Doctoral Thesis
Refine
Year of publication
Document Type
- Doctoral Thesis (22) (remove)
Language
- German (22) (remove)
Keywords
- Staphylococcus aureus (22) (remove)
Institute
- Abteilung fĂĽr Mikrobiologie und Molekularbiologie (8)
- Institut fĂĽr Immunologie u. Transfusionsmedizin - Abteilung Immunologie (3)
- Zoologisches Institut und Museum (3)
- Arbeitsgruppe "Funktionelle Genomforschung" (2)
- Friedrich-Loeffler-Institut fĂĽr Medizinische Mikrobiologie (1)
- Institut fĂĽr Hygiene und Umweltmedizin (1)
- Institut fĂĽr Immunologie u. Transfusionsmedizin - Abteilung Transfusionsmedizin (1)
- Institut fĂĽr Mikrobiologie - Abteilung fĂĽr Genetik & Biochemie (1)
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (1)
- Klinik und Poliklinik fĂĽr Augenheilkunde (1)
Staphylococcus (S.) aureus nimmt dem Menschen gegenüber eine ambivalente Rolle ein, da er zum einen häufiger Kommensale ist, aber auch zum Pathogen werden kann. Zu den bedeutendsten Gegnern von S. aureus zählen die neutrophilen Granulozyten. Sie haben eine kurze Lebensspanne und weisen hochspezialisierte Zelltodstrategien, wie Apoptose oder NETose auf. Auffälligerweise besitzen S. aureus-Isolate, die Furunkulose auslösen, überproportional häufig das Gen für das Panton-Valentine-Leukozidin (PVL), welches hochspezifisch humane neutrophile Granulozyten lysiert. Zu den Interaktionen zwischen S. aureus und Neutrophilen sind noch viele Fragen ungeklärt. Die Ziele dieser Arbeit waren deshalb (1) die Charakterisierung der Wirkung von S. aureus auf das Zelltodverhalten von Neutrophilen und (2) der Vergleich dieser Mechanismen bei kommensalen S. aureus-Isolaten und Isolaten von Patienten mit chronisch rekurrenter Furunkulose. Dazu wurde der Zelltod von Neutrophilen mit einem DNA-Freisetzungstest (Sytox-Assay) und mittels Immunfluoreszenzfärbung analysiert. Auffällig waren dabei folgende Beobachtungen: (1) Hohe Konzentrationen der S. aureus-Kulturüberstände führten zur Nekrose der Neutrophilen. In sublytischen Konzentrationen bewirkten Überstände der stationären Wachstumsphase dagegen eine Verzögerung der natürlichen Apoptose der Neutrophilen in Kultur, deren Fähigkeit zur proinflammatorischen Aktivierung dabei erhalten blieb. Es ist vorstellbar, dass sich S. aureus, von dem inzwischen bekannt wurde, dass er auch intrazellulär persistieren kann, auf diese Weise in den Neutrophilen eine Überlebensnische schafft. Bei Stimulation mit lebenden Bakterienzellen konnten konzentrationsabhängig Nekrose, Apoptose und geringfügig NETose der Neutrophilen beobachtet werden. (2) Der Vergleich von S. aureus-Isolaten aus nasaler Besiedlung und Furunkuloseinfektion zeigte, dass bakterielle Überstände von Furunkulose-Isolaten, die die PVL-kodierenden Gene besaßen, eine deutlich stärkere Lyse der Neutrophilen verursachten. Dieser Effekt war nur dann zu beobachten, wenn die Bakterien tatsächlich PVL bildeten, wozu sie nur in besonders reichhaltigen Medien in der Lage waren. Dies ist ein starker Hinweis darauf, dass der Zelltod durch PVL verursacht wurde. Mit lebenden Bakterien konnten zwischen beiden Gruppen keine Unterschiede in der Zelltodinduktion der Neutrophilen festgestellt werden. Die Ergebnisse dieser Arbeit zeigen, dass S. aureus neutrophile Granulozyten auf verschiedene Weise beeinflussen kann: Neben der Induktion von Zelltod können die Bakterien auch Substanzen freisetzen, die die Lebensspanne der Abwehrzellen verlängern. Außerdem stützen die Befunde das Konzept einer zentralen Rolle für PVL bei Haut- und Weichteilinfektionen durch S. aureus, das bisher vor allem auf epidemiologischen Befunden basierte.
Staphylococcus aureus (S. aureus) ist einer der meist gefürchtetsten pathogenen Mikroorganismen, der verantwortlich ist für eine Vielzahl von nosokomialen Infektionen und Krankheiten. S. aureus ist in der Lage, sich an verändernde Umweltbedingungen auf Ebene der Genexpression anzupassen, was zu unterschiedlichen Proteinzusammensetzungen und somit zu Veränderungen in der Metabolitenkomposition und metabolischen Aktivität führt. Außerdem stellt die Fähigkeit, Resistenzen gegen gegenwärtig genutzte Antibiotika zu entwickeln, eine Gefahr dar und macht diesen Keim in seiner Behandlung so schwierig. Für ein vollständiges Verstehen der Proteom-, Transkriptom- und Metabolomdaten ist die Untersuchung der Enzymaktivitäten ein entscheidendes Hilfsmittel. In der vorliegenden Arbeit wurden die enzymkatalytischen Eigenschaften sowie die spezifischen Enzymaktivitäten der Enzyme des Intermediär- und Fermentationsstoffwechsels untersucht. Aus Zellen der logarithmischen, transienten und stationären Wachstumsphase unter aeroben wie auch anaeroben Bedingungen wurden für die Enzyme das pH-Optimum, die maximale Reaktionsgeschwindigkeit (vmax) und die Substratkonzentration der halbmaximalen Reaktionsgeschwindigkeit (Km) bestimmt. In S. aureus COL wird die Glucose unter aeroben Bedingungen hauptsächlich über die Glycolyse metabolisiert. Glucose-6-phosphat wird weiter zu Pyruvat umgesetzt, welches wiederum durch die Pyruvat-Oxidase zu Acetylphosphat oder durch den Pyruvat-Dehydrogenase-Komplex zu Acetyl-CoA verstoffwechselt wird. Durch die Phosphatacetyl-Transferase wird das Acetyl-CoA im Folgenden ebenfalls zu Acetylphosphat umgesetzt und nicht dem Citrat-Zyklus zugeführt. Die Acetat-Kinase nutzt das Acetylphosphat zur Generierung von ATP. Geringe extrazelluläre Lactat-Konzentrationen weisen auf eine geringere Bedeutung der Lactat-Dehydrogenase unter aeroben Wachstumsbedingungen hin. Gleichwohl wird ein kleiner Teil des Pyruvates zur Regeneration von NAD+ durch die Lactat-Dehydrogenase genutzt. In der transienten und stationären Wachstumsphase werden die Gene der Enzyme für Gluconeogenese und Citrat-Zyklus vermehrt exprimiert. Lactat und Acetat werden als Kohlenstoff- und Energiequelle wieder aufgenommen und dienen der Bildung unterschiedlicher Intermediate, wie beispielsweise der Bildung von NADPH über Glucose-6-phosphat im Pentose-Phosphat-Weg. Lediglich die Citrat-Synthase, Isocitrat-Dehydrogenase und Fumarat-Hydratase des Citrat-Zyklus konnten enzymologisch untersucht werden, was auf eine geringe metabolische Aktivität im Citrat-Zyklus hinweist. Möglicherweise dient der erste Teil des Citrat-Zyklus nur der Einführung von Aminosäuren als Kohlen- und Stickstoffquelle in den Metabolismus. Unter anaeroben Bedingungen wird die Glucose in der Glycolyse und der gemischten Säuregärung zu Lactat und Ethanol umgesetzt. Hohe spezifische Enzymaktivitäten der Lactat- und Alkohol-Dehydrogenase konnten nachgewiesen werden. Die Energie in Form von ATP wird auch in dieser Phase des Wachstums durch Substratkettenphosphorylierung generiert. Bacillus subtilis 168 (B. subtilis 168) ist ein grampositives apathogenes Bakterium, das durch die Zugabe von Pyruvat auch zum Wachstum unter sauerstofffreien Bedingungen befähigt ist. Es exprimiert Enzyme der 2,3-Butandiol- und Lactatfermentation. In der hier vorliegenden Arbeit wurden die enzymkatalytischen Eigenschaften von Enzymen des Intermediär- und Fermentationsstoffwechsels untersucht. In der logarithmischen Wachstumsphase wird die Glucose über die Glycolyse verstoffwechselt. Wie bei S. aureus COL ist der Eintritt des Glucose-6-phosphates in den Pentose-Phosphat-Weg aufgrund einer höheren spezifischen Enzymaktivität der Glucose-6-phosphat-Isomerase limitiert. Die Energie in Form von ATP wird auch hier hauptsächlich über Substratkettenphosphorylierungsreaktionen generiert. Die Bedeutung der Lactat-Dehydrogenase-Aktivität unter aeroben Bedingungen ist noch nicht eindeutig geklärt, jedoch kann davon ausgegangen werden, dass auch hier ein Teil des Pyruvates zur Regeneration von NAD+ durch die Lactat-Dehydrogenase umgesetzt wird. Unter anaeroben Bedingungen wurden hohe Lactat-Dehydrogenasen-Aktivitäten gemessen. Außerdem wird die Glucose zur Regeneration von NAD+ zu D-2,3-Butandiol fermentiert. Zusammenfassend ist zu sagen, dass enzymologische Untersuchungen und die Erforschung der spezifischen Enzymaktivitäten unter bestimmten Bedingungen ein gutes Hilfsmittel für metabolische Studien ist und diese gut mit vorhandenen Proteom- und Metabolomdaten verglichen werden können. Enzymanalysen sind nicht einfach handhabbar, bieten aber die Möglichkeit, einen Blick in die Physiologie von Mikroorganismen zu werfen. Für ein allumfassendes Verständnis ist es wichtig, Enzymaktivitäten zu untersuchen.
A physiological proteomic approach to address infection-related issues of Gram-positive bacteria
(2012)
Trotz der vielen wissenschaftlichen Fortschritten sind Infektionskrankheiten auch heute noch die Haupttodesursache weltweit. Sie haben nicht nur heute, sondern werden auch in der Zukunft eine große epidemiologische Bedeutung haben. Die komplexe Infektionsthematik sollte unter zwei Gesichtspunkten betrachtet werden: der Prävention und der Behandlung. Zur Prävention von Infektionen zählen neben der Dekontamination und Sterilisation auch die Impfungen sowie die Hygiene- und Gesundheitsaufklärung. Bei der Behandlung von Infektionen kann auf Antibiotika zurückgegriffen werden, wenn das humane Immunsystem die Infektionen nicht auf natürliche Weise bekämpfen kann. Zwischen 1969 und 2000 wurde kein neues Antibiotikum den bereits vorhandenen Antibiotikaklassen hinzugefügt. Parallel zu dieser schwindenden Antibiotikaforschung, verbreiten sich nosokomiale Infektionen und community-acquired (vor allem Methicillin-resistente) Infektionen rapide. Von besonderer Bedeutung ist die Grundlagenforschung an infektionsassoziierten Mikroorganismen, wie dem humanen Erreger Staphylococcus aureus. Im Zusammenhang mit Infektionen spielen Virulenzfaktoren eine entscheidende Rolle. Sie sind entweder an der Zelloberfläche platziert oder werden aktiv ins Medium sekretiert. Um das pathogene Potential von S. aureus besser zu verstehen und aufzuklären ist ein Verständnis über die Proteintransportwege essentiell. Momentan sind die Transportwege von Escherichia coli (Gram-negative) und Bacillus subtilis (Gram-positive) am besten charakterisiert. Viele Transportwegekomponenten wurden mittels Transkriptions und Proteomeanalysen auch in S. aureus konserviert gefunden und ermöglichten dadurch einen ersten Einblick in die Sekretionsmaschinerie. Das Verständnis, warum und wie Virulenzfaktoren Infektionen auslösen birgt ein großes Potential in der Suche nach verbesserter Infektionskontrolle und Behandlung. Kontaminierte medizinische Arbeitsmittel, wie zum Beispiel Katheter oder Endoskope können auch eine auslösende Quelle von Infektionen sein. Diese medizinischen Arbeitsmittel oder Geräte bestehen immer häufiger aus bio-kompatiblen Polymeren (z.B. Polyethylen (PE) oder Polyethylenterephthalat (PET). Diese thermosensitive Polymere können keinen hohen Temperaturen ausgesetzt werden, ohne dass sie beschädigt werden. Damit sind herkömmliche Sterilisationsverfahren (z.B. Autoklavieren) nicht anwendbar. Alternative chemische Verfahren (z.B. Ethylenoxid-Sterilisation) sind mit Nebenwirkungen und Risiken verbunden, die im medizinischen Bereich nicht akzeptabel sind. Alternative Dekontaminationsverfahren für diese thermosensitive Materialen sind also gefragt. Hierbei rückt das Niedertemperaturplasma (NTP) nicht nur bei den Physikern sondern auch bei den Biologen und Medizinern immer weiter in den Fokus der Forschung. NTP, welches unter atmosphärischen Druck erzeugt wird, ist aus einer Vielzahl von antimikrobiell aktiven Agentien und chemischen Produkten (z.B. atomarer Sauerstoff (O), Ozon (O3), Hydroxyl (OH), reaktive Sauerstoffspezies (ROS) und reaktive Stickstoffspezies (RNS)) zusammengesetzt und stellt damit ein wirksames Mittel für die mikrobielle Dekontamination dar. Seit einiger Zeit wird NTP auch erfolgreich bei der Wundbehandlung angewendet. Erste Studien zeigen ein großes Potential von NTP-Wundbehandlungen in Hinblick auf verbesserte Wundheilung. Die Anwendung von Plasma in der Medizin könnte ganz neue Perspektiven eröffnet- das ist zumindest die Vision. Auf der praktischen Seite gibt es allerdings noch eine Vielzahl von offenen Fragen: (i) welche Art von Plasma ist für welchen Zweck am besten geeignet; (ii) was sind die Vorteile von Plasma im Vergleich zu gängigen medizinischen Behandlungen; (iii) ist Plasma ein ökonomische Alternative im Vergleich zu gängigen Anwandelungen und Standards? Bevor Plasma sicher und routinemäßig in Krankenhäusern zu Einsatz kommen kann ist es zusätzlich von größter Wichtigkeit den Einfluss von Plasma auf Zellen zu klären. Erst wenn die Plasma-Zell-Interaktion (pro- und eukaryotische Zellen) grundsätzlich untersucht und verstanden ist kann eine sichere, erfolgreiche und vor allem akzeptierte Implementierung in den Krankenhausalltag stattfinden.
Staphylococcus (S.) aureus besiedelt bei 30 % der gesunden Bevölkerung den Nasenraum, meist ohne Symptome zu verursachen (sog. Carrier). Die Bakterienspezies ist aber auch eine der häufigsten Ursachen für nosokomiale Infektionen mit zum Teil hoher Letalität, wie z. B. bei einer S. aureus-Sepsis. In den letzen Jahrzehnten haben sich multiresistente S. aureus-Isolate in und außerhalb der Krankenhäuser stark ausgebreitet. Dies lässt befürchten, dass eine erfolgreiche antibiotische Behandlung schwerer S. aureus-Infektionen in der Zukunft immer seltener möglich sein wird. Deshalb werden andere präventive und therapeutische Strategien wie Impfstoffe benötigt. Die Impfstoffentwicklung gestaltet sich jedoch schwierig. Zum einen ist die Variabilität der Spezies S. aureus sehr groß: Zwei Isolate können sich in bis zu 20 % ihres Genoms unterscheiden. Zum anderen ist auch die Immunantwort des Wirts sehr komplex. Die Mechanismen der angeborenen Immunabwehr sind bereits gut untersucht, das Zusammenspiel von S. aureus mit dem adaptiven Immunsystem dagegen weniger umfassend charakterisiert. Dabei ist gerade dies für die Vakzineentwicklung bedeutsam, denn jede erfolgreiche Vakzinierung beruht auf der Bildung eines Immungedächtnisses, der Kernkompetenz des adaptiven Immunsystems. Da sich die gegen S. aureus gerichtete adaptive Immunantwort von Individuum zu Individuum stark unterscheidet, ist die Entschlüsselung der zugrunde liegenden Mechanismen eine besondere Herausforderung. Die rasche Entwicklung von OMICs-Techniken ermöglicht nun erstmals eine umfassende Charakterisierung des Immunoms von S. aureus; der Gesamtheit der von B-Zellen (und Antikörpern) und T-Zellen erkannten bakteriellen Antigene. In dieser Arbeit sollten diese modernen Methoden eingesetzt werden, um einen Beitrag zum Verständnis der vielfältigen Interaktionen zwischen S. aureus und dem adaptiven Immunsystem zu leisten; mittelfristig soll dieses Projekt zur Entwicklung wirksamer Impfstoffe gegen S. aureus beitragen. Informativ erschien ein Vergleich der adaptiven Immunantwort bei S. aureus-Carriern und Patienten, weil er Aufschluss darüber verspricht, wie die Interaktion zwischen Erreger und Wirt in der Balance gehalten wird und was dieses Gleichgewicht stört. Weil die individuelle Antiköperantwort (IgG, IgA und IgM) in ihrer Komplexität und Variabilität erfasst werden sollte, wurde ein personalisierter Ansatz gewählt, d.h. mittels zweidimensionaler Immunoblots (2D-IB) wurde bei jedem S. aureus-Carrier oder Patienten die Antikörperantwort auf den eigenen kolonisierenden bzw. invasiven S. aureus-Stamm untersucht. Durch die Kombination mit massenspektrometrischen Analysen ließ sich das S. aureus-Immunom der Kolonisierung und der Bakteriämie herauskristallisieren. Um in der Zukunft auch S. aureus-spezifische T-Zellen charakterisieren zu können, wurde ein Verfahren für die Herstellung von humanen T-Zellbanken entwickelt, das die funktionelle Analyse von T-Lymphozyten auf Einzelzellebene ermöglicht.
Für die Bekämpfung bakterieller Infektionen ist das angeborene Immunsystem von essenzieller Bedeutung. Im Rahmen dieser Promotion wurden murine angeborene Immunmechanismen bei systemischer Infektion mit Burkholderia pseudomallei, dem gram-negativen Erreger der Melioidose, sowie pulmonaler Infektion mit dem gram-positiven Erreger Staphylococcus aureus bei genetisch heterogenen BALB/c- und C57BL/6-Mäusen untersucht. Für in vitro-Untersuchungen wurde zunächst im ersten Teil eine Methode zur serumfreien Kultivierung von primären Makrophagen aus murinen Knochenmarkstammzellen unter Verwendung des lipoproteinreduzierten Serumsupplements Panexin® etabliert. Derart kultivierte Makrophagen von BALB/c- und C57BL/6-Mäusen wiesen wichtige Effektor-funktionen wie die Fc-Rezeptor-vermittelte Phagozytose und bakterizide Aktivität auf. Außerdem gelang es, die in der Literatur unter FCS-Bedingungen beschriebenen polarisierten Makrophagen-Phänotypen auch unter serumfreien Bedingungen funktionell nachzuweisen. So wiesen C57BL/6-Makrophagen im Vergleich zu BALB/c-Makrophagen ein deutlich höheres bakterizides Potenzial gegenüber B. pseudomallei auf und produzierten größere Mengen des zytotoxischen Stickoxids, unterschieden sich jedoch nicht in ihrer Fähigkeit, E. coli zu eliminieren. Im zweiten Teil der Arbeit konnte mithilfe dieses standardisierten Zellkultursystems gezeigt werden, dass Caspase-1 bereits in der Frühphase der B. pseudomallei-Infektion IFNγ-unabhängig für die bakterizide Potenz der Makrophagen erforderlich ist, die Caspase-1-Aktivität andererseits im gleichen Zeitraum jedoch eine Zunahme des zytotoxischen Erregereffektes verursacht. Durch die gestörte intrazelluläre Erregerelimination unmittelbar nach Infektion kam es im weiteren zeitlichen Verlauf zur Zunahme des erregerabhängigen Zelltodes, für den in der Literatur allerdings ursächlich auch das Fehlen verzögerter Caspase-1-abhängiger protektiver Effekte diskutiert wird. Weiterhin konnte gezeigt werden, dass Caspase-1 eine essenzielle Bedeutung für die in vivo-Resistenz und Generierung der inflammatorischen Zytokinantwort hat, welche zur Überwindung der akuten Infektion beiträgt. Während die Caspase-1-Expression bei unterschiedlich empfänglichen BALB/c- und C57BL/6-Makrophagen nach Infektion vergleichbar war, könnte die gesteigerte IL-1β-Produktion bei resistenteren C57BL/6-Makrophagen darauf hinweisen, dass unterschiedliche Aktivitäten des Enzyms in Mausstämmen mit unterschiedlichen genotypischen Eigenschaften den Verlauf der murinen Melioidose beeinflussen. Im letzten Teil dieser Dissertation wurde erstmals am Beispiel von BALB/c- und C57BL/6-Mäusen ein vergleichendes S. aureus-Pneumoniemodell entwickelt, bei dem BALB/c-Mäuse neben einer höheren Empfänglichkeit auch eine verminderte Fähigkeit aufwiesen, den Erreger aus der Lunge zu eliminieren. Während neutrophile Granulozyten für das Überleben erforderlich waren und die Organkeimzahlen signifikant zu reduzieren vermochten, steigerten Makrophagen die Mortalität, ohne jedoch Einfluss auf die Bakterienelimination zu haben. Für diese Mortalitätszunahme könnte eine überschießende Zytokinantwort mit der Folge eines Zytokinschocks verantwortlich sein. Schließlich wurde gezeigt, dass das bakterielle sae-Regulon, welches die Expression verschiedener bakterieller Proteine steuert, sowohl für die Virulenz, als auch für die intrapulmonale Persistenz des Erregers in diesem Infektionsmodell von entscheidender Bedeutung ist. Die zu beobachtenden Unterschiede in Mortalität und Organkeimzahlen belegen zugleich, dass das etablierte Mausmodell eine für die Untersuchung bakterieller Virulenzfaktoren ausreichende Sensitivität aufweist.
Auf den inneren und äußeren Oberflächen des Menschen existieren zahlreiche Mikrohabitate mit limitiertem Sauerstoffangebot. Vor allem während infektiöser Vorgänge kann aufgrund einwandernder Neutrophile die Sauerstoffkonzentration im menschlichen Gewebe auf unter 1% sinken. Eine rasche Anpassung an das vorherrschende Sauerstofflevel und die Nutzung effizienter alternativer Atmungsformen oder des Gärungsstoffwechsels sind deshalb entscheidend für das mikrobielle Überleben im menschlichen Wirt. In der vorliegenden Dissertationsarbeit wurde die anaerobe Genexpression von Staphylococcus aureus sowie die zugrundeliegenden regulatorischen Mechanismen näher untersucht. Die sich in vier Teile gliedernde Arbeit befasst sich zunächst mit einer eingehenden Beschreibung der anaeroben Adaptation und Physiologie von S. aureus auf Ebene des Transkriptoms, der Proteinsynthese und des extrazellulären Metaboloms. Die Identifikation eines konservierten Sequenzmotivs (inverted repeat) vor zahlreichen anaerob induzierten Genen war Ausgangspunkt für die Untersuchung der entsprechenden regulatorischen Vorgänge im zweiten Teil dieser Arbeit. Diese führten letztlich in Kooperation mit Arbeitsgruppen aus den USA, Schweden und Deutschland (AG R. Proctor, Universität Wisconsin; AG C. von Wachenfeldt, Universität Lund; AG C. von Eiff, Universität Münster; AG M. Lalk, Universität Greifswald) zu der Identifikation des Rex Proteins (SACOL2035) als zentraler Regulator der anaeroben Genexpression in S. aureus. Neben der Rex-abhängigen Expressionskontrolle wurde in Kooperation mit der Arbeitsgruppe von Friedrich Götz (Universität Tübingen) auch der Einfluss des Zwei-Komponenten¬systems NreBC auf die Genexpression in S. aureus näher untersucht. Auf Ebene des Transkriptoms, Proteoms und Metaboloms konnte so die essentielle Bedeutung des NreBC-Systems für die Expression der dissimilatorischen Nitrat- und Nitritreduktasen in S. aureus nachgewiesen werden. Der dritte Teil dieser Arbeit beschäftigt sich mit der Einordnung des anaeroben Proteinsynthese¬musters (Proteomsignatur) in den Kontext zahlreicher anderer stressinduzierter Proteomsignaturen von S. aureus. Die aus diesem komplexen Vergleich gewonnenen Ergebnisse geben detaillierte Einblicke in die Spezifitäten und Gemeinsam¬keiten der Proteinsynthese von S. aureus als Reaktion auf oxidativen Stress (H2O2, Diamid und Paraquat), nitrosativen Stress (NO), Sauerstofflimitation in An- und Abwesenheit von Nitrat, Hitzestress (48°C) sowie subinhibitorische Antibiotikakonzentrationen (Puromycin, Mupirocin). Für die Bereitstellung der entsprechenden Daten wurde im Rahmen dieser Arbeit zudem ein mySQL-basiertes System entwickelt, das die Visualisierung der Daten mit komplexen Abfrage- und Filtermöglichkeiten verknüpft (http://www.aureolib.de). Im letzten Teil gibt diese Arbeit schließlich einen Überblick über die Leistungen und Möglichkeiten der Proteomanalyse hinsichtlich physiologischer und infektionsrelevanter Fragestellungen. Besondere Beachtung findet hier die Aufklärung und Struktur des bereits erwähnten Rex Modulons.
Staphylococcus aureus ist einer der bedeutendsten Erreger von Infektionen der Milchdrüse (Mastitis). In dieser Arbeit wurden 16 S. aureus-Isolate aus bovinen Mastitisinfektionen unterschiedlicher geografischer Herkunft umfassend charakterisiert, um tiefere Einblicke in die Wirtsspezifität von S. aureus zu erlangen. Das bovine Mastitisisolat S. aureus RF122, dessen Genomsequenz seit kurzem verfügbar ist, wurde zum Vergleich in die Studien einbezogen. Mittels Multilocus Sequence Typing wurde die klonale Verwandtschaft der Stämme analysiert und ihre Zugehörigkeit zu bestimmten Sequenztypen bzw. klonalen Komplexen ermittelt, von denen einige unter bovinen S. aureus-Isolaten weltweit sehr verbreitet sind.Zum Nachweis von virulenz- und resistenzassoziierten Genen, sowie regulatorischen und speziesspezifischen Markergenen wurde ein diagnostischer DNA-Microarray eingesetzt. Es konnte gezeigt werden, dass das individuelle Profil der Isolate sehr stark variierte und sich selbst Stämme mit dem gleichen Sequenztyp in ihrem variablen Genom teilweise erheblich unterschieden. Nur 43 Gene, die u.a. für Hämolysine, Proteasen, Leukocidine kodieren, waren in allen Stämmen konserviert. Es wurde auch die Existenz einiger als bovin-spezifisch angesehener Gene, bzw. die Abwesenheit humanspezifischer Gene nachgewiesen. Zusätzlich wurde die Expression von Virulenzfaktoren mittels 2D-Gelelektrophorese und massenspektrometrischer Identifizierung analysiert. Wie erwartet unterschieden sich die extrazellulären Proteommuster der einzelnen Stämme stark. Nur zwölf sekretierte Proteine wurden (in unterschiedlicher Menge) von mindestens 80 % der bovinen Isolate gebildet, und bilden das sogenannte „Core-Exoproteom“. Auch Isolate mit nahezu identischer genetischer Zusammensetzung unterschieden sich z.T. erheblich in ihrem Exoproteom, was sehr gut mit der Transkription des Virulenzgenregulators RNAIII korrelierte. Weiterhin wurde die mitogene Wirkung der Kulturüberstände auf humane und bovine PBMC (mononukleäre Zellen aus peripherem Blut) untersucht. Dabei fiel auf, dass zwei Isolate, welche Gene der bovinen Pathogenitätsinsel SaPIbov trugen, bovine T-Zellen stärker als humane stimulierten, was auf wirtsspezifische Unterschiede in der Aktivität dieser Superantigene hindeutet. Schließlich konnten durch den Vergleich mit S. aureus-Isolaten aus humanen Infektionen bestimmte Proteine ermittelt werden, die häufiger mit einem bestimmten Wirt assoziiert sind. Die Variabilität in der Expressionshäufigkeit dieser Proteine könnte mit der Wirtsspezifität von S. aureus im Zusammenhang stehen. Als pathogener Mikroorganismus ist S. aureus hohen Konzentrationen an reaktiven Sauerstoff- und Stickstoffspezies (ROS und RNS) ausgesetzt, die im Rahmen der unspezifischen Wirts-Immunantwort gebildet werden. Um das Verständnis über seine Anpassungsstrategien zu erweitern, wurden vier Substanzen, die oxidativen bzw. nitrosativen Stress verursachen, eingesetzt: Wasserstoffperoxid (H2O2), eine Vorstufe des stark toxischen Hydroxylradikals; Diamid, ein spezifisches Thiol-Oxidationsmittel, die Superoxidanion-generierende Substanz Paraquat, sowie der NO-Donor MAHMA NONOate. Für jeden Stressor wurden Proteomsignaturen durch Auftrennung der cytoplasmatischen Proteine mittels 2D-Proteingelelektrophorese und anschließender massenspektrometrischer Identifizierung erstellt. Die zu verschiedenen Zeitpunkten nach Stressauslösung neu synthetisierten Proteine wurden mittels L-[35S]-Methionin radioaktiv markiert und quantifiziert. Mindestens zweifach induzierte Proteine wurden als Markerproteine für einen bestimmten Stressor definiert. Durch Zugabe von 10 mM H2O2 wurden verstärkt Proteine synthetisiert, die an Synthese, Reparatur oder Schutz von Nukleinsäuren oder DNA beteiligt sind, was bestätigt, dass die DNA ein Hauptziel H2O2-induzierter Schädigung ist. Unter Einfluss von 10 nM Paraquat wurden Proteine mit sehr unterschiedlichen biologischen Funktionen, wie z.B. Aminosäuresyntheseenzyme und Cofaktoren, induziert. Der durch 1 mM Diamid induzierte Thiolstress führte wie erwartet zur verstärkten Neusynthese CtsR und HrcA-kontrollierter Chaperone und Proteasen, was auf die Akkumulation fehlgefalteter Proteine hindeutet, die höchstwahrscheinlich durch nichtnative Disulfidbrücken an den Thiolgruppen der Cysteinreste entstanden sind. Die Induktion von Peroxiredoxinen und einer Thioredoxinreduktase lassen auf ein gestörtes Redoxgleichgewicht in der Zelle schließen. Die Effekte von NO ähnelten denen, die auch unter Sauerstofflimitation beobachteten wurden. Viele Markerproteine sind in Glykolyse und Fermentation involviert und durch Nachweis der entsprechenden Fermentationsprodukte konnte eine höhere Aktivität fermentativer Stoffwechselwege bestätigt werden. Die Fähigkeit, unter Einfluss von NO auf anaeroben Metabolismus umzuschalten, könnte ein entscheidender Vorteil von S. aureus und essentiell für seine höhere Resistenz gegenüber NO sein.
Staphylococcus aureus ist ein ubiquitär verbreitetes Bakterium. Häufig als Kommensale des Menschen vorkommend, zählt das Bakterium jedoch zu einem der wichtigsten Infektionserreger des 21. Jahrhunderts. Neben lokalen Infektionen (z. B. Furunkel) kann der Erreger nach einer Besiedlung auch systemische Erkrankungen in seinem Wirt (z. B. Sepsis, Endokarditis, Pneumonie) hervorrufen. Die pathogene Wirkung von S. aureus ist auf die Produktion und Sekretion von Pathogenitäts- bzw. Virulenzfaktoren, unter anderem Superantigene, hämolytische Toxine, Gewebe-zerstörende Enzyme und Oberflächenproteine, welche ihrerseits mit dem Immunsystem des Wirtes interferieren, zurückzuführen. Ziel dieser Arbeit war unter anderem die Analyse des extrazellulären Proteoms von S. aureus RN1HG in pMEM, ein an das bakterielle Wachstum adaptierte Zellkulturmedium. Bei den extrazellulären Proteomanalysen von S. aureus RN1HG konnten 39 Proteine identifiziert werden, welche dem Bakterium eine Interaktion mit dem Wirt (Clumping-Faktoren) ermöglichen, die Phagozytose (Protein A) verhindern oder die Ausbreitung im Gewebe (alpha-Hämolysin, gamma-Hämolysin, Lipase) erleichtern. Da die Zusammensetzung des extrazellulären Proteoms durch diverse Regulons (z. B. agr-System, sarA, sigB) bestimmt wird, stellte sich die Frage, inwiefern diese einen Einfluss auf die Virulenz des Stammes RN1HG-Stamm haben. Ein vielfach in der Literatur diskutierter Regulator ist SigB. Die vergleichende gelfreie LC-MS/MS-Analyse des extrazellulären Proteoms von S. aureus RN1HG mit einer sigB Deletion (RN1HG delta sigB) zeigte, dass sich im Vergleich zum Wildtyp die Zusammensetzung des extrazellulären Proteoms nicht grundsätzlich ändert. Jedoch konnte durch eine „labelfreie“ Quantifizierung eine verstärkte Akkumulation zahlreicher Virulenzfaktoren (z. B. Aureolysin, 1-Phosphatidylinositol- Phosphodiesterase, alpha-Hämolysin, gamma-Hämolysin, Lipase, Thermonuklease) in der delta sigB Mutante nachgewiesen werden. Die Serin-Proteasen A, C und E konnten nur für die delta sigB Mutante identifiziert werden. Adhäsine, darunter Clumping-Faktoren oder Elastin-Bindeprotein, wurden lediglich während der exponentiellen Wachstumsphase für die delta sigB Mutante nachgewiesen. Dies konnte für clf auch durch Transkriptomanalysen belegt werden. Die gelfreien Analysen wurden durch gelbasierte Verfahren (2D-Gelelektrophorese) ergänzt. Neben der Erstellung einer Referenzkarte des extrazellulären Proteoms von S. aureus RN1HG (Wildtyp und delta sigB Mutante) wurden quantitative gelbasierte Daten erhoben, die einerseits die Ergebnisse der gelfreien Analysen bestätigten, andererseits aber auch zeigten, dass SigB nur wenig Einfluss auf die Prozessierung und posttranslationale Modifikation extrazellulärer Proteine in S. aureus RN1HG hat. Die Zusammensetzung des extrazellulären Proteoms ist vor allem bei pathogenen Bakterien bedeutsam, da z. B. durch extrazelluläre Enzyme die Erschließung von Nährstoffquellen in extremen Habitaten begünstigt und durch Virulenzfaktoren sowohl die Kolonisierung als auch die Überlebensfähigkeit im Wirtsorganismus gesichert wird. Um die Erreger-Wirt Interaktion näher zu charakterisieren, wurde die Reaktion von humanen bronchialen Epithelzellen (S9-Zellen) auf eine Infektion mit S. aureus RN1GH pMV158 untersucht. Die Durchführung der Infektionsstudien mit einem GFP-markierten RN1HG-Stamm ermöglichte die Sortierung der infizierten S9-Zellen durch die Durchflusszytometrie. Da im Epithelverband nicht jede Zelle mit S. aureus infiziert ist, lag der Vorteil der Sortierung darin, dass Proteomanalysen spezifisch für die S9-Zellen mit internalisierten Staphylokokken durchgeführt werden konnten. Infolge einer Internalisierung von S. aureus durch die S9-Epithelzellen kam es zunächst zu einer Integrin-vermittelten Adhäsion. Eine zunehmende Inkubation mit S. aureus führte zu inflammatorischen Prozessen. Die Invasion pathogener Bakterien in Wirtzellen führt somit zum Remodelling biologischer Prozesse, die dem Wirt die Auseinandersetzung mit dem Pathogen ermöglichen.
Infektionen durch Staphyloccocus aureus können aufgrund zunehmender Therapieresistenz (ca-MRSA, ha-MRSA, la-MRSA etc.) gravierende Verläufe nehmen und stellen nicht nur eine wachsende medizinische, sondern auch eine gesundheitsökonomische Herausforderung im Patientenmanagement dar. Für die Entwicklung innovativer Behandlungsstrategien ist die genaue Analyse der keimspezifischen Infektionsmechanismen eine wichtige Voraussetzung. S. aureus verwendet sogenannte Virulenzfaktoren um einen zunächst lokalen Infektionsherd zu etablieren. Wachstumsphasenabhängig werden z.B. Adhäsine, Kapselantigene oder Toxine exprimiert, um dann gezielt im Infektionsgeschehen eingesetzt zu werden. In den vergangenen Jahren konnten wichtige Fortschritte zur Ermittlung infektionsrelevanter stammspezifischer Regulationsmechanismen bei S. aureus gemacht werden. Ziel dieser Arbeit war zunächst eine Datengrundlage zur Untersuchung der Wirt-Erreger-Interaktion durch Proteomreferenzkarten von humanen S9-Epithelzellen zu schaffen. Zudem wurden die extrazellulären Expressionsmuster von S. aureus-Isolat NCTC8325-4 in verschiedenen Kulturmedien analysiert, um ein geeignetes Medium für die Kokultur der Wirts –wie auch der Erregerzellen entwickeln. Weiterhin sollte eine Proteomreferenzkarte der extrazellulären Proteinfraktion von S.aureus RN1HG erstellt werden, um eine anschließende Vergleichsanalyse der wachstumsphasenabhängigen Expressionsprofile zu ermöglichen. Zur Erstellung der Proteomreferenzkarten wurden die Proteingemische mit einer zweidimensionalen Gelelektrophorese (2D PAGE) aufgetrennt. Zuerst wurden die Proteine einer isoelektrischen Fokussierung unterworfen (IPG – Streifen 24cm für pI 4-7; 11cm u. 18cm für pI 6-11) und dann in der zweiten Dimension nach ihrer Größe mit 12,5% SDS Polyacrylamidgelelektrophorese separiert (Trennbereich 20 -120 kD). Die Proteinspots wurden mit verschiedenen Färbemethoden (Silbernitrat, kolloidales Coomassie Brillantblau oder Flamingo Fluoreszenzfärbung) dargestellt. Mit MALDI-TOF wurden die Proteine sequenziert und quantifiziert. Die gefundenen Sequenzen wurden durch Datenbanksuche (Mascot 2.0; SwissProt 55.1_human/all) identifiziert. Auf Wirtsseite sollten die humanen S9-Epithelzellen (CFTR repaired IB3-1) als Modell einer bakteriellen Atemwegskolonisation dienen, dabei wurden sie in MEM (mit 4% FCS, 1% NEAA (non essential amino acids) und 4 mM L-Glutamin) kultiviert. Auf der Erregerseite wurden die S. aureus - Isolate NCTC8325-4 (11-bp deletion in rsbU, cured of three prophages) und RN1HG (rsbU restored) (HG001; Herbert S. et al, 2010) verwendet . Proteomreferenzkarten für den pI Bereich pI 4-7 und pI 6-11 wurden für das Proteom der S9-Epithelzellen angefertigt. Es wurden 668 Einzelproteine (508 mit Proteinscore >55) identifiziert und funktionell via Datenbanksuche (www.pantherdb.org) charakterisiert. Somit können infektionsassoziierte Veränderungen im Proteinmuster der S9-Wirtszellen erkannt und valide ausgewertet werden. Um eine Kokultur für Internalisierungsversuche von S.aureus und den S9-Epithelzellen zu ermöglichen, wurde eine methodenoptimierende Kultivierungsreihe (MEM mit und ohne 5%FCS, RPMI 1640, TSB) mit dem Laborstamm NCTC8325-4 durchgeführt. Der Datenvergleich der extrazellulären Expressionsmuster trug zur Entwicklung eines geeigneten Kulturmediums (MEM mit 2mM AS supplementiert) bei. S. aureus RN1HG wurde in diesem Medium kultiviert und von der extrazellulären Proteinfraktion wurde eine Proteomreferenzkarte im Bereich pI 4-7 angefertigt. Es konnten 91 Einzelproteine (48 mit Proteinscore >55) identifiziert werden. Durch eine vergleichende Analyse konnten Veränderungen der Proteinmuster innerhalb verschiedener Wachstumsphasen (exponentiell, transient, stationär und spät stationär) detektiert und ein optimaler Erntezeitpunkt festgelegt werden. Während der exponentiellen Wachstumsphase waren typischerweise kolonisationsrelevante Proteine (LytM, SAOUHSC_02979, SceD), in der stationären Phase vorrangig invasionsrelevante (SsaA, IsaA, SspB) angereichert. Somit konnten charakteristische Expressionsmerkmale bei S. aureus RN1HG nachgewiesen werden, welche den weiteren Einsatz gemeinsam mit den S9-Epithelzellen ermöglichen (Schmidt F. et al., 2010).
Das humanpathogene Bakterium Staphylococcus aureus kann verschiedene, zum Teil lebensbedrohliche Erkrankungen wie Hautinfektionen (Furunkel, Karbunkel), Lungen-entzündung, Osteomyelitis (Knochenmarksentzündung), Endokarditis (Entzündung der Herzinnenhaut) und Sepsis auslösen. Dabei gehört S. aureus zu den häufigsten Erregern von Krankenhausinfektionen, sogenannten Nosokomialinfektionen. Deren Behandlung mittels Antibiotika stellt aufgrund von multiplen Antibiotikaresistenzen von S. aureus eine immer größere Heraus¬forderung dar, da dieser fähig ist, sich rapide an verändernde Umweltbedingungen anzu¬passen. Die Interaktion des pathogenen Bakteriums mit seiner Umwelt und seinem Wirt ist insbesondere durch den Proteinbestand, der auf der Zelloberfläche exponiert ist, bestimmt. S. aureus exprimiert ein Arsenal an Zellober-flächen-gebundenen Virulenzfaktoren, die zur Kolonisierung und Infektion von humanem Gewebe führen. Ziel dieser Arbeit war die Entwicklung und Anwendung von Massen¬spektrometrie-basierten Methoden zur Identifizierung und Quantifizierung der Zellober¬flächen¬-assoziierten Proteine von S. aureus. Dabei ist es gelungen, durch die Gel-freien und GeLC-MS/MS-basierten Methoden Biotinylierung und Trypsin-Behandlung 77% aller be-kannten Oberflächenproteine und zwei Drittel aller nach außen ragenden Membran-veran-kerten Lipoproteine von S. aureus zugänglich zu machen. Bei der Biotinylierung handelt es sich um eine Methode, bei der die Oberflächenproteine von intakten Zellen mit einem membranimpermeablen Reagenz markiert und anschließend über Affinitäts¬chroma-tographie aufgereinigt werden. Dagegen erfolgt bei der Trypsin-Behandlung die proteo-lytische Abspaltung der Oberflächen-exponierten Protein¬domänen. Erstmalig ist durch Markierung der Proteine mit stabilen Isotopen, dem sogenannten 14N/15N-metabolischen Labeling, auch eine relative Quantifizierung der Oberflächenproteine von S. aureus möglich. Bei der Analyse des Oberflächenproteoms von wachsenden und nicht-wachsenden S. aureus Zellen konnten mittels Biotinylierung 146 Oberflächenproteine identifiziert werden. Durch relative Quantifizierung wurde gezeigt, dass Zelloberflächen-assoziierte Adhäsine von S. aureus, wie der Fibrinogen-bindende clumping Faktor B, vorzugsweise während des Wachstums exprimiert werden, während nicht-wachsende Zellen erhöhte Mengen an clumping Faktor A aufweisen. Desweiteren war die Menge an immunodominanten Antigen B auf der Zelloberfläche in der stationären Phase mehr als 10-fach erhöht. Bei dieser Arbeit wurde erstmalig das Gesamt¬proteom des Methicillin-resistenten Staphylococcus aureus COL, bestehend aus cytosolischem, extra¬zellulärem, Membran- und Oberflächenproteom, um¬fassend identifiziert und quantifiziert (Becher et al., 2009). Um die Pathogenität von S. aureus näher zu erforschen, wurde das Oberflächenproteom des Wildtyps mit dem einer sigB-Mutante verglichen. Der alternative Sigma-Faktor SigmaB kontrolliert ein großes Regulon bestehend aus etwa 300 Genen, von denen viele in die Virulenz von S. aureus involviert sind. Durch Kombination von 14N/15N-metabolischen Labeling, Biotinylierung und GeLC-MS/MS konnten 98 Oberflächen-proteine quantifiziert werden. Von den 49 Proteinen, die in der sigB-Mutante verändert vorlagen, waren 21 schon als SigmaB-abhängig oder durch SigmaB beeinflusst bekannt. In dieser Arbeit konnten weitere 28 Oberflächenproteine erstmalig als SigmaB-abhängig beschrieben werden. Die Gruppe der Zelloberflächen-assoziierten Proteine und Virulenz-faktoren, die durch SigmaB beeinflusst werden, wurde so erweitert (Hempel et al., 2010). Durch Trypsin-Behandlung wurden insgesamt 63 Oberflächen¬proteine beim Vergleich vier verschiedener S. aureus Stämme identifiziert. Hierbei konnte gezeigt werden, dass das Oberflächenproteom verschiedener S. aureus Stämme extrem variabel ist. Weniger als 10% der identifizierten Oberflächenproteine aller vier Stämme stimmten überein (Dreisbach et al., 2010). Eine optimale Analyse der Oberflächen¬proteine von S. aureus wird durch eine Kombination von Biotinylierung und Trypsin-Behandlung erreicht. Es konnte gezeigt werden, dass Sortase-Substrate insbesondere durch Trypsin zugänglich sind, während Lipoproteine optimal durch Biotinylierung analysiert werden können. Das Protokoll zur Trypsin-Behandlung wurde modifiziert, stark vereinfacht und ist auch zur Quantifizierung von Oberflächen¬proteinen geeignet. Durch Kombi¬nation beider Methoden mit 14N/15N-metabolischen Labeling konnten 221 Oberflächen¬proteine identifiziert und 158 quantifiziert werden. Hierbei wurde S. aureus unter Eisenmangel-bedingungen untersucht. In den Körperflüssigkeiten von Säugetieren herrschen Eisenmangelbedingungen, und diese fungieren als wichtiges Wirtssignal für die Bakterien um Virulenzproteine zu exprimieren. Unter diesen infektionsrelevanten in vitro Bedingungen wurden insbesondere Zelloberflächenproteine wie die eisenabhängigen Häm-bindenden Proteine IsdA, IsdB, IsdC und IsdD, sowie lipidver¬ankerte Eisen-bindende Proteine stark induziert gefunden (Hempel et al., unpublished).