Selbstähnlichkeit (3)
- Statistik (3)
- Algebra (2)
- Algorithmus (2)
- Bundle Gerbes (2)
- Fock-Raum (2)

A lot of research data has become available since the outbreak of the COVID-19
pandemic in 2019. Connecting this data is essential for the understanding of the
SARS-CoV-2 virus and the fight against the pandemic.
Amongst biological and biomedical research data, computational models targeting
COVID-19 have been emerging and their number is growing constantly. They are a
central part of the field of Systems Biology, which aims to understand the mechanisms
and behaviour of biological systems. Model predictions help to understand the
mechanisms of the novel coronavirus and the life-threatening disease it is causing.
Both biomedical research data and modelling data regarding COVID-19 have
previously been stored in separated domain-specific graph databases. MaSyMoS,
short for Management System for Models and Simulations, is a graph database for
storing simulation studies of biological and biochemical systems. The CovidGraph
project integrates research data regarding COVID-19 and the coronavirus family
from various data resources in a knowledge graph.
In this thesis, we integrate simulation models from MaSyMoS, including models
targeting COVID-19, into the CovidGraph. Therefore, we present a concept for
the integration of simulation studies and the linkage through ontology terms and
reference publications in the CovidGraph. Ultimately, we connect data from the field
of systems biology and biomedical research data in a graph database.

Geometric T-Duality
(2022)

From a physicists point of view T-duality is a relation connecting string
theories on different spacetimes. Mathematically speaking, T-duality should be a symmetric relation on
the space of toroidal string backgrounds. Such a background consists of: a smooth manifold M; a torus bundle E over M - the total space modelling spacetime; a Riemannian metric g on E - modelling the field of gravity; a U(1)-bundle gerbe G with connection over E - modelling the Kalb-
Ramond field.
But as of now no complete model for T-duality exists. The three most notable
approaches for T-duality are given by the differential approaches by Buscher in the form of the Buscher rules and by Bouwknegt, Evslin and Mathai in the form of T-duality with H-flux on the one hand, and by the topological approach given by Bunke, Rumpf and Schick which is known as topological T-duality. In this thesis we combine these different approaches to form the first model for T-duality over complete geometric toroidal string backgrounds and we will introduce an example for this geometric T-duality inspired by the Hopf bundle.

Discovering Latent Structure in High-Dimensional Healthcare Data: Toward Improved Interpretability
(2022)

This cumulative thesis describes contributions to the field of interpretable machine learning in the healthcare domain. Three research articles are presented that lie at the intersection of biomedical and machine learning research. They illustrate how incorporating latent structure can provide a valuable compression of the information hidden in complex healthcare data.
Methodologically, this thesis gives an overview of interpretable machine learning and the discovery of latent structure, including clusters, latent factors, graph structure, and hierarchical structure. Different workflows are developed and applied to two main types of complex healthcare data (cohort study data and time-resolved molecular data). The core result builds on Bayesian networks, a type of probabilistic graphical model. On the application side, we provide accurate predictive or discriminative models focusing on relevant medical conditions, related biomarkers, and their interactions.

Spatial variation in survival has individual fitness consequences and influences population dynamics. It proximately and ultimately impacts space use including migratory connectivity. Therefore, knowing spatial patterns of survival is crucial to understand demography of migrating animals. Extracting information on survival and space use from observation data, in particular dead recovery data, requires explicitly identifying the observation process. The main aim of this work is to establish a modeling framework which allows estimating spatial variation in survival, migratory connectivity and observation probability using dead recovery data. We provide some biological background on survival and migration and a short methodological overview of how similar situations are modeled in literature.
Afterwards, we provide REML-like estimators for discrete space and show identifiability of all three parameters using the characteristics of the multinomial distribution. Moreover, we formulate a model in continuous space using mixed binomial point processes. The continuous model assumes a constant recovery probability over space. To drop this strict assumption, we develop an optimization procedure combining the discrete and continuous space model. Therefore, we use penalized M-splines. In simulation studies we demonstrate the performance of the estimators for all three model approaches. Furthermore, we apply the models to real-world data sets of European robins \textit{Erithacus rubecula} and ospreys \textit{Pandion haliaetus}.
We discuss how this study can be embedded in the framework of animal movement and the capture mark recapture/recovery methodology. It can be seen as a contribution and an extension to distance sampling, local stationary everyday movement and dispersal. We emphasize the importance of having a mathematically clearly formulated modeling framework for applied methods. Moreover, we comment on model assumptions and their limits. In the future, it would be appealing to extend this framework to the full annual cycle and carry-over effects.

Diese Dissertation untersucht Zusammenhänge der spieltheoretischen Begriffe des Nash- und Stackelberg-Gleichgewichts in Differenialspielen im N-Spieler-Fall. Weiterhin werden drei verschiedene Lösungskonzepte für das Finden von Gleichgewichten in 2-Spieler-Differentialspielen vorgestellt. Direkte Methoden aus der nichtlinearen Optimierung, der globalen Optimierung und der optimalen Steuerung werden verwendet, um Nash- und Stackelberg-Gleichgewichte in 2-Spieler-Differentialspielen zu finden. Anhand von Anwendungsbeispielen werden die Methoden getestet, analysiert und ausgewertet. Eine Erweiterung des Verfolgungsspiels von Isaacs auf Beschleunigungskomponenten wird betrachtet. Ein bisher unbekanntes Stackelberg-Gleichgewicht wird im Kapitalismusspiel nach Lancaster numerisch berechnet. Zuletzt wird ein Problem aus der Fischerei modelliert und anhand der eingeführten Methoden gelöst.

Twisted topological K-theory is a twisted version of topological K-theory in the sense of twisted generalized cohomology theories. It was pioneered by Donavan and Karoubi in 1970 where they used bundles of central simple graded algebras to model twists of K-theory. By the end of the last century physicists realised that D-brane charges in the field of string theory may be studied in terms of twisted K-theory. This rekindled interest in the topic lead to a wave of new models for the twists and new ways to realize the respective twisted K-theory groups. The state-of-the-art models today use bundles of projective unitary operators on separable Hilbert spaces as twists and K-groups are modeled by homotopy classes of sections of certain bundles of Fredholm operators. From a physics perspective these treatments are not optimal yet: they are intrinsically infinite-dimensional and these models do not immediately allow the inclusion of differential data like forms and connections.
In this thesis we introduce the 2-stack of k-algebra gerbes. Objects, 1-morphisms and 2-morphisms consist of finite-dimensional geometric data simultaneously generalizing bundle gerbes and bundles of central simple graded k-algebras for k either the field of real numbers or the field of complex numbers. We construct an explicit isomorphism from equivalence classes of k-algebra gerbes over a space X to the full set of twists of real K-theory and complex K-theory respectively. Further, we model relative twisted K-groups for compact spaces X and closed subspaces Y twisted by algebra gerbes. These groups are modeled directly in terms of 1-morphisms and 2-morphisms of algebra gerbes over X. We exhibit a relation to the K-groups introduced by Donavan and Karoubi and we translate their fundamental isomorphism -- an isomorphism relating K-groups over Thom spaces with K-groups twisted by Clifford algebra bundles -- to the new setting. With the help of this fundamental isomorphism we construct an explicit Thom isomorphism and explicit pushforward homomorphisms for smooth maps between compact manifolds, without requiring these maps to be K-oriented. Further -- in order to treat K-groups for non-torsion twists -- we implement a geometric cocycle model, inspired by a related geometric cycle model developed by Baum and Douglas for K-homology in 1982, and construct an assembly map for this model.

A common task in natural sciences is to
describe, characterize, and infer relations between discrete
objects. A set of relations E on a set of objects V can
naturally be expressed as a graph G = (V, E). It is
therefore often convenient to formalize problems in natural
sciences as graph theoretical problems.
In this thesis we will examine a number of problems found in
life sciences in particular, and show how to use graph theoretical
concepts to formalize and solve the presented problems. The
content of the thesis is a collection of papers all
solving separate problems that are relevant to biology
or biochemistry.
The first paper examines problems found in self-assembling
protein design. Designing polypeptides, composed of concatenated
coiled coil units, to fold into polyhedra turns out
to be intimately related to the concept of 1-face embeddings in
graph topology. We show that 1-face embeddings can be
canonicalized in linear time and present algorithms to enumerate
pairwise non-isomorphic 1-face embeddings in orientable surfaces.
The second and third paper examine problems found in evolutionary
biology. In particular, they focus on
inferring gene and species trees directly from sequence data
without any a priori knowledge of the trees topology. The second
paper characterize when gene trees can be inferred from
estimates of orthology, paralogy and xenology relations when only
partial information is available. Using this characterization an
algorithm is presented that constructs a gene tree consistent
with the estimates in polynomial time, if one exists. The
shown algorithm is used to experimentally show that gene trees
can be accurately inferred even in the case that only 20$\%$ of
the relations are known. The third paper explores how to
reconcile a gene tree with a species tree in a biologically
feasible way, when the events of the gene tree are known.
Biologically feasible reconciliations are characterized using
only the topology of the gene and species tree. Using this
characterization an algorithm is shown that constructs a
biologically feasible reconciliation in polynomial time, if one
exists.
The fourth and fifth paper are concerned with with the analysis
of automatically generated reaction networks. The fourth paper
introduces an algorithm to predict thermodynamic properties of
compounds in a chemistry. The algorithm is based on
the well known group contribution methods and will automatically
infer functional groups based on common structural motifs found
in a set of sampled compounds. It is shown experimentally that
the algorithm can be used to accurately
predict a variety of molecular properties such as normal boiling
point, Gibbs free energy, and the minimum free energy of RNA
secondary structures. The fifth and final paper presents a
framework to track atoms through reaction networks generated by a
graph grammar. Using concepts found in semigroup theory, the
paper defines the characteristic monoid of a reaction network. It
goes on to show how natural subsystems of a reaction network organically
emerge from the right Cayley graph of said monoid. The
applicability of the framework is proven by applying it to the
design of isotopic labeling experiments as well as to the
analysis of the TCA cycle.

Mathematical phylogenetics provides the theoretical framework for the reconstruction and analysis of phylogenetic trees and networks. The underlying theory is based on various mathematical disciplines, ranging from graph theory to probability theory.
In this thesis, we take a mostly combinatorial and graph-theoretical position and study different problems concerning phylogenetic trees and networks.
We start by considering phylogenetic diversity indices that rank species for conservation. Two such indices for rooted trees are the Fair Proportion index and the Equal Splits index, and we analyze how different they can be from each other and under which circumstances they coincide. Moreover, we define and investigate analogues of these indices for unrooted trees.
Subsequently, we study the Shapley value of unrooted trees, another popular phylogenetic diversity index. We show that it may fail as a prioritization criterion in biodiversity conservation and is outcompeted by an existing greedy approach. Afterwards, we leave the biodiversity setting and consider the Shapley value as a tree reconstruction tool. Here, we show that non-isomorphic trees may have permutation-equivalent Shapley transformation matrices and identical Shapley values, implying that the Shapley value cannot reliably be employed in tree reconstruction.
In addition to phylogenetic diversity indices, another class of indices frequently discussed in mathematical phylogenetics, is the class of balance indices. In this thesis, we study one of the oldest and most popular of them, namely the Colless index for rooted binary trees. We focus on its extremal values and analyze both its maximum and minimum values as well as the trees that achieve them.
Having analyzed various questions regarding phylogenetic trees, we finally turn to phylogenetic networks. We focus on a certain class of phylogenetic networks, namely tree-based networks, and consider this class both in a rooted and in an unrooted setting.
First, we prove the existence of a rooted non-binary universal tree-based network with n leaves for all positive integers n, that is, we show that there exists a rooted non-binary tree-based network with $n$ leaves that has every non-binary phylogenetic tree on the same leaf set as a base tree.
Finally, we study unrooted tree-based networks and introduce a class of networks that are necessarily tree-based, namely edge-based networks. We show that edge-based networks are closely related to a family of graphs in classical graph theory, so-called generalized series-parallel graphs, and explore this relationship in full detail.
In summary, we add new insights into existing concepts in mathematical phylogenetics, answer open questions in the literature, and introduce new concepts and approaches. In doing so, we make a small but relevant contribution to current research in mathematical phylogenetics.

Given a manifold with a string structure, we construct a spinor bundle on its loop space. Our construction is in analogy with the usual construction of a spinor bundle on a spin manifold, but necessarily makes use of tools from infinite dimensional geometry. We equip this spinor bundle on loop space with an action of a bundle of Clifford algebras. Given two smooth loops in our string manifold that share a segment, we can construct a third loop by deleting this segment. If this third loop is smooth, then we say that the original pair of loops is a pair of compatible loops. It is well-known that this operation of fusing compatible loops is important if one wants to understand the geometry of a manifold through its loop space. In this work, we explain in detail how the spinor bundle on loop space behaves with respect to fusion of compatible loops. To wit, we construct a family of fusion isomorphisms indexed by pairs of compatible loops in our string manifold. Each of these fusion isomorphisms is an isomorphism from the relative tensor product of the fibres of the spinor bundle over its index pair of compatible loops to the fibre over the loop that is the result of fusing the index pair. The construction of a spinor bundle on loop space equipped with a fusion product as above was proposed by Stolz and Teichner with the goal of studying the Dirac operator on loop space". Our construction combines facets of the theory of bimodules for von Neumann algebras, infinite dimensional manifolds, and Lie groups and their representations. We moreover place our spinor bundle on loop space in the context of bundle gerbes and bundle gerbe modules.

In phylogenetics, evolutionary relationships of different species are represented by phylogenetic trees.
In this thesis, we are mainly concerned with the reconstruction of ancestral sequences and the accuracy of this reconstruction given a rooted binary phylogenetic tree.
For example, we wish to estimate the DNA sequences of the ancestors given the observed DNA sequences of today living species.
In particular, we are interested in reconstructing the DNA sequence of the last common ancestor of all species under consideration. Note that this last common ancestor corresponds to the root of the tree.
There exist various methods for the reconstruction of ancestral sequences.
A widely used principle for ancestral sequence reconstruction is the principle of parsimony (Maximum Parsimony).
This principle means that the simplest explanation it the best.
Applied to the reconstruction of ancestral sequences this means that a sequence which requires the fewest evolutionary changes along the tree is reconstructed.
Thus, the number of changes is minimized, which explains the name of Maximum Parsimony.
Instead of estimating a whole DNA sequence, Maximum Parsimony considers each position in the sequence separately. Thus in the following, each sequence position is regarded separately, and we call a single position in a sequence state.
It can happen that the state of the last common ancestor is reconstructed unambiguously, for example as A. On the other hand, Maximum Parsimony might be indecisive between two DNA nucleotides, say for example A and C.
In this case, the last common ancestor will be reconstructed as {A,C}.
Therefore we consider, after an introduction and some preliminary definitions, the following question in Section 3: how many present-day species need to be in a certain state, for example A, such that the Maximum Parsimony estimate of the last common ancestor is also {A}?
The answer of this question depends on the tree topology as well as on the number of different states.
In Section 4, we provide a sufficient condition for Maximum Parsimony to recover the ancestral state at the root correctly from the observed states at the leaves.
The so-called reconstruction accuracy for the reconstruction of ancestral states is introduced in Section 5. The reconstruction accuracy is the probability that the true root state is indeed reconstructed and always takes two processes into account: on the one hand the approach to reconstruct ancestral states, and on the other hand the way how the states evolve along the edges of the tree. The latter is given by an evolutionary model.
In the present thesis, we focus on a simple symmetric model, the Neyman model.
The symmetry of the model means for example that a change from A to C is equally likely than a change from C to A.
Intuitively, one could expect that the reconstruction accuracy it the highest when all present-day species are taken into account. However, it has long been known that the reconstruction accuracy improves when some taxa are disregarded for the estimation.
Therefore, the question if there exits at least a lower bound for the reconstruction accuracy arises, i.e. if it is best to consider all today living species instead of just one for the reconstruction.
This is bad news for Maximum Parsimony as a criterion for ancestral state reconstruction, and therefore the question if there exists at least a lower bound for the reconstruction accuracy arises.
In Section 5, we start with considering ultrametric trees, which are trees where the expected number of substitutions from the root to each leaf is the same.
For such trees, we investigate a lower bound for the reconstruction accuracy, when the number of different states at the leaves of the tree is 3 or 4.
Subsequently in Section 6, in order to generalize this result, we introduce a new method for ancestral state reconstruction: the coin-toss method.
We obtain new results for the reconstruction accuracy of Maximum Parsimony by relating Maximum Parsimony to the coin-toss method.
Some of these results do not require the underlying tree to be ultrametric.
Then, in Section 7 we investigate the influence of specific tree topologies on the reconstruction accuracy of Maximum Parsimony. In particular, we consider balanced and imbalanced trees as the balance of a tree may have an influence on the reconstruction accuracy.
We end by introducing the Colless index in Section 8, an index which measures the degree of balance a rooted binary tree can have, and analyze its extremal properties.