Refine
Document Type
- Article (10)
- Doctoral Thesis (4)
Keywords
- plasma medicine (14) (remove)
Institute
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie/Plastische Operationen (5)
- Institut für Hygiene und Umweltmedizin (2)
- Institut für Physik (2)
- Klinik und Poliklinik für Chirurgie Abt. für Viszeral-, Thorax- und Gefäßchirurgie (2)
- Institut für Immunologie u. Transfusionsmedizin - Abteilung Immunologie (1)
- Institut für Pharmakologie (1)
- Klinik und Poliklinik für Urologie (1)
The requirements for new technologies to serve as anticancer agents go far beyond their toxicity potential. Novel applications also need to be safe on a molecular and patient level. In a broader sense, this also relates to cancer metastasis and inflammation. In a previous study, the toxicity of an atmospheric pressure argon plasma jet in four human pancreatic cancer cell lines was confirmed and plasma treatment did not promote metastasis in vitro and in ovo. Here, these results are extended by additional types of analysis and new models to validate and define on a molecular level the changes related to metastatic processes in pancreatic cancer cells following plasma treatment in vitro and in ovo. In solid tumors that were grown on the chorion-allantois membrane of fertilized chicken eggs (TUM-CAM), plasma treatment induced modest to profound apoptosis in the tissues. This, however, was not associated with a change in the expression levels of adhesion molecules, as shown using immunofluorescence of ultrathin tissue sections. Culturing of the cells detached from these solid tumors for 6d revealed a similar or smaller total growth area and expression of ZEB1, a transcription factor associated with cancer metastasis, in the plasma-treated pancreatic cancer tissues. Analysis of in vitro and in ovo supernatants of 13 different cytokines and chemokines revealed cell line-specific effects of the plasma treatment but a noticeable increase of, e.g., growth-promoting interleukin 10 was not observed. Moreover, markers of epithelial-to-mesenchymal transition (EMT), a metastasis-promoting cellular program, were investigated. Plasma-treated pancreatic cancer cells did not present an EMT-profile. Finally, a realistic 3D tumor spheroid co-culture model with pancreatic stellate cells was employed, and the invasive properties in a gel-like cellular matrix were investigated. Tumor outgrowth and spread was similar or decreased in the plasma conditions. Altogether, these results provide valuable insights into the effect of plasma treatment on metastasis-related properties of cancer cells and did not suggest EMT-promoting effects of this novel cancer therapy.
In this work the mechanisms leading to the generation of the various reactive oxygen and nitrogen species (RONS) in a cold atmospheric plasma (CAP) jet and means to control their composition were studied. The investigated CAP jet kinpen is typically operated with Ar feed gas (pure or with molecular admixtures), driven at a frequency of approximately 1 MHz and features fast ionization waves or guided streamers, traveling at velocities of several km/s. The complex reaction networks were investigated by numerical and experimental techniques. Detailed experimental, analytical and computational investigations on the mass and heat transport in the plasma plume were performed: A novel analytical approach to diffusion in jet flows, the non-dispersive path mapping approximation (NDPM) was developed. The method for the first time allows for an estimation of the ambient species density in the near-field of jets that feature a non-homogeneous flow-field. The NDPM approximation was employed for the evaluation of laser induced fluorescence measurements on OH. Through combining measurements and NDPM approximation, this approach yielded an estimation for the ambient species density at the position of the guided streamers, not only in the laminar, but also in the (standard) turbulent operating regime. Accurate measurements of the temporally averaged ambient species density and temperature in the plasma plume were obtained by quantitative Schlieren measurements. The method yields temperature values with sub-Kelvin accuracy and, through combination with computational fluid dynamics (CFD) simulations, allowed for an estimation of the calorimetric power of the jet. In order to obtain a defined environment for the jet to operate in, a shielding gas device was designed in this work, which creates a gas curtain of defined composition around the plasma plume. The plasma dynamics on the ns timescale was investigated by phase resolved optical measurements. The effect of different shielding compositions ranging from pure N2 to pure O2 on guided streamer propagation was investigated. An electrostatic focusing mechanisms was discovered, which promotes the propagation of guided streamers along the channels formed by a noble gas in the plume of plasma jets operating in electronegative gases (such as air or O2). Two zero-dimensional (volume averaged) models were developed: First, the local processes in the guided streamer were modeled using an electron impact reaction kinetic model, which is closely correlated to densities of metastable argon (Ar*) obtained by laser atom absorption measurements. This first model shows that Ar* is the species which dominantly drives the plasma chemistry in the plasma plume. This is exploited in the second plug-flow reaction kinetics model, which is employed to investigate the formation of long-living RONS and uses an Ar* source term as sole energy input. The model uses the previous experimental data on mass and heat transport and temporal dynamics as input and is in turn verified by quantitative FTIR absorption measurements on O3, NO2, N2O, HNO3 and N2O5 in the far-field of the jet, where large absorption lengths can be achieved using a multi pass cell. For the evaluation of the zero-dimensional model, the time-of-flight of RONS from their generation to reaching the multi pass cell was determined using CFD simulations. The insight gained through this combined experimental-modeling approach on the reaction networks revealed relevant control parameters and enabled adjusting the plasma chemistry towards a desired RONS output. Through choosing appropriate feed-gas admixtures and shielding gas compositions, it is possible to generate an NOx-dominated plasma chemistry, although the jet usually produces a strongly O/O3-dominated chemistry. Understanding and controlling the plasma chemistry of cold atmospheric plasma sources for medical applications is not only essential for research, but is also the key for designing future plasma sources for specific medical applications that yield an optimum efficacy and avoid potential side effects of plasma treatment.
Für den zukünftigen Einsatz von Niedertemperaturplasma in Bereichen der Medizin müssen potentielle genotoxische Risiken von Plasma ausgeschlossen werden. Bisherige Risikoanalysen sind durch die unterschiedlich existierenden Plasmaquellen erschwert, die in den energetischen Einstellungen und Konzentrationen der reaktiven Sauerstoffspezies (ROS) variieren können. Zur Untersuchung des mutagenen Risikopotentials von Argonplasma, erzeugt mit den Plasma-Jets kINPen MED und kINPen 09, wurde auf dem Micronucleustest am angebrüteten Hühnerei (HET-MN), der eine Alternativmethode zwischen in-vitro und in-vivo Tests ist, zurückgegriffen. Die Plasmabehandlung mit Argongas erfolgte in unterschiedlichen Behandlungszeiten am 8. Bebrütungstag auf der inneren Membran des Hühnerembryos. Nach der Blutentnahme am 11. Tag, wurde das Blut im Blutausstrich auf das Vorhandensein von Micronuclei (MN) untersucht. Die gezählten MN der definitiven Erythrozyten (E II) dienten zur Bestimmung der Genotoxizität (MNE II). Die Ergebnisse der Plasmabehandlung mit dem kINPen MED ergaben in der Höchstdosis von einer Behandlungszeit von 10 min keine erhöhten MNE II Werte, obwohl die akute Toxizität bei > 40 % lag. Mit dem kINPen 09 konnten bei einer maximalen Behandlungsdauer von 2,5 min ebenfalls keine erhöhten MNE II Häufigkeiten ermittelt werden. Möglicherweise haben die im Hühnerembryo vorkommenden Abwehr- und Reparatursysteme gegenüber ROS das negative Ergebnis beeinflusst.
Because of the vital role of the liquid as interface in plasma medicine, this work is focused on the elucidation of the interaction of plasmas with biologically relevant liquids. The results of this thesis are an important step in the direction of the applications to real biological liquids such as blood and wound secretion ex vivo as well as in vivo. In this thesis the following questions are investigated and answered with the special focus on the free radicals as highly reactive and, therefore, hard to detect relevant group of chemical species: What is the impact of the atmospheric-pressure argon plasma jet on biologically relevant solutions? Which species are generated due to the plasma treatment of liquids? What is an appropriate detection procedure for the qualification and quantification of the short-lived species? Does the surrounding conditions influence the formation of liquid-phase reactive species and can this influence be used to tailor a desired liquid composition? What is the influence of the plasma surroundings? What is the influence of feed gas manipulation regarding the reactive species generation? Can these impacts be used for a selected reactive species composition generation? Does the treated liquid medium affect the plasma-generated reactive species output and in what way? Which are the underlying mechanisms and origins of the plasma-caused chemical changes in the solutions? Do reactive species exist, which origin is located in the gaseous phase? What is the impact of the plasma jet radiation?