## Doctoral Thesis

Given a manifold with a string structure, we construct a spinor bundle on its loop space. Our construction is in analogy with the usual construction of a spinor bundle on a spin manifold, but necessarily makes use of tools from infinite dimensional geometry. We equip this spinor bundle on loop space with an action of a bundle of Clifford algebras. Given two smooth loops in our string manifold that share a segment, we can construct a third loop by deleting this segment. If this third loop is smooth, then we say that the original pair of loops is a pair of compatible loops. It is well-known that this operation of fusing compatible loops is important if one wants to understand the geometry of a manifold through its loop space. In this work, we explain in detail how the spinor bundle on loop space behaves with respect to fusion of compatible loops. To wit, we construct a family of fusion isomorphisms indexed by pairs of compatible loops in our string manifold. Each of these fusion isomorphisms is an isomorphism from the relative tensor product of the fibres of the spinor bundle over its index pair of compatible loops to the fibre over the loop that is the result of fusing the index pair. The construction of a spinor bundle on loop space equipped with a fusion product as above was proposed by Stolz and Teichner with the goal of studying the Dirac operator on loop space". Our construction combines facets of the theory of bimodules for von Neumann algebras, infinite dimensional manifolds, and Lie groups and their representations. We moreover place our spinor bundle on loop space in the context of bundle gerbes and bundle gerbe modules.

Twisted topological K-theory is a twisted version of topological K-theory in the sense of twisted generalized cohomology theories. It was pioneered by Donavan and Karoubi in 1970 where they used bundles of central simple graded algebras to model twists of K-theory. By the end of the last century physicists realised that D-brane charges in the field of string theory may be studied in terms of twisted K-theory. This rekindled interest in the topic lead to a wave of new models for the twists and new ways to realize the respective twisted K-theory groups. The state-of-the-art models today use bundles of projective unitary operators on separable Hilbert spaces as twists and K-groups are modeled by homotopy classes of sections of certain bundles of Fredholm operators. From a physics perspective these treatments are not optimal yet: they are intrinsically infinite-dimensional and these models do not immediately allow the inclusion of differential data like forms and connections.
In this thesis we introduce the 2-stack of k-algebra gerbes. Objects, 1-morphisms and 2-morphisms consist of finite-dimensional geometric data simultaneously generalizing bundle gerbes and bundles of central simple graded k-algebras for k either the field of real numbers or the field of complex numbers. We construct an explicit isomorphism from equivalence classes of k-algebra gerbes over a space X to the full set of twists of real K-theory and complex K-theory respectively. Further, we model relative twisted K-groups for compact spaces X and closed subspaces Y twisted by algebra gerbes. These groups are modeled directly in terms of 1-morphisms and 2-morphisms of algebra gerbes over X. We exhibit a relation to the K-groups introduced by Donavan and Karoubi and we translate their fundamental isomorphism -- an isomorphism relating K-groups over Thom spaces with K-groups twisted by Clifford algebra bundles -- to the new setting. With the help of this fundamental isomorphism we construct an explicit Thom isomorphism and explicit pushforward homomorphisms for smooth maps between compact manifolds, without requiring these maps to be K-oriented. Further -- in order to treat K-groups for non-torsion twists -- we implement a geometric cocycle model, inspired by a related geometric cycle model developed by Baum and Douglas for K-homology in 1982, and construct an assembly map for this model.