Refine
Keywords
- Altern (3) (remove)
Die Neurotrophine (Nerve Growth Factor, Brain-derived Neurotrophic Factor, Neurotrophin-3 und Neurotrophin-4/5) zählen zu den wichtigsten Wachstumsfaktoren des Nervensystems und sind von großer Bedeutung für Gehirnentwicklung und neuronale Plastizität. Sie vermitteln ihr Wirkungen über zwei Rezeptorsysteme: Trk-Rezeptoren binden Neurotrophine spezifisch und mit hoher Affinität. Sie aktivieren anti-apoptotische, wachstums- und differenzierungsfördernde Signalwege. Der niedrigaffine p75-Neurotrophinrezeptor (p75) hingegen kann Rezeptorkomplexe mit verschiedenen Ko-Rezeptoren und einer Vielzahl von Liganden bilden. Das Spektrum seiner möglichen Effekte ist beachtlich, wobei pro-apoptotische und wachstumshemmende Wirkungen überwiegen. Interessanterweise kommt es bei einer Reihe von pathologischen Prozessen zu einer vermehrten Expression von p75, etwa bei Morbus Alzheimer, Amyotropher Lateralsklerose, Chorea Huntington und nach Gehirnverletzungen. Inhibitoren der pro-apoptotischen und wachstumshemmenden Wirkung bergen Potenzial für die Therapie dieser Krankheitsbilder. Transgene p75-Knockout-Modelle sind ein wichtiges Instrument für ein besseres Verständnis des Rezeptors. Aus den bisher vorliegenden Daten zu Morphologie und Verhalten solcher Mäuse ergibt sich jedoch ein widersprüchliches Bild. Im gesunden adulten Nervensystem wird p75 insbesondere durch cholinerge Neurone des basalen Vorderhirns (BFCN) exprimiert. In mehreren Studien wurde bei p75-defizienten Mausstämmen eine Hypertrophie der BFCN und der cholinergen Innervation des Hippocampus beobachtet. Für ein weiteres wichtiges Zielgebiet von BFCN-Projektionen, die basolaterale Amygdala (BLA), liegen bisher jedoch keine Daten vor. Ein Ziel dieser Arbeit war daher die Erfassung der cholinergen Innervationsdichte dieses Kerngebiets bei jungen und gealterten p75-Knockout-Tieren und Vergleich mit den entsprechenden Wildtyp-Kontrollen. In allen Altersgruppen war bei p75-Defizienz eine erhöhte Faserdichte nachweisbar. Im Hippocampus unterliegen die cholinergen Neuriten bei Knockout-Tieren einer verstärkten Degeneration im Alter. Dieser Effekt trat in der BLA nicht auf. Da im adulten Hippocampus p75 physiologischerweise exprimiert wird, in der adulten Amygdala jedoch nicht, weist dies auf eine trophische Wirkung des Rezeptors für hippocampale cholinerge Neurone hin, die vermutlich in Assoziation mit Trk-Rezeptoren vermittelt werden. Eine Testung höherer Verhaltensfunktionen bei p75-Defizienz erbringt Hinweise auf die funktionellen Auswirkungen der morphologischen Veränderungen. Bisherige Studien zeigen Abweichungen bei lokomotorischer Aktivität, Angstverhalten und räumlichem Lernen, sind jedoch im Detail widersprüchlich. Geringe Kohortengrößen und ungenaue Angaben zur Testdurchführung schränken die Aussagekraft teilweise ein. Ein weiteres Ziel der vorliegenden Arbeit ist daher die Prüfung dieser Verhaltensfunktionen bei p75-Defizienz mittels standardisierter Testmodelle unter Verwendung größerer Testkohorten. Im Open Field-Versuch wiesen Knockout-Tiere eine erhöhte motorische Aktivität auf. Im Holeboard-Versuch zeigte sich jedoch keine begleitende Zunahme zielgerichteter Exploration. In der Dark/Light Box fiel ein signifikanter Gruppenunterschied im Einfluss der zirkadianen Rhythmik auf das Verhalten in diesem Testmodell auf. Dies erschwert die Testinterpretation, trägt jedoch auch zur Erklärung der Diskrepanzen in der Literatur bei. Im Morris Water Maze zeigten Knockout-Tiere deutliche Defizite beim räumlichen Lernen. Als Ursache der Verhaltensauffälligkeiten kommen Veränderungen des cholinergen Systems, der neuronalen Plastizität und der zirkadianen Rhythmik in Betracht. Zudem sind Veränderungen weiterer Transmittersysteme wahrscheinlich. Die Untersuchung dieser Systeme und die Durchführung spezialisierter Verhaltenstests sind interessante Ansatzpunkte für zukünftige Studien.
The leading hypothesis of why organisms age is the “Free Radical Theory of Aging”, which states that the accumulation of reactive oxygen species (ROS), such as superoxide (O2•-) and hydrogen peroxide (H2O2), causes protein, lipid and DNA damage and leads to the observed age-related decline of cells and tissues. A major obstacle in analyzing the role of oxidative stress in aging organisms is the inability to precisely localize and quantify the oxidants, to identify proteins and pathways that might be affected, and ultimately, to correlate changes in oxidant levels with the lifespan of the organism. To directly monitor the onset and extent of oxidative stress during the lifespan of Caenorhabditis elegans, we utilized the fluorescent H2O2 sensor protein HyPer, which enabled us to quantify endogenous peroxide levels in different tissues of living animals in real time. We made the surprising observation that wildtype C. elegans is exposed to very high peroxide levels during development. Peroxide levels drop rapidly as the animals mature, and low peroxide levels then prevail throughout the reproductive age, after which an age-accompanying increase of peroxide level is observed. These results were in excellent agreement with findings obtained by using the highly quantitative redox proteomic technique OxICAT, which monitors the oxidation status of redox-sensitive proteins as read-out for onset, localization, and protein targets of oxidative stress. By using OxICAT, we detected increased protein thiol oxidation during the development of C. elegans and in aging animals. Many processes in C. elegans might potentially contribute to the elevated peroxide levels observed during development, including cuticle formation, apoptosis, proliferation, gametogenesis, or ROS signaling. The finding that all investigated C. elegans mutants regardless of their lifespan are exposed to high developmental peroxide levels argues for ROS accumulation to be a universal and necessary event. Yet, recovery from the early oxidative boost might determine the subsequent adult lifespan, as we found that long-lived daf-2 mutants transition faster to reducing conditions than short-lived daf-16 mutants, which retain higher peroxide levels throughout their mature life. These results suggest that changes in the cellular oxidant homeostasis, encountered at a very early stage in life, might determine subsequent redox levels and potentially the lifespan of organisms. Manipulation of developmental oxidant levels using glucose restriction or a short bolus of superoxide caused a disruption in developmental growth, a delay in reproduction, and a shortened lifespan. These results suggest that developmental oxidant levels are fine-tuned and optimized. Future experiments are aimed to investigate the sources of developmental hydrogen peroxide, and to elucidate whether active down-regulation of antioxidant enzymes during the larval period might foster peroxide accumulation. Preliminary results indicate that this might indeed be the case for peroxiredoxin 2, whose expression was significantly lower during development than at later stages in life. Finally, we investigated whether the observed variances in the developmental peroxide levels of individual worms within a synchronized wildtype population might be responsible for the observed significant variances in lifespan, and hence could serve as a predictor for adult lifespan. Preliminary results revealed that neither too low nor too high peroxide levels during development are beneficial for the lifespan of wildtype worms, suggesting that ROS level during development might be optimized for maximized lifespan. Future experiments aim to reveal the processes that are affected by ROS and which might influence the individual’s lifespan early in life.
Teil 1: Pathogeninaktivierung: Es wurde ein neues Verfahren zur Pathogeninaktivierung mittels Proteomanalysen untersucht. Bei diesem wurden Proben von Kaninchenthrombozyten mit Riboflavin bzw. Psoralen inkubiert und mit UV-A Licht bestrahlt. Dadurch werden die in Pathogenen enthaltenen Nukleinsäuren unbrauchbar gemacht, wohingegen gezeigt werden konnte, dass die Plättchen kaum in ihrem Proteom und damit vermutlich in ihrer Funktionalität beeinflusst wurden. Teil 2: Thrombozytenalterung: Durch Apherese wurde an drei auf einander folgenden Tagen die in einem humanen Spender zirkulierenden Plättchen auf 80000/µl depletiert und anschließend Plättchen aus dem Vollblut mittels differentieller Zentrifugation gewonnen. Während der einsetzenden Nachbildung von Thrombozyten wurde das Proteom der Zellen mit den Ausgangswerten verglichen und so versucht, Alterungsmarker im Thrombozytenproteom zu finden.