Doctoral Thesis
Refine
Document Type
- Doctoral Thesis (2) (remove)
Language
- German (2) (remove)
Keywords
- Zebrafisch (2) (remove)
Palladin, ein Aktin-assoziiertes Protein, beeinflusst die Morphologie, Migration, AdhĂ€sion und PolaritĂ€t von Zellen maĂgeblich. Zudem wurde bereits in klinischen Studien gezeigt, dass ein Zusammenhang zwischen der Expression von Palladin und der MetastasierungsfĂ€higkeit von Tumoren besteht. Das Studium der Funktion von Palladin in vivo ist aufgrund der bereits intrauterinen LetalitĂ€t eines Palladin-Knockouts in der Maus nicht möglich. Daher wurde im Rahmen der vorliegenden Arbeit der Zebrafisch als Modellorganismus fĂŒr die Untersuchung der Funktion von Palladin verwendet. Durch Mikroinjektion von sogenannten Morpholinos in die befruchteten Zebrafischeier konnte Palladin herunterreguliert werden. Mittels Western Blot und RT-PCR wurde diese Abnahme von Palladin bestĂ€tigt. In Analogie zur Maus fĂŒhrte der Kockdown von Palladin zu einem letalen PhĂ€notyp zum Zeitpunkt 11-18 hpf, das auf schwere EntwicklungsschĂ€den zurĂŒck zu fĂŒhren ist. Um Zebrafischlarven mit einem Palladin Knockdown dennoch histologisch genauer untersuchen zu können, wurde ein sogenannter MosaikphĂ€notyp erzeugt. Hierbei zeigte sich, dass die Ausbildung geordneter Aktin-Filamente in den Myotomen gestört war. Mit Hilfe der in vivo Mikroskopie konnte ferner an lebenden Palladin-Knockdown Zebrafischlarven zum Zeitpunkt 6 und 8.5 hpf erstmals gezeigt werden, dass der Verlust von Palladin zu einer verĂ€nderten Migration von Zellen und zur InstabilitĂ€t von Zell-Zell bzw. Zell-Matrix Kontakten fĂŒhrt. Durch eine Gene Array Analyse der Palladin-Knockdown Larven (10 hpf) konnte gezeigt werden, dass 1335 von 8200 Proteinen in AbhĂ€ngigkeit der Palladin-Expression signifikant in ihrer Regulation verĂ€ndert waren. Dabei sind unter den hoch- bzw. herunterregulierten Proteinen auch solche Proteine vertreten, die einen entscheidenden Einfluss auf das Aktin-Zytoskelett und auf Zell-Matrix- bzw. Zell-Zell-Kontakte haben. Zusammenfassend zeigte sich, dass der Zebrafisch ein ideales Tiermodel ist, um die Rolle von Palladin in vivo zu untersuchen.
Podozyten, die hochspezialisierten viszeralen Epithelzellen des Glomerulus, bedecken die AuĂenseite der glomerulĂ€ren Kapillaren und sind fĂŒr die Filtration des Blutes in der Niere essentiell. Eine SchĂ€digung der Podozyten geht mit dem Verlust ihrer komplexen dreidimensionalen Struktur, dem sogenannten FuĂfortsatz-Effacement einher. Effacement und Detachment, das Ablösen der Podozyten von der glomerulĂ€ren Basalmembran, fĂŒhren zur Ausscheidung von hochmolekularen Proteinen mit dem Urin und in vielen FĂ€llen zu einer nicht heilbaren chronischen Nierenerkrankung (CKD). In der Vergangenheit wurde anhand von Zellkulturstudien und Versuchen an Ratten und MĂ€usen die These aufgestellt, dass Podozyten entlang der glomerulĂ€ren Basalmembran wandern können. Da diese Experimente jedoch bisher nicht eindeutig belegen konnten, dass es sich bei den beobachteten Zellen tatsĂ€chlich um vollstĂ€ndig differenzierte Podozyten handelte und diese Fragestellung fĂŒr das VerstĂ€ndnis der Pathogenese chronischer Nierenerkrankungen und damit fĂŒr die Entwicklung neuer Therapieverfahren von wesentlicher Bedeutung ist, wurde im Rahmen dieser Arbeit ein Verfahren entwickelt, Fluoreszenz-markierte Podozyten in vivo in lebenden Zebrafischlarven zu beobachten. Dazu wurde zunĂ€chst durch Kreuzung ein transgener Zebrafischstamm generiert, dessen Larven vollstĂ€ndig transparent sind und das grĂŒn-fluoreszierende Protein unter Kontrolle des wt1a-Promoters in Podozyten exprimieren. Mit der 2-Photonenmikroskopie konnten nun in Langzeitaufnahmen einzelne Podozyten in fĂŒnf bis sechs Tage alten Zebrafischlarven beobachtet werden. Hierbei zeigte sich eindeutig, dass Podozyten ĂŒber ZeitrĂ€ume von bis zu 23 Stunden nicht wandern. Da mit dieser Technik auch einzelne PrimĂ€rfortsĂ€tze der Podozyten beobachtet werden können, konnte erstmals gezeigt werden, dass sich auch diese nicht signifikant innerhalb eines Beobachtungszeitraums von bis zu 23 Stunden bewegten. Als Nachweis, dass mit dieser Beobachtungsmethode dynamische Podozyten nachgewiesen werden können, wurde die Bewegung einzelner Zellen wĂ€hrend der Bildung des Glomerulus ĂŒber einen Zeitraum von 3 Tagen verfolgt. Um ferner auszuschlieĂen, dass PodozytenfortsĂ€tze sehr schnelle, oszillierende Bewegungen vollfĂŒhren, wurden einzelne Podozyten in sehr kurzen Intervallen aufgenommen und das Bewegungsmuster analysiert. Auch hier zeigten sich keine dynamischen Eigenschaften der Podozyten im lebenden Organismus. Somit kann davon ausgegangen werden, dass Podozyten unter physiologischen Bedingungen in lebenden Zebrafischlarven kein dynamisches Verhalten zeigen, sondern als statische Zellen anzusehen sind.