Doctoral Thesis
Encephalitides induced by lyssa-, borna- and astroviruses: molecular detection and characterization
(2017)
Encephalitis is a severe inflammatory disease of the brain which often has a fatal outcome or can lead to subsequent damages. In around two-thirds of all human encephalitis cases, the causative agent is, despite improved diagnostics, unknown today. Aim of this work was the development, improvement and validation of diagnostic methods, improvement of sampling strategies and the development of optimized systems for characterization of three viruses causing viral encephalitis. The main burden of RABV lies in developing countries, were standard diagnostic tools are often not realizable. Therefore, simple and rapid diagnostic tests for the use under resource limited settings, so called point-of-care tests (POCT), are favorable. Commercially available lateral flow device (LFD) based immunodiagnostic tests were analyzed and failed in terms of sensitivity compared to the standard FAT and RT-qPCR (Paper I). Therefore, molecular RABV alternative targeting genome tests were developed and combined with rapid nucleic acid extraction methods. The new HighSpeed RT-qPCR and RPA assays together with magnetic bead based automated or manual extraction methods delivered a specificity between 100% and 97.2% and a limit of detection of 10 or 1,000 genome copies per reaction, respectively and seem suitable as novel POCT (Paper II). Recently, a novel zoonotic VSBV-1, responsible for fatal encephalitis of three squirrel breeders, was detected. For further investigations of this new virus, methods for an in-vivo sampling approach of squirrels were established. They were useful to identify animals harboring this dangerous virus, and new sequence data could be obtained from the VSBV-1 positive animals. Until now, 3.5% of all investigated squirrels were VSBV-1 RNA positive and two subfamilies (Sciurinae and Callosciurinae) are affected. The pathogen occurs not only in Germany, but also squirrel holdings and zoological gardens in the Netherlands and Croatia were tested positive, indicating a serious human health threat of this virus (Paper III and IV). With the help of a metagenomic approach, astroviruses were detected to be associated to encephalitis in cattle and sheep. These viruses were detected in a cow in Germany (Paper V), and in brain samples from two sheep in the United Kingdom (Paper VI). In both cases, the sequences generated by high-throughput-sequencing (HTS) were confirmed by specific RT-qPCRs, which could be used for subsequent screening approaches. Together, methods for the detection of three different encephalitis viruses were developed, validated and applied for different sample material.
Rabies virus (RABV) is an ancient, highly neurotropic rhabdovirus that causes lethal encephalitis. Most RABV pathogenesis determinants have been identified with laboratory-adapted or attenuated RABVs, but details of natural RABV pathogenesis and attenuation mechanisms are still poorly understood. To provide a deeper insight in the cellular mechanism of pathogenies of field RABV, this work was performed to assess virus strain specific differences in intra-neuronal virus transport, to identify cell culture adaptive mutations in recombinant field viruses and to explore shRNA-expressing RABVs as research tools for targeted host manipulation in infected cells.
Comparison of chimeric RABVs with glycoprotein (G) ecto-domains of different lyssaviruses, together with field RABVs from dog and fox in dorsal root ganglion (DRG) neurons revealed no detectable differences in the axonal accumulation of the viruses. This indicates that previously described G-dependent transport of newly formed RABV in axons can occur both in laboratory-adapted and field RABV. Moreover, partial overlap of nucleoprotein (N) and G protein particles in field virus infected DRG axons supported the hypothesis of the “separate model” for anterograde RABV transport.
Serial passages of recombinant dog and fox field clones in different cell lines led to the identification of general (D266N) and cell line specific (K444N) adaptive mutations in the G ecto-domain of both viruses. In BHK cells, synergistic effects of D226N, K444N and A417T on field dog virus G protein surface localization led to the loss of endoplasmic reticulum (ER) retention of G and increased virus titers in the supernatant, indicating that limited virus release by ER retention is a major bottleneck in cell culture adaptation. In addition, selection of mutations within the C-terminus of the RABV phosphoprotein (P) (R293H and R293C in fox and dog viruses, respectively) led to the hypothesis of altered binding affinities to nucleoprotein and RNP complexes. Identification of the above mentioned amino acid substitutions together with alterations in a suboptimal transcription stop signal in the P/M gene border indicated that adaptation to cell culture replication occurs on both levels, RNA transcription/replication and virus release.
To evaluate the possibility of an expression of a functional microRNA-adapted short-hairpin RNAs (miR-shRNA) expressing RABV, recombinant RABVs encoding miR-shRNAs against cellular Dynein Light Chain 1 (DYNLL1) and Acidic Nuclear Phosphoprotein 32 family member B (ANP32B) were generated. In spite of cytoplasmic transcription of the respective mRNAs, downregulation of DYNLL1 and ANP32B mRNA and respective protein levels in infected cells revealed correct processing to functional shRNAs. Specific downregulation of the cellular genes at 2, 3 and 4 days post infection further demonstrated feasibility of the approach in standard cell lines. However, it remained open whether miR-shRNA expressing RABV can be used to study neuro-infection in vivo. Since first attempts in primary rat neuron cultures failed, it has to be clarified in further experiments whether this strategy can be used in mature, non-dividing neurons or whether breakdown of the nucleus in the course of cell division is a requirement for the processing of cytoplasmically expressed miR-RNA by nuclear RNases.
By providing novel insights in axonal RABV transport and cell culture adaptive mutations this work extends the current understanding of RABV pathogenesis in natural and non-natural cell environments. Moreover, it provides a basis for further pathogenicity studies in which the impact of cell culture adaptation through increased virus release on RABV virulence can be investigated. With successful expression of functional miR-shRNAs from RABV vectors, this work also provides a tool for RABV gene targeting in infected cell lines and thus may contribute to the further investigation of RABV-host-cell-interactions.