Refine
Year of publication
Document Type
- Doctoral Thesis (139)
- Article (36)
Is part of the Bibliography
- no (175)
Keywords
- - (31)
- Staphylococcus aureus (18)
- proteomics (11)
- Massenspektrometrie (9)
- Proteomanalyse (8)
- Virologie (8)
- Bakterien (7)
- Herpesvirus (7)
- Virulenz (7)
- Bacillus subtilis (6)
- Herpesvirus suis (6)
- PrV (6)
- herpesvirus (6)
- Herpesviren (5)
- Pestivirus (5)
- Proteomics (5)
- mass spectrometry (5)
- Arxula adeninivorans (4)
- Heubacillus (4)
- Influenza-A-Virus (4)
- Interferon (4)
- MRSA (4)
- Molekulare Virologie (4)
- Proteom (4)
- Pseudorabies Virus (4)
- Quantifizierung (4)
- Tollwut (4)
- Zoonose (4)
- metaproteomics (4)
- pseudorabies virus (4)
- transcriptomics (4)
- Anpassung (3)
- Aviäre Influenza (3)
- Degradation (3)
- Geflügel (3)
- Genexpression (3)
- Hämagglutinin (3)
- Immunologie (3)
- Konfokale Mikroskopie (3)
- LC-MS (3)
- Laccase (3)
- MALDI-MS (3)
- Nuclear Egress (3)
- Pathogenität (3)
- Phosphorylierung (3)
- Streptococcus pneumoniae (3)
- Virulenzfaktor (3)
- Vogelgrippe (3)
- autoinflammation (3)
- biofilm (3)
- flux analysis (3)
- membrane proteins (3)
- osmotic stress adaptation (3)
- polyhydroxybutyrate (PHB) (3)
- proline (3)
- 2D PAGE (2)
- Aeromonas salmonicida (2)
- African swine fever virus (2)
- Bacillus (2)
- Biofilm (2)
- Biosensor (2)
- Biotechnologie (2)
- Capsid (2)
- Coxiella burnetii (2)
- Cupriavidus basilensis (2)
- Elektrospray-Ionisation (2)
- Endokrin wirksamer Stoff (2)
- Enzym (2)
- Epidemiologie (2)
- FMDV (2)
- Flavivirus (2)
- Fluoreszenzmikroskopie (2)
- Glykoprotein H (2)
- Hefeartige Pilze (2)
- Impfstoff (2)
- Isomerisierungsreaktion (2)
- KHV (2)
- Kernhülle (2)
- Kuhpocken (2)
- Lyssavirus (2)
- Membranfusion (2)
- Metabolomics (2)
- Metaproteomics (2)
- Microarray (2)
- Mikrobiologie (2)
- Molekularbiologie (2)
- Monoklonaler Antikörper (2)
- Morphogenese (2)
- NS1 (2)
- Newcastle Disease (2)
- Newcastle-Krankheit (2)
- Nuclear Egress Complex (2)
- Phytase (2)
- Plasmamembran (2)
- Protein-Protein-Interaktion (2)
- Proteine (2)
- Proteinquantifizierung (2)
- Proteolyse (2)
- Pseudomonas putida (2)
- Regenbogenforelle (2)
- Rekombinantes Protein (2)
- SILAC (2)
- Sequencing (2)
- Sequenzanalyse (2)
- Sequenzanalyse <Chemie> (2)
- Spektrenbibliothek (2)
- T-Lymphozyt (2)
- Tandem-Massenspektrometrie (2)
- Tollwutvirus (2)
- Toxizitätstest (2)
- Toxoplasma gondii (2)
- Transcriptomics (2)
- Vakzine (2)
- Vesikel (2)
- Virology (2)
- Virus-Eintritt (2)
- Virusinfektion (2)
- W-Protein (2)
- Zoonoses (2)
- adaptation (2)
- bank vole (2)
- biotechnology (2)
- generelle Stressantwort (2)
- live-cell imaging (2)
- membrane fusion (2)
- metabolomics (2)
- metagenomics (2)
- microbial diversity (2)
- microbiome (2)
- molecular epidemiology (2)
- molekulare Epidemiologie (2)
- nuclear egress (2)
- pUL34 (2)
- proteasome (2)
- proteome (2)
- transcriptome (2)
- virology (2)
- virus entry (2)
- 1,4-naphthoquinones (1)
- 16S rRNA gene-sequencing (1)
- 16S sequencing (1)
- 2D-Gelelektrophorese (1)
- 4-Hydroxycoumarin (1)
- <i>Babesia</i> (1)
- <i>Clostridiodes difficile</i> (1)
- <i>Enterobacter</i> (1)
- <i>S. aureus</i> (1)
- <i>Streptococcus pneumoniae</i> (1)
- A/H5N1 Influenza (1)
- ASFV (1)
- Abiraterone (1)
- Adaptation (1)
- Aerobe Bakterien (1)
- Aeromonas (1)
- Affinitätschromatographie (1)
- Afrikanische Schweinepest (1)
- Afrikanische Schweinepest Virus (1)
- Afrikanisches Schweinepest-Virus (1)
- Allgemeine Mikrobiologie (1)
- AmaP (1)
- Aminierung (1)
- Aminosäurederivate (1)
- Anaerobe Bakterien (1)
- Anaerobiose (1)
- Anreicherung (1)
- Antibiotics (1)
- Antibiotika (1)
- Antibiotika-Stress (1)
- Antikörper (1)
- Antikörperantwort (1)
- Apoptosis (1)
- Arbovirus (1)
- Argininphosphorylierung (1)
- Arxula adeninivorans yeast androgen screen Assay (A-YAS Assay) (1)
- Arxula adeninivorans yeast androgen screen assay (A-YAS assay) (1)
- Arxula adeninivoras (1)
- Asp23 (1)
- Astrovirus (1)
- Atemwege (1)
- Aujeszky-Krankheit (1)
- Avian Influenza Virus (1)
- Aviäre Influenza Viren (1)
- Azotobacter chroococcum (1)
- BALB/c Maus (1)
- BHV-1 (1)
- BPA-Abbauweg (1)
- BTX-Aromaten (1)
- BacMam (1)
- Bacillus amyloliquefaciens (1)
- Bacillus licheniformis (1)
- Bacillus pumilus (1)
- Bacteria (1)
- Bacterial cell membrane (1)
- Bacterial cell wall (1)
- Bakterielle Infektion (1)
- Bakteriolyse (1)
- Baltic Sea (1)
- Bauchfellentzündung (1)
- Biocomputational metho (1)
- Biokatalyse (1)
- Biomarker (1)
- Biomedical model (1)
- Biomolecules (1)
- Biotinylierungsansatz (1)
- Biotramsformation (1)
- Biotransformation (1)
- Bisphenol A (1)
- Bisphenole (1)
- Bivalent (1)
- Blastobotrys adeninivorans (1)
- Blau/Weiß-Selektion (1)
- Blut (1)
- Blutimmunzelle (1)
- Blutplasma (1)
- Blutplasmafaktor (1)
- Bornavirus (1)
- Brackwasser (1)
- Brain infection (1)
- Brustkrebs (1)
- Budding (1)
- Bungowannah-Virus (1)
- Burkholderia (1)
- CAD (1)
- CD44 (1)
- CD56 (1)
- CD8+ T-Zellantwort (1)
- CP7_E2alf (1)
- CRISPR/Cas-Methode (1)
- Candida albicans (1)
- Capripox (1)
- Carbazol (1)
- Cell aggregation (1)
- Cell division defect (1)
- Central Europe (1)
- Chemotherapy (1)
- Classical swine fever virus (1)
- Clethrionomys glareolus (1)
- Clostridium difficile (1)
- Clp proteolysis (1)
- Coagulation (1)
- CodY (1)
- Cowpox (1)
- Cowpox virus (1)
- Cumarine (1)
- Cutinase (1)
- Cysten (1)
- Cystic Fibrosis (1)
- Cytometrie (1)
- Cytoprotection (1)
- D61Y mutation (1)
- DEB-model (1)
- DIVA Vakzine (1)
- DIVA-Impfstoff (1)
- DUF322 (1)
- Dekanol (1)
- Demographie (1)
- Desulfococcus multivorans (1)
- Detoxifizierung (1)
- Dibenzothiophen (1)
- Durchflusscytometrie (1)
- EBLV-1 (1)
- ECM (1)
- ER stress (1)
- ERK-Signalkaskade (1)
- Early Warning (1)
- Ebola-Virus (1)
- Effektive Konzentration (1)
- Effizienz (1)
- Einschlusskörper (1)
- Elastase (1)
- Elastase-abhängige Lebend-attenuierte Vakzine (1)
- Elektronenmikroskopie (1)
- Elektronensprayionisations-Massenspektrometrie (1)
- Encephalitis (1)
- Endocrine disruption (1)
- Endokrine Disruption (1)
- Endokrine Disruptoren (1)
- Endoplasmatisches Retikulum (1)
- Entzündung (1)
- Enzymaktivität (1)
- Erdöl-Kohlenwasserstoffe (1)
- Escherichia coli (1)
- Esterasen (1)
- Estradiol (1)
- Euterentzündung (1)
- Extracellular Matrix (1)
- Extrazelluläre Matrix (1)
- F-Protein (1)
- F-protein (1)
- Feldmaus (1)
- Ferkel (1)
- Festphasenextraktion (1)
- Fibronectin binding protein (1)
- Fibronektinbindungsprotein (1)
- Filoviruses (1)
- Fish (1)
- Fledermaus (1)
- Flow Cytometry (1)
- Flow cytometry (1)
- Fluoren (1)
- Fragmentierung (1)
- Fragmentierung der Kernmembran (1)
- Friedrich-Loeffler-Institut Insel Riems (1)
- Functional characterization (1)
- Fusionsprotein (1)
- Gedächtniszelle (1)
- Geflügelpest (1)
- Geflügelpestvirus (1)
- Gelfreie Proteinanalytik (1)
- General Stress (1)
- Genetic diversity (1)
- Genom (1)
- Genomic classification (1)
- Genomik (1)
- Genotyp (1)
- Geobacter sulfurreducens (1)
- Glukosehunger (1)
- Glutathion (1)
- Glycoprotein B (1)
- Glykoprotein B (1)
- Glykoprotein D (1)
- Glykoproteine (1)
- Goatpox virus (1)
- Golgi-Apparat (1)
- Gram-positive Bakterien (1)
- Gram-positive bacteria (1)
- Grippe (1)
- Gromov-Wasserstein distance (1)
- Group B streptococcus (1)
- GudB (1)
- H1N1 (1)
- H3N2 (1)
- H5N8 Clade 2.3.4.4 (1)
- H9N2 (1)
- HEV (1)
- HN-Protein (1)
- HN-protein (1)
- HPLC-MS (1)
- HSV-1 (1)
- Hantaviren (1)
- Hantavirus (1)
- Hantaviruses (1)
- Harn (1)
- Hausratte (1)
- Heat shock protein 27 (1)
- Heimtiere (1)
- Hemagglutinin (1)
- Hemolysis (1)
- Hendravirus (1)
- Henipavirus-ähnliche Partikel (1)
- Hepatitis-E-Virus (1)
- High-throughput Sequencing (1)
- High-throughput screening (1)
- Hitzestress (1)
- Hormonrezeptor (1)
- Humorale Immunität (1)
- Hund (1)
- Hydrophobizität (1)
- Hydroxylierung (1)
- Hyperthyreose (1)
- ICUAW (1)
- IFN-Antagonist (1)
- Imhoff sedimentation cones (1)
- Immunantwort (1)
- Immune response (1)
- Immunology (1)
- Immunoproteasome (1)
- Infektion (1)
- Inflammation (1)
- Influenza (1)
- Influenza virus (1)
- Influenzaviren (1)
- Influenzavirus (1)
- Inositol (1)
- Integrins (1)
- Interactions (1)
- Ion Torrent (1)
- Iron limitation (1)
- Isotopenmarkierung (1)
- Kalb (1)
- Kaltes Plasma (1)
- Kaninchen (1)
- Kapsid (1)
- Katze (1)
- Kernaustrittskomplex (1)
- Kernexport (1)
- Kernfreisetzungskomplex (1)
- Kleinsäuger (1)
- Koi (1)
- Kontaktwinkel (1)
- Krebs (1)
- Kuhpockenvirus (1)
- LMP2 (1)
- LMP7 (1)
- Lebendimpfstoff (1)
- Lebendmarker-Vakzine (1)
- Lebendzellmikroskopie (1)
- Lebenswissenschaften (1)
- Leptospira (1)
- Leptospira spp. (1)
- Leptospiren (1)
- Lichtscheibenmikroskopie (1)
- Life sciences (1)
- Ligandenbindungsdomäne (1)
- Lipoproteine (1)
- Lipoproteins (1)
- Listeria monocytogenes (1)
- Live-Cell-Imaging (1)
- Lokalisation (1)
- Lumpy Skin Disease virus (1)
- Lyssaviren (1)
- Lösungsmittel (1)
- MECL-1 (1)
- MKSV (1)
- MLVA (1)
- Markervakzine (1)
- Massenspektromie (1)
- Mathematical bioscience (1)
- Matrixprotein (1)
- McsB arginine kinase (1)
- Medizinische Mikrobiologie (1)
- Membranproteine (1)
- Memory T cell (1)
- Metabolom (1)
- Metagenomics (1)
- Metagenomik (1)
- Methylcarbazol (1)
- MgsR (1)
- Microtus (1)
- Mikrobieller Abbau (1)
- Mikroskopie (1)
- Minigenome system (1)
- Mukoviszidose (1)
- Mutante (1)
- Myceliophthora thermophila (1)
- Mycobacterium neoaurum (1)
- Myodes glareolus (1)
- NEC (1)
- NSs protein (1)
- NXF1 (1)
- Nagetiere (1)
- Natural host (1)
- Nervensystem (1)
- Neuroimmunologie (1)
- Newcastle Disease Virus (1)
- Newcastle disease (1)
- Newcastle-Disease-Virus (1)
- Next-Generation Sequencing (1)
- Niedertemperaturplasma (1)
- Nipahvirus (1)
- Nocardia cyriacigeorgica (1)
- Nuclear export (1)
- Nukleocapsid (1)
- Nutztiere (1)
- OMV (1)
- Oberflächenplasmonresonanz (1)
- Omnilog (1)
- Optimierung (1)
- Oral Vaccine (1)
- Oral vaccine (1)
- Organisches Lösungsmittel (1)
- Orthobunyaviren (1)
- Orthobunyavirus (1)
- Osmoregulation (1)
- Outbreak (1)
- Outbreak Preparedness (1)
- Oxidative Stress (1)
- Oxidativer Stress (1)
- P (1)
- PB2 (1)
- PCLake (1)
- PPMV-1 (1)
- Pan-lipoproteome analysis (1)
- Parasit (1)
- Passagieren (1)
- Pathogen (1)
- PavB (1)
- Pelargonie (1)
- Peritonitis (1)
- Pest der kleinen Wiederkäuer (1)
- Pharmaceuticals (1)
- Phenol (1)
- Phenoloxidase (1)
- Phenylalkane (1)
- Phospholipids (1)
- Phosphopeptid-Anreicherung (1)
- Phosphopeptidanreicherung (1)
- Phosphoproteom (1)
- Phosphoproteomik (1)
- Phylogenetik (1)
- Physiological proteomics (1)
- Physiologie (1)
- Phytase reporter assay (1)
- Pig (1)
- Pigment (1)
- Pilze (1)
- Plasma (1)
- Plasmadiagnostik (1)
- Plasmawechselwirkung (1)
- Plasminogen binding protein (1)
- Plasminogenbindungsprotein (1)
- Pneumokokken (1)
- Polycaprolactone (1)
- Polyerase-Komplex (1)
- Polyester (1)
- Polymorphismus (1)
- Poultry and mammals (1)
- Predation (1)
- Progesteron (1)
- Prostate cancer (1)
- Proteasom (1)
- Protein Carbonylation (1)
- Protein-Microarray (1)
- Protein-Phosphorylierung (1)
- Proteinidentifizierung (1)
- Proteinkinase (1)
- Proteinphosphorylierung (1)
- Proteins (1)
- Proteom-Analyse (1)
- Proteomik (1)
- Proteomstudien (1)
- Protoplastenfusion (1)
- Pseudomallei (1)
- Pseudomonas aeruginosa (1)
- Pseudomonas fluorescens (1)
- Pseudomonas putida DOT-T1E (1)
- Pseudomonas putida P8 (1)
- Pseudorabies (1)
- Pseudorabiesvirus (1)
- Puumala virus (1)
- Pycnoporus cinnabarinus (1)
- Q-Fieber (1)
- Quantification (1)
- RABV (1)
- RNAlater (1)
- RT-PCR (1)
- Rabies (1)
- Rabiesvirus (1)
- Rainbow Trout (1)
- Rainbow trout (1)
- Ralstonia solanacearum (1)
- Rasterkraftmikroskopie (1)
- Redox signaling (1)
- Regulation (1)
- Regulator (1)
- Rekombination (1)
- Replikation (1)
- Replikon (1)
- Reporter Assay (1)
- Reservoirwirt (1)
- Resistenz (1)
- Resistenzzüchtung (1)
- Retention (1)
- Reverse Genetics (1)
- Reverses Genetisches System (1)
- Reverses genetisches System (1)
- Rex (1)
- Rhabdoviren (1)
- Rhodococcus ruber (1)
- Ribotyping (1)
- Ribotypisierung (1)
- Rickettsia (1)
- Rodents (1)
- RpoN signaling (1)
- SARS-CoV-2 (1)
- SHP2 (1)
- SRM (1)
- STEC (1)
- Sae (1)
- Saisonalität (1)
- Sandsäulen (1)
- SarA (1)
- Schadstoffabbau (1)
- Schilddrüse (1)
- Schmallenberg-Virus (1)
- Schweinekrankheit (1)
- Sekretion (1)
- Selective breeding (1)
- Sequenzierung (1)
- Ser/Thr kinases (1)
- Sheeppox virus (1)
- Shiga toxin-producing <i>Escherichia coli</i> (1)
- Shotgun (1)
- Sicherheit (1)
- SigB (1)
- Signaltransduktion (1)
- Spaltstellen (1)
- Sporulation (1)
- Staphylococcus (1)
- Staphylococcus aureus, MRSA, USA300, antibiotic resistance, drug evasion. (1)
- Stickland reactions (1)
- Stickstofffixierung (1)
- Stress (1)
- Structure (1)
- Superantigen (1)
- Sus scrofa domesticus (1)
- T cell (1)
- T cells (1)
- T zell (1)
- TCF11/Nrf1 (1)
- Tannase (1)
- Tannase reporter assay (1)
- Tegumentprotein (1)
- Teichoic acid (1)
- Tetrahydrocarbazol (1)
- Thauera aromatica (1)
- Thioredoxin (1)
- Thyroxin (1)
- Tiergesundheit (1)
- Tiermedizin (1)
- Tierseuche (1)
- Tissue Optical Clearing (1)
- Topologie (1)
- Toxoplasmose (1)
- Transaktivierungsbiosensor (1)
- Transcriptom (1)
- Transmission (1)
- Trichosporon (1)
- Tumore (1)
- Tumorzellen (1)
- UAP56 (1)
- UL31 (1)
- UL34 (1)
- Umweltfaktor (1)
- V-Protein (1)
- Vaccine (1)
- Vakzin (1)
- Vektor (1)
- Vektor-Vakzine (1)
- Vektorvakzine (1)
- Vielfalt (1)
- Viren (1)
- Virulence determinants (1)
- Virulenzfaktor S. pneumoniae (1)
- Virulenzfaktoren (1)
- Virus (1)
- Virus Discovery (1)
- Virus der klassischen Schweinepest (1)
- Virus discovery (1)
- Virus evolution (1)
- Virus isolation (1)
- Virus-Wirt (1)
- Virus-host interaction (1)
- Virusdiarrhoe-Mucosal-Disease-Virus (1)
- Vitronectin binding protein (1)
- Vitronektinbindungsprotein (1)
- Wanderratte (1)
- Warburg effect (1)
- Weiße Biotechnologie (1)
- White Biotechnology (1)
- Wirt-Erreger Interaktion (1)
- Wirtsfaktoren (1)
- Wirtsspezifität (1)
- Wirtszellmanipulation (1)
- Xanthomonas (1)
- Xplor2® Transformations-/Expressionssystem (1)
- Yeast (1)
- Zell-Plasmawechselwirkung (1)
- Zellautonome Immunität (1)
- Zellkern (1)
- Zelloberflächenproteine (1)
- Zelltropismus (1)
- Zellwand (1)
- Zi-Pi plot (1)
- Zoonosen (1)
- Zoonosis (1)
- absolute protein quantification (1)
- acid resistance (1)
- aggregate biofilm (1)
- akzessorische Proteine (1)
- amination (1)
- anaerob (1)
- antibakteriell (1)
- antibiotics (1)
- antibody (1)
- antifungal (1)
- antimicrobial (1)
- antimicrobial peptides (1)
- aquatic plants (1)
- arctic (1)
- arginine phosphorylation (1)
- artificially in vitro assay (1)
- aureus (1)
- aviäre Schweineviren (1)
- bacterial pathogens (1)
- bacterioplankton (1)
- biocatalysis (1)
- biofilm degradation (1)
- biofilms (1)
- bioinformatics (1)
- biomanipulation (1)
- biomedical model swine (1)
- biotinylation approach (1)
- bisphenol A (1)
- bovine (1)
- bovine soft palate (1)
- bvdv (1)
- carbapenem (1)
- carp (1)
- castration-resistant prostate cancer (1)
- catechol-1,2-dioxygenase (ACDO1) (1)
- cell biology (1)
- cell surface antigens (1)
- cell-surface proteins (1)
- cellobiose (1)
- chemosynthesis (1)
- chimäre Proteine (1)
- cluster formation (1)
- co-occurrence network (1)
- cold atmospheric plasma (1)
- colonization type (1)
- colony biofilm (1)
- complete genome (1)
- contact angle (1)
- coumarin (1)
- coumarins (1)
- crispr/cas9 (1)
- cystic fibrosis (1)
- decanol (1)
- decontamination (1)
- degradation (1)
- degree of saturation (1)
- diversity (1)
- drying–rewetting (1)
- ecological succession (1)
- effective concentration (1)
- efficacy (1)
- endemic region (1)
- endocrine disrupting chemicals (1)
- entry (1)
- enzyme (1)
- enzyme activity (1)
- essentielles Tegumentprotein pUL36 (1)
- eutrophication (1)
- evolutionary lineage (1)
- filamentöse Pilze (1)
- fish vaccine (1)
- flash freezing (1)
- food industry (1)
- food spoilage (1)
- food spoilers (1)
- foot-and-mouth disease virus (FMDV) (1)
- functional analyses (1)
- funktionelle Analyse (1)
- fusion loops (1)
- gH/gL complex (1)
- gallic acid decarboxylase (AGDC1) (1)
- gastrointestinal microbiome (1)
- gel-free proteomics (1)
- gelbasiert (1)
- gelfrei (1)
- gene expression (1)
- general stress response (1)
- genome (1)
- genomics (1)
- global (1)
- glycoprotein H (1)
- great plate count anomaly (1)
- growth rates (1)
- hemagglutinin (1)
- high-throughput sequencing (1)
- holobiont (1)
- host-microbe interactions (1)
- hydrophobicty (1)
- hydrothermal vents (1)
- imipenem (1)
- immune response (1)
- in vitro (1)
- in vitro Bioassay (1)
- in vitro bioassay (1)
- in vivo (1)
- in-vitro Kultur (1)
- inactivated vaccine (1)
- inactivation (1)
- infection (1)
- influenza virus (1)
- innate immune system (1)
- integrated multi-omics (1)
- interferon-stimulated genes (ISG) (1)
- intracellular transport (1)
- intrazellulärer Transport (1)
- isotopic labeling (1)
- keystone taxa (1)
- konfokale Laser-Scanning-Mikroskopie (1)
- label-free quantification (1)
- laccase (1)
- lake restoration. nutrient load reduction (1)
- large tegument protein (1)
- large tegument protein pUL36 (1)
- ligand binding domain (1)
- light microscopy (1)
- light sheet fluorescence microscopy (1)
- lipidation (1)
- lipids (1)
- lipoproteins (1)
- live marker vaccine (1)
- mRNA-Editierung (1)
- mTORC1 (1)
- marker vaccines (1)
- meta-analysis (1)
- metabolic activity (1)
- metabolic labeling of complete cells (1)
- metabolische markierung von Gesamtzellen (1)
- metabolism (1)
- microbial community (1)
- microbial function (1)
- microbiota (1)
- mitochondria (1)
- molecular (1)
- monoclonal antibodies (1)
- monoklonale Antikörper (1)
- multi-omics (1)
- muscle wasting (1)
- mussel cultivation (1)
- nasopharynx (1)
- nervous system (1)
- neue Virulenzfaktoren (1)
- neurodevelopmental disorders (1)
- new Arxula Yeast Estrogen Assay (nAES-Assay) (1)
- new virulence factors (1)
- nitrosativer Stress (1)
- non-thermal plasma (1)
- nuclear egress complex (1)
- nuclear envelope breakdown (1)
- oligotroph (1)
- oncolytic (1)
- onkolytisch (1)
- organic solvents (1)
- organische Lösungsmittel (1)
- outbreak (1)
- oxidativer Stress (1)
- pUL17 (1)
- pUL25 (1)
- pUL31 (1)
- pUL35 (1)
- pUL36 (1)
- pUL37 (1)
- pUS3 (1)
- pathogenicity (1)
- pathway (1)
- permafrost (1)
- phosphatases (1)
- phosphate starvation (1)
- phosphopeptide enrichment (1)
- phosphoproteomics (1)
- phosphorylation (1)
- phycosphere (1)
- plant traits (1)
- pneumococcal colonization (1)
- polymerase complex (1)
- porcine epidemic diarrhea virus (1)
- porzines epidemisches Diarrhoevirus (1)
- prevalence (1)
- primär umhüllte Virionen (1)
- profitability (1)
- protection (1)
- protein aggregation (1)
- protein identification/quantification (1)
- protein kinase (1)
- protein quantification (1)
- protein synthesis (1)
- proteolysis (1)
- proteome signatures (1)
- proteomic adaptation (1)
- proteostasis in skeletal muscle (1)
- questing tick (1)
- rabies virus (1)
- recombinant baculoviruses (1)
- recombinant viruses (1)
- regime shift (1)
- regulatorisches Netzwerk (1)
- regulatory network (1)
- rekombinante Baculoviren (1)
- rekombinante Viren (1)
- reservoir (1)
- resistance (1)
- respiratory tract (1)
- reverse Genetik (1)
- reverse genetics (1)
- safety (1)
- sample storage (1)
- sand columns (1)
- shotgun-proteomics (1)
- sigB (1)
- sigma factor σW (1)
- signal transduction (1)
- small mammals (1)
- snoD mutant (1)
- soil proteins (1)
- solvents (1)
- spectral libraries (1)
- spectral library (1)
- sporulation (1)
- sputum (1)
- stabile Isotopenmarkierung (1)
- starvation (1)
- stress response (1)
- stress signal (1)
- tPMP resistance (1)
- tannic acid degradation pathway (1)
- tannin catabolism (1)
- temperature adaptation (1)
- tissue optical clearing (1)
- torsin (1)
- toxin formation (1)
- trans-cis ratio (1)
- trans/cis-Verhältnis (1)
- transporters (1)
- tumor-cells (1)
- ubiquitin (1)
- ubiquitin-proteasome system (1)
- unfolded protein response (1)
- vaccine (1)
- vector vaccine (1)
- viral vectors (1)
- virale Vektoren (1)
- virion morphogenesis (1)
- virulence factor S. pneumoniae (1)
- virus (1)
- virus discovery (1)
- virus-host interaction (1)
- xGND (1)
- zellautonome Immunität (1)
- zeta potential (1)
- zytotoxic (1)
- zytotoxisch (1)
- Östrogen-Rezeptor-Modulator (1)
- Östrogenität (1)
Institute
- Abteilung für Mikrobiologie und Molekularbiologie (175) (remove)
Publisher
- MDPI (16)
- Frontiers Media S.A. (13)
- S. Karger AG (3)
- ASM (1)
- Elsevier (1)
- Frontiers (1)
- Wiley (1)
In vitro and in vivo analyses of mono- and mixed-species biofilms formed by microbial pathogens
(2022)
Microbial biofilms can be defined as multicellular clusters of microorganisms embedded in a self-produced extracellular matrix (ECM), which is primarily composed of polymeric biomolecules. Biofilms represent one of the most severe burdens in both industry and healthcare worldwide, causing billions of dollars of treatment costs annually because biofilms are inherently difficult to prevent, treat, and eradicate. In health care settings, patients suffering from cystic fibrosis, or patients with medical implants are highly susceptible to biofilm infections. Once a biofilm is formed, it is almost impossible to quantitatively eradicate it by mechanical, enzymatical, chemical, or antimicrobial treatment. Often the only remaining option to fully eradicate the biofilm is removing of the infected implant or body part. The primary reasons for the inherent resistance of biofilms against all forms of antimicrobial treatment are (I) a reduced metabolic activity of biofilm-embedded cells climaxing in the presence of metabolic inactive persister cells, as well as (II) the protective nature of the biofilm matrix acting as a (diffusion) barrier against antimicrobials and the host immune system. Consequently, there is an urgent need to better understand microbial biofilms from a structural and (patho-) physiological point of view in order to be able to develop new treatment strategies.
Therefore, the aims of this study were to investigate fundamental physiological properties of different clinically relevant single and multi-species biofilms, both in vitro and in vivo. Furthermore, the effectiveness of a novel treatment strategy using cold atmospheric pressure plasma was evaluated in vitro to treat biofilms of the pathogenic fungus C. albicans.
In article I, the intracellular and ECM protein inventory of Staphylococcus aureus during in vitro biofilm growth in a flow reactor was analyzed by liquid-chromatography coupled to tandem mass-spectrometry (LC-MS/MS) analysis combined with metabolic footprint analysis. This analysis showed that anaerobiosis within biofilms releases organic acids lowering the ECM pH. This, in turn, leads to protonation of alkaline proteins – mostly ribosomal proteins originating from cell lysis as well as actively secreted virulence factors – resulting in a positive net charge of these proteins. As a consequence, these proteins accumulate within the ECM and form an electrostatic network with negatively charged cell surfaces, eDNA, and metabolites contributing to the overall biofilm stability.
In article II, the in vivo metaproteome of the multi-species biofilm community in cystic fibrosis sputum was investigated. To this end, an innovative protocol was developed allowing the enrichment of microbial cells, the extraction of proteins from a small amount of cystic fibrosis sputum, and subsequent metaproteome analysis. This protocol also allows 16S sequencing, metabolic footprint analysis, and microscopy of the same sample to complement the metaproteome data. Applying this protocol, we were able to significantly enhance microbial protein coverage providing first insights into important physiological pathways during CF lung infection. A key finding was that the arginine deaminase pathway as well as microbial proteases play a so far underappreciated role in CF pathophysiology.
In articles III and IV, a novel treatment strategy for biofilms formed by the important fungal pathogen Candida albicans was evaluated in vitro. Biofilms were treated with two different sources of nonthermal plasma (with the Nonthermal Plasma Jet “kINPen09” as well as with the Microwave-induced plasma torch “MiniMIP”) and the effect on growth, survival, and viability was assessed by counting colony-forming units (CFU), by cell proliferation assays, as well as by live/dead staining combined with fluorescence microscopy, confocal laser scanning microscopy, (CLSM) and atomic force microscopy (AFM). These tests revealed that biofilms were effectively inactivated mostly on the bottom side of biofilms, indicating a great potential of these two plasma sources to fight biofilms.
Compared to other human pathogens, S. aureus outstands with a remarkably broad spectrum of deseases: from minor skin infections over endocarditis, pneumoniae, and osteomyelitis, to septic shock. The prerequisite is an arsenal of adaptation strategies, encoded in the core and variable genome. It includes the coordinated expression of adhesins and toxins, evasion of the immune system, response to stress and starvation, adaptation of the metabolism, formation of biofilms and capsules, antibiotic resistance, and persistence on the skin, in nasal epithelial cells, and even in the inner of macrophages after phagocytosis. All these adaptation strategies enable S. aureus to colonize a diversity of niches within the human host. The inevitable requirement is the ability to activate the appropriate adaptation strategy at the right time and at the right place. S. aureus overcomes this challenge with a sophisticated regulatory network. This PhD thesis covers a broad spectrum of transcriptional regulators, involved in S. aureus pathogenesis: (1) the quorum sensing system Agr (regulation of early- and late stage virulence factors), (2) the Sar family (regulation of early- and late stage virulence factors), (3) SaeRS (regulation of accessory exotoxins and adhesins), (4) CodY (response to amino acid starvation, including extracellular proteases), (5) Sigma B (general stress response, including virulence factors), (6) Rex (anaerobic energy metabolism), (7) CtsR and HrcA (protein quality control), (8) PerR and Fur (oxidative stress response), and (9) antibiotic resistance. Traditionally, Proteomics constitute the long-lasting reputation of the Institute. In fact, the majority of investigations presented in this PhD thesis was initialized by proteomic analyses as the ultimate starting point. From the first day, a major goal of this PhD thesis was to add regulator-promoter interaction studies to the methodical spectrum. In particular, to complement transcriptomic and proteomic results by answering the logical follow-up question: Which regulator is responsible for the observed changes in gene expression and protein synthesis after application of a specific stimulus?
The first chapter provides specific analyses for three major regulators: Rex, CodY, and SarA. Publications were achieved for Rex (Hecker et al., 2009; Pagels et al., 2010). Results were mainly achieved by establishing regulator-promoter interaction methods (in particular EMSA and “footprinting”). Additionally, this chapter describes method development of a novel easy-to-apply method, named REPA (restriction endonuclease protection assay).
The second chapter presents method development for the genome-wide identification of regulator-promoter interactions, named “global footprinting”. This approach combines two already well-established methods: (A) Purification of a recombinant Strep-tagged regulator via Strep-tag affinity chromatography. The modification in “global footprinting” is to incubate the regulator with fragmented genomic S. aureus DNA, resulting in co-purification and enrichment of DNA streches with specific regulator binding sites. (B) Identification and quantification of these DNA streches via “next generation sequencing” (NGS). Using this combined approach, this PhD thesis was able to localize the most affine promoter binding site for the regulator Rex precisely down to one single base pair across the whole S. aureus genome.
The third chapter describes the assembly of a data library, collecting the majority of DNA microarray data and regulator-promoter interaction studies from the worldwide literature. This data library summarizes more than 50,000 regulatory events and more than 2,000 regulator binding sites. As published in the perspectives in Fuchs et al. (2018), this data library can be incorporated into the free-accessible online data base “Aureowiki” (provided and maintained by the Department of Functional Genomics, University of Greifswald). The major effort is the consolidation of these “big data” via in silico cluster analysis, comparing 282 different experimental conditions at once. The major finding of this analysis is the identification of seven functional and regulatory gene clusters in S. aureus pathogenesis that are conserved across S. aureus strain diversity. These findings allowed the creation of a prediction tool, to provide novel experimental starting points for the worldwide S. aureus research community. This prediction tool was successfully applied on several topics, and partially published: functional and regulatory prediction for a set of 20 selected lipoproteins as potential virulence factors (Graf et al., 2018), and prediciton of protein complexes (Liang et al., 2016).
Alltogether, this PhD thesis provides new insights into the molecular mechanisms of three pathogenesis-relevant regulators: Rex, CodY, and SarA. It describes the development of three novel experimental methods for wet and dry lab applications that can be used on research topics beyond S. aureus: REPA, “global footprinting”, and cluster analysis. Finally, cluster analysis identifies seven conserved fuctional and regulatory gene clusters, involved in S. aureus pathogenesis. This cluster anaysis is used as a prediction tool to provide novel experimental starting points, and to predict the physiological mode of action of newly discovered anti-staphylococcal agents.
A significant fraction of the decaying algal biomass in marine ecosystems is expected to be mineralized by particle-associated (PA) heterotrophic bacterial communities, which are thus greatly contributing to large-scale carbon fluxes. Whilst numerous studies have investigated the succession of free-living (FL) marine bacteria, the community structure and functionality of PA bacterial communities remained largely unexplored and knowledge on specific contributions of these microorganisms to carbon cycling is still surprisingly limited. This has mostly been due to technical problems, i.e., caused by the enormous complexity of marine particles and the high abundance of eukaryotic microorganisms within these particles. This thesis presents (a) an optimized metaproteomics protocol for an in-depth characterization of marine PA bacteria, (b) an application example with FL and PA communities sampled during a spring phytoplankton bloom in 2009 in the North Sea, which confirmed the reliability of the optimized metaproteomic workflow, (c) the metaproteomic analysis of particulate communities sampled during a spring phytoplankton bloom in 2018, resulting in an as yet unprecedented number of identified protein groups of the bacterial response bloom and (d) a proteomic analysis of a PA bacterial isolate grown on the two naturally abundant marine polysaccharides laminarin and alginate. The observed succession of bacterial clades during metaproteomic analyses of the investigated blooms highlights individual niche occupations, also visible on genus level. Additionally, functional data shows evidence for the degradation of different marine polysaccharides e.g., laminarin, alginate and xylan supporting the important role of PA bacteria during the turnover of oceanic organic matter. Furthermore, most of the identified functions fit well with the current understanding of the ecology of an algal- or surface-associated microbial community, additionally highlighting the importance of phytoplankton-bacterial interactions in the oceans. More detailed insights into the metabolism of PA bacteria were gained by the proteomic characterization of a selected PA bacterial isolate grown on laminarin and alginate. Functional analyses of the identified proteins suggested that PA bacteria employ more diverse degradation systems partially different from the strategies used by FL bacteria.
Gram-negative bacteria are known to naturally produce outer membrane vesicles (OMVs), which are closed nanoparticles (10 to 450 nm) containing virulence factors and pathogen associated molecular patterns (PAMPs). For over 20 years, OMVs of Neisseria meningitidis (N. meningitidis), in combination with three purified outer membrane proteins, have been successfully used as parts of human vaccines which illustrates the safety and potential of OMV based vaccines. So far only little is known about the OMVs of fish pathogenic bacteria. The production of OMVs has been described for the fish pathogenic gram-negative bacterium Aeromonas salmonicida (A. salmonicida) which is the causative agent of furunculosis resulting in high morbidity and mortality of salmonid fish. The immunostimulatory potential of OMVs derived from A. salmonicida as well as the possibility of establishing an oral vaccine model in Oncorhynchus mykiss (O.mykiss) (Rainbow trout) has been investigated in this study by conducting in vitro and in vivo experiments. Innate immune cells such as macrophages are one of the first cells to respond to pathogens once they breach the skin barrier, therefore the monocyte/macrophage cell line RTS-11 as well as leukocytes from the head kidney, consisting of a high percentage of phagocytic cells have been investigated. Additionally, leukocytes isolated from the peritoneal cavity as the main target for injectable vaccines have been studied in the in vitro experiments. These experiments indicate that OMVs derived from A. salmonicida are recognized by the monocyte/macrophage cell line RTS-11 as well as by leukocytes from the head kidney resulting in significant changes of the mRNA expression pattern of early inflammatory markers (IL-1β, IL-6, IL-8, IL-10, TGFβ). Having used the established peritoneal inflammation model of rainbow trout it could be shown that intraperitoneal (i.p.) vaccination of rainbow trout with OMVs results in a similar local immune response, especially in the recruitment of myeloid cells, compared to the injection of inactivated bacteria. The systemic cellular immune response differed between the two vaccine groups, even though a similar humoral immune response could be observed. Interestingly, i.p.vaccination with 10 µg of OMVs resulted in similar antibody titers as observed for fish, that were i.p. vaccinated with 108 CFU of inactivated A. salmonicida. The similar antibody titers after vaccination with OMVs might be explained by a stronger activation of CD8- T cells (likely CD4+ T cells) in the head kidney as well as in the blood in the OMV vaccinated group alone, which might result in an increased stimulation of B cells to produce antibodies.
Oral vaccination has been described as the ideal vaccination method for fish, but only few vaccines for oral application are licensed. Therefore, the established oral model for vaccination of rainbow trout with attenuated viral hemorrhagic septicemia virus (VHSV) was adapted to be used for inactivated A. salmonicida, even though initial trials indicated great similarities in the cellular response after i.p. and oral vaccination with inactivated strains of A. salmonicida, particularly in the response of the myeloid cells and lymphocytes in the target organs as well as the thrombocytes in the spleen. This could not be confirmed in a second oral vaccination trial. These results show how challenging the development of oral vaccines for fish is. The main challenge is the reproducibility of reliable results, since this is influenced by the difference in uptake of vaccine pellets or antigen degradation in the gut. Future oral vaccine trials should investigate different vaccination regimes, e.g., consecutive feeding, or a different composition of vaccine pellets, in order to further investigate the possibility of establishing an oral vaccine model for trout and so that future vaccine candidates, like OMVs, can be reliably tested in fish.
Infectious diseases remain a significant threat to the wellbeing of humans and animals
worldwide. Thus, infectious disease outbreaks should be investigated to understand the
emergence of these pathogens, leading to prevention and mitigation strategies for future
outbreaks. High-throughput sequencing (HTS) and bioinformatic analysis tools are reshaping
the surveillance of viral infectious diseases through genome-based outbreak investigations. In
particular, analyzing generic HTS datasets using a metagenomic analysis pipeline enable
simultaneous identification, characterization, and discovery of pathogens.
In this thesis, generic HTS datasets derived from the 2018-19 WNV epidemic and USUV
epizooty in Germany were evaluated using a unified pipeline for outbreak investigation and an
early warning system (EWS). This pipeline obtained 34 West Nile virus (WNV) whole-genome
sequences and detected several sequences of Usutu virus (USUV) and other potential
pathogens. A few WNV and USUV genome sequences were completed using targeted HTS
approaches. Phylogenetic and phylogeographic inferences, reconstructed using WNV wholegenome sequences, revealed that Germany experienced at least six WNV introduction events.
The majority of WNV German variants clustered into the so-called “Eastern German clade
(EGC),” consisting of variants derived from birds, mosquitoes, a horse, and human cases. The
progenitors of the EGC subclade probably circulated within Eastern Europe around 2011. These
flavivirus genome sequences also provided substantial evidence for the first reported cases of
WNV and USUV co-infection in birds. Phylogenetic inferences of USUV genome sequences
showed the further spread of the USUV lineage Africa 3 and might indicate the overwintering
of the USUV lineage Europe 2 in Germany. Among viral sequences reported in the EWS, Hedwig
virus (HEDV; a novel peribunyavirus) and Umatilla virus (UMAV; detected in Europe for the
first time) were investigated using genome characterization, molecular-based screening, and
virus cultivation since these viruses were suspected of causing co-infections in WNV-infected
birds. The EWS detected overall 8 HEDV-positive and 15 UMAV-positive birds in small sets of
samples, and UMAV could be propagated in a mosquito cell culture Future studies are necessary
to investigate the pathogenicity of these viruses and their role in the health of wild and captive
birds.
In conclusion, this study provided a proof-of-concept that the developed unified and
generic pipeline is an effective tool for outbreak investigation and pathogen discovery using the
same generic HTS datasets derived from outbreak and surveillance samples. Therefore, this
thesis recommends incorporating the unified pipeline in the key response to viral outbreaks to
enhance outbreak preparedness and response.
Permafrost-affected soil stores a significant amount of organic carbon. Identifying the biological constraints of soil organic matter transformation, e.g., the interaction of major soil microbial soil organic matter decomposers, is crucial for predicting carbon vulnerability in permafrost-affected soil. Fungi are important players in the decomposition of soil organic matter and often interact in various mutualistic relationships during this process. We investigated four different soil horizon types (including specific horizons of cryoturbated soil organic matter (cryoOM)) across different types of permafrost-affected soil in the Western Canadian Arctic, determined the composition of fungal communities by sequencing (Illumina MPS) the fungal internal transcribed spacer region, assigned fungal lifestyles, and by determining the co-occurrence of fungal network properties, identified the topological role of keystone fungal taxa. Compositional analysis revealed a significantly higher relative proportion of the litter saprotroph Lachnum and root-associated saprotroph Phialocephala in the topsoil and the ectomycorrhizal close-contact exploring Russula in cryoOM, whereas Sites 1 and 2 had a significantly higher mean proportion of plant pathogens and lichenized trophic modes. Co-occurrence network analysis revealed the lowest modularity and average path length, and highest clustering coefficient in cryoOM, which suggested a lower network resistance to environmental perturbation. Zi-Pi plot analysis suggested that some keystone taxa changed their role from generalist to specialist, depending on the specific horizon concerned, Cladophialophora in topsoil, saprotrophic Mortierella in cryoOM, and Penicillium in subsoil were classified as generalists for the respective horizons but specialists elsewhere. The litter saprotrophic taxon Cadophora finlandica played a role as a generalist in Site 1 and specialist in the rest of the sites. Overall, these results suggested that fungal communities within cryoOM were more susceptible to environmental change and some taxa may shift their role, which may lead to changes in carbon storage in permafrost-affected soil.
Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation
(2021)
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
An Innovative Protocol for Metaproteomic Analyses of Microbial Pathogens in Cystic Fibrosis Sputum
(2021)
Hallmarks of cystic fibrosis (CF) are increased viscosity of mucus and impaired mucociliary clearance within the airways due to mutations of the cystic fibrosis conductance regulator gene. This facilitates the colonization of the lung by microbial pathogens and the concomitant establishment of chronic infections leading to tissue damage, reduced lung function, and decreased life expectancy. Although the interplay between key CF pathogens plays a major role during disease progression, the pathophysiology of the microbial community in CF lungs remains poorly understood. Particular challenges in the analysis of the microbial population present in CF sputum is (I) the inhomogeneous, viscous, and slimy consistence of CF sputum, and (II) the high number of human proteins masking comparably low abundant microbial proteins. To address these challenges, we used 21 CF sputum samples to develop a reliable, reproducible and widely applicable protocol for sputum processing, microbial enrichment, cell disruption, protein extraction and subsequent metaproteomic analyses. As a proof of concept, we selected three sputum samples for detailed metaproteome analyses and complemented and validated metaproteome data by 16S sequencing, metabolomic as well as microscopic analyses. Applying our protocol, the number of bacterial proteins/protein groups increased from 199-425 to 392-868 in enriched samples compared to nonenriched controls. These early microbial metaproteome data suggest that the arginine deiminase pathway and multiple proteases and peptidases identified from various bacterial genera could so far be underappreciated in their contribution to the CF pathophysiology. By providing a standardized and effective protocol for sputum processing and microbial enrichment, our study represents an important basis for future studies investigating the physiology of microbial pathogens in CF in vivo – an important prerequisite for the development of novel antimicrobial therapies to combat chronic recurrent airway infection in CF.
Ebolaviruses are zoonotic pathogens causing severe hemorrhagic fevers in humans
and non-human primates with high case fatality rates. In recent years, the number and
scope of outbreaks has increased, highlighting the importance of better understanding
the molecular aspects of ebolaviral infection and host cell interactions in order to be able to better control this virus.
To facilitate virus genome replication, transcription and protein expression,
ebolaviruses recruit and interact with specific host factors. These interactions play a key role in viral infection and influence virus survival and disease outcome. Based on a genome-wide siRNA screen, the three host factors CAD, NXF1 and UAP56 were
recently identified to be involved in ebolavirus genome replication and/or transcription
and/or mRNA-translation. However, mechanistical details of how these host factors
affect the ebolavirus lifecycle remained elusive.
In this thesis I analyzed the functional interactions between EBOV and these newly
identified host proteins in order to better understand the virus-host interface. To this
end I used siRNA knockdown as well as overexpression of these host proteins in
combination with different reverse-genetics based lifecycle modelling assays to
investigate the influence of CAD, NXF1 and UAP56 on individual aspects of the EBOV
lifecycle. Using these systems in relation with a host factor knockdown I was able to
show that the provision of pyrimidines by CAD plays an important role for both EBOV
genome replication and transcription, whereas NXF1 is predominantly required for
mRNA transport. I furthermore used immunofluorescence analysis to examine whether
these host factors are recruited by one or more EBOV proteins to inclusion bodies,
which represent physical sites of ebolavirus genome replication. During these
experiments, I was able to show that CAD and NXF1, and possibly also UAP56, are
recruited to EBOV inclusion bodies in order to fulfill their individual function for EBOV RNA synthesis or later steps in protein expression. Additionally, I was able to show that the uptake of NXF1 into NP-induced inclusion bodies is most likely mediated via the C-terminal domain of NP, and that the FG-repeat interaction domains of NXF1 are sufficient for recruitment. Further, my data indicate that RNA interaction of both NXF1 and NP is not required for this process, but rather important for exit of NXF1 from inclusion bodies. I therefore suggest that the viral mRNA is transferred in inclusionbodies from NP to NXF1, which leads to a rapid export of the NXF1 packed viral mRNA into the cytosol for mRNA translation.
The exact mechanism of how these host factors are recruited into inclusion bodies and whether they have similar functions in the lifecycle of other negative-sense RNA viruses still needs to be investigated. Nevertheless, this study increases our understanding of virus-host interaction of ebolaviruses, and thus helps to identify targets for the development of novel therapeutics against these viruses.