Refine
Year of publication
Document Type
- Doctoral Thesis (40)
- Article (28)
Has Fulltext
- yes (68)
Is part of the Bibliography
- no (68)
Keywords
- - (25)
- Streptococcus pneumoniae (7)
- Saccharomyces cerevisiae (6)
- Arxula adeninivorans (4)
- Biochemische Analyse (3)
- Enzym (3)
- Hefe (3)
- Pneumokokken (3)
- Virulenz (3)
- Yeast (3)
- metabolism (3)
- proteomics (3)
- <i>Staphylococcus aureus</i> (2)
- Bacillus subtilis (2)
- Genetik (2)
- Hantavirus (2)
- Harnsäure (2)
- Hyperuricemia (2)
- Lebensmittel (2)
- Lipoproteine (2)
- Metabolismus (2)
- Pestivirus (2)
- Phospholipid biosynthesis (2)
- Phospholipidbiosynthese (2)
- Proteomanalyse (2)
- PspC (2)
- Purinderivate (2)
- RNS-Viren (2)
- Sin3 (2)
- Staphylococcus aureus (2)
- Stoffwechsel (2)
- TFIID (2)
- proteome (2)
- recombinant protein (2)
- stress response (2)
- 1-(S)-Phenylethanol (1)
- 1-Phenylethanol (1)
- 1-phenylethanol (1)
- 2-thiolation (1)
- <i>Streptococcus pyogenes</i> (1)
- <i>lpxM</i> (<i>msbB</i>) (1)
- Abwasser (1)
- Adenin-Deaminase (1)
- AdhA (1)
- AdhR (1)
- Adhäsine (1)
- Adult allogeneic stem cell transplantation (1)
- Aktivatorprotein (1)
- Aktivität (1)
- Alcohol dehydrogenases (1)
- Alkoholdehydrogenasen (1)
- Altern (1)
- Aminosäurenstoffwechsel (1)
- Antibiotics (1)
- Arginin (1)
- Arxula ade (1)
- BK polyomavirus (1)
- BK-associated hemorrhagic cystitis (1)
- Biochemie (1)
- Biotechnology (1)
- C. difficile (1)
- C. elegans (1)
- CRISPR-Cas (1)
- Caenorhabditis elegans (1)
- Calu-3 (1)
- Candida albicans (1)
- Carboxypeptidase (1)
- ChIP (1)
- Chiral alcohols (1)
- Cholin (1)
- Choline (1)
- Clp proteases (1)
- Clp proteolysis (1)
- Coaktivator (1)
- Coenzym A (1)
- Corepressor (1)
- Deletionsmutante (1)
- Derepression (1)
- Deutschland (1)
- Diagnostic (1)
- Diagnostik (1)
- Diagonalassay (1)
- Differentielle Genexpression (1)
- Domäne <Biochemie> (1)
- E(RNS) (1)
- E. coli (1)
- E0 (1)
- ELISA (1)
- ERNS (1)
- Enzymkinetik (1)
- Epidemiologie (1)
- Etrx (1)
- Europa (1)
- Europe (1)
- Fermentation (1)
- Flaviviren (1)
- Flaviviridae (1)
- Food (1)
- GAPDH, ALDH (1)
- Gene regulation (1)
- Genregulation (1)
- Glomus intraradices (1)
- Glomus irregulare (1)
- Glutaminstoffwechsel (1)
- Glutamintransporter GlnQPH (1)
- Glykolyse (1)
- Graft-versus-host disease (1)
- Guanin-Deaminase (1)
- Hansenula polymorpha (1)
- Hanta-Virus (1)
- Hausschwein (1)
- Heart Failure (1)
- Hefeartige Pilze (1)
- Hefezellen-Assay (1)
- Hepatitis E Virus (1)
- Herzinsuffizienz (1)
- Hormone (1)
- Host range (1)
- Impfstoff (1)
- In-vitro-Kultur (1)
- Infektion (1)
- Ino2 (1)
- Inositol (1)
- Intermediärstoffwechsel (1)
- Isotopolog Profiling (1)
- Kalziumsignale (1)
- Komplement (1)
- Komplementierung (1)
- Lactobacillus brevis (1)
- Langzeit-NMR (1)
- Leader Protease (1)
- LepB (1)
- Lymphozyt (1)
- MRSA (1)
- MSCRAMMS (1)
- MarR-type regulator (1)
- Mass spectrometry (1)
- Maul- und Klauenseuche Virus (1)
- Mausmodell (1)
- McsB arginine kinase (1)
- Mediator (1)
- Mediator complex (1)
- Membrane proteins (1)
- Mensch (1)
- Metabolische Deregulation (1)
- MgsR activity (1)
- MgsR degradation (1)
- MidiPLexc (1)
- Mikrobiologie (1)
- Mitteleuropa (1)
- MsrAB2 (1)
- Nucleocapsidprotein (1)
- Nukleokapsidprotein (1)
- Opi1 (1)
- Oxidativer Stress (1)
- Ozonung (1)
- PAβN (1)
- PCV7 (1)
- PTW (1)
- Pantothenat Kinase (1)
- Pathogenität (1)
- PavB (1)
- Phospholipid-Biosynthese (1)
- Pili (1)
- Pilus Islet-1 (1)
- Pilus Islet-2 (1)
- Pneumokokkenoberflächenprotein C (1)
- Pneumonie (1)
- Polyhydroxybuttersäuren (1)
- Polyhydroxyfettsäuren (1)
- Prionprotein (1)
- Promotor <Genetik> (1)
- Proteinreparatur (1)
- Proteomics (1)
- PspC-hpIgR-vermittelten Endozytose (1)
- PsrP (1)
- Purinabbau (1)
- Ratte (1)
- Recombinant guanine deaminase (1)
- Replikon (1)
- Repression <Genetik> (1)
- Repressoren (1)
- Rhodococcus ruber (1)
- SARS-CoV-2 (1)
- SWI/SNF (1)
- Sec-translocon (1)
- Serologie (1)
- Seroprevalence (1)
- Seroprävalenz (1)
- Shotgun proteomics (1)
- Spillover Infections (1)
- Spillover-Infektionen (1)
- Starch (1)
- Stärke (1)
- Synthese (1)
- TCC (1)
- TFIIA (1)
- Targeted proteomics (1)
- Thioredoxin (1)
- Thrombospondin (1)
- Transcriptomics (1)
- Transkriptionsaktivierung (1)
- Transkriptionsregulation (1)
- Transkriptomanalyse (1)
- Transplantation-associated infections (1)
- Treatment of food (1)
- Upland soil cluster (1)
- Urate oxidase (1)
- Uratoxidase (1)
- Uric acid (1)
- VA-Mykorrhiza (1)
- Vero E6 (1)
- Virologie (1)
- Virusdiarrhoe-Mucosal-Disease-Virus (1)
- Vitronektin (1)
- Volllängenklon (1)
- Wasserstoffperoxid (1)
- Wirtsspektrum (1)
- Xanthin Oxidoreduktase (1)
- Xplor2® Transformations-/Expressionssystem (1)
- Xplor®2 Transformations-/Expressionssystem (1)
- Xplor®2 transformation/expression system (1)
- YidC (1)
- YodB (1)
- YraA (1)
- YvaP (1)
- activator (1)
- acute pneumonia model (1)
- adenine deaminase (1)
- aging (1)
- airway epithelial cells (1)
- akutes Pneumonie-Modell (1)
- aldehydes (1)
- allicin (1)
- alpha-toxin (1)
- antibiotic resistance (1)
- antimicrobial (1)
- antimicrobial peptides (1)
- antimicrobial plant substances (1)
- arbuscular mycorrhizal fungi (1)
- archaea (1)
- arginine (1)
- arginine phosphorylation (1)
- aromatic acids (1)
- bacterial lipocalin (1)
- bakterielle Lipocalin (1)
- bile acids (1)
- biodegradation (1)
- cDNS (1)
- cell free conversion (1)
- cell physiology (1)
- cell wall metabolism (1)
- chaperones (1)
- circadian rhythm (1)
- cis-muconic acid (1)
- cold plasma (1)
- complement (1)
- diagonal assay (1)
- dioxygenase (1)
- efflux pump inhibitor (1)
- enantiomerenrein (1)
- enantiomerically pure (1)
- enzyme (1)
- ethidium bromide uptake (1)
- fermentation (1)
- flagella (1)
- food production industry (1)
- full lenght clone (1)
- fumarate reductase (1)
- genome (1)
- genome comparison (1)
- genome size (1)
- glucokinase (1)
- glutaredoxin (1)
- glutathione (1)
- glycolysis (1)
- goat polymorphisms (1)
- gp44/48 (1)
- greenhouse gas (1)
- group A streptococcus (1)
- haloarchaea (1)
- herbivory (1)
- hormonelle Aktivität (1)
- host-pathogen interactions (1)
- hybridization (1)
- hydrogen peroxide (1)
- immune responses (1)
- immuno-magnetic purification (1)
- immunomodulatory proteases (1)
- integrin (1)
- iron (1)
- iron-sulfur cluster (1)
- land‐use intensity (1)
- lichen-associated bacteria (1)
- lichens (1)
- lineage‐specific region (1)
- manganese (1)
- mass spectrometry (1)
- metabolism under glucose starvation (1)
- methane (1)
- methanotrophs (1)
- microbiome (1)
- motility (1)
- mouse model (1)
- multi drug resistance (1)
- necrotizing soft tissue infections (1)
- nisin (1)
- non-canonical UBL (1)
- nutrients (1)
- omics (1)
- oxidative stress (1)
- pathogen vacuole (1)
- pathogenesis (1)
- pathogenicity (1)
- penta-acylated lipid A (1)
- periplasm (1)
- permeabilizer (1)
- phylogeny (1)
- platelets (1)
- pneumococcal surface protein C (1)
- pneumococcus (1)
- poly(hydroxyalkanoates) (1)
- pore-forming toxins (1)
- potential methane oxidation rates (1)
- protein production (1)
- protein repair (1)
- protocatechuic acid (1)
- purine degradation (1)
- quinone (1)
- random mutagenesis (1)
- re-establishment (1)
- receptor (1)
- recombinant Antigen (1)
- rekombinantes Antigen (1)
- repressor proteins (1)
- revegetation (1)
- rhodanese (1)
- skin infections (1)
- small RNA (1)
- soil (1)
- sphingomyelin (1)
- sulfur-carrier protein (1)
- superantigens (1)
- sustainability (1)
- swarming (1)
- symbiosis (1)
- tRNA modification (1)
- thiocarboxylate (1)
- thiol stress (1)
- transcriptional regulation (1)
- ubiquitin-like protein (1)
- viability (1)
- virulence factors (1)
- virulenz (1)
- vitronectin (1)
- xanthine oxidoreductase (1)
- zinc transport (1)
Institute
- Institut für Mikrobiologie - Abteilung für Genetik & Biochemie (68) (remove)
Publisher
- Frontiers Media S.A. (11)
- MDPI (8)
- S. Karger AG (3)
- ASM Journals (1)
- Frontiers (1)
- John Wiley & Sons, Inc. (1)
- Public Library of Science (PLoS) (1)
Gallic acid, protocatechuic acid, catechol, and pyrogallol are only a few examples of industrially relevant aromatics. Today much attention is paid to the development of new microbial factories for the environmentally friendly biosynthesis of industrially relevant chemicals with renewable resources or organic pollutants as the starting material. The non–conventional yeast, Blastobotrys raffinosifermentans, possesses attractive properties for industrial bio-production processes such as thermo- and osmotolerance. An additional advantage is its broad substrate spectrum, with tannins at the forefront. The present study is dedicated to the characterization of catechol-1,2-dioxygenase (Acdo1p) and the analysis of its function in B. raffinosifermentans tannic acid catabolism. Acdo1p is a dimeric protein with higher affinity for catechol (KM = 0.004 ± 0.001 mM, kcat = 15.6 ± 0.4 s–1) than to pyrogallol (KM = 0.1 ± 0.02 mM, kcat = 10.6 ± 0.4 s–1). It is an intradiol dioxygenase and its reaction product with catechol as the substrate is cis,cis-muconic acid. B. raffinosifermentans G1212/YIC102-AYNI1-ACDO1-6H, which expresses the ACDO1 gene under the control of the strong nitrate-inducible AYNI1 promoter, achieved a maximum catechol-1,2-dioxygenase activity of 280.6 U/L and 26.9 U/g of dry cell weight in yeast grown in minimal medium with nitrate as the nitrogen source and 1.5% glucose as the carbon source. In the same medium with glucose as the carbon source, catechol-1,2-dioxygenase activity was not detected for the control strain G1212/YIC102 with ACDO1 expression under the regulation of its respective endogenous promoter. Gene expression analysis showed that ACDO1 is induced by gallic acid and protocatechuic acid. In contrast to the wild-type strain, the B. raffinosifermentans strain with a deletion of the ACDO1 gene was unable to grow on medium supplemented with gallic acid or protocatechuic acid as the sole carbon source. In summary, we propose that due to its substrate specificity, its thermal stability, and its ability to undergo long-term storage without significant loss of activity, B. raffinosifermentans catechol-1,2-dioxygenase (Acdo1p) is a promising enzyme candidate for industrial applications.
The full genome of a Methanomassiliicoccales strain, U3.2.1, was obtained from enrichment cultures of percolation fen peat soil under methanogenic conditions, with methanol and hydrogen as the electron acceptor and donor, respectively. Metagenomic assembly of combined long-read and short-read sequences resulted in a 1.51-Mbp circular genome.
Allicin (diallyl thiosulfinate) is the major thiol-reactive organosulfur compound produced by garlic plants (Allium sativum) upon tissue damage. Allicin exerts its strong antimicrobial activity against bacteria and fungi via S-thioallylation of protein thiols and low molecular weight thiols. Here, we investigated the effect of allicin on SARS-CoV-2 infected Vero E6 and Calu-3 cells. Toxicity tests revealed that Calu-3 cells showed greater allicin tolerance, probably due to >4-fold higher GSH levels compared to the very sensitive Vero E6 cells. Exposure of infected Vero E6 and Calu-3 cells to biocompatible allicin doses led to a ∼60–70% decrease of viral RNA and infectious viral particles. Label-free quantitative proteomics was used to investigate the changes in the Calu-3 proteome after SARS-CoV-2 infection and the effect of allicin on the host-virus proteome. SARS-CoV-2 infection of Calu-3 cells caused a strong induction of the antiviral interferon-stimulated gene (ISG) signature, including several antiviral effectors, such as cGAS, Mx1, IFIT, IFIH, IFI16, IFI44, OAS, and ISG15, pathways of vesicular transport, tight junctions (KIF5A/B/C, OSBPL2, CLTCL1, and ARHGAP17) and ubiquitin modification (UBE2L3/5), as well as reprogramming of host metabolism, transcription and translation. Allicin treatment of infected Calu-3 cells reduced the expression of IFN signaling pathways and ISG effectors and reverted several host pathways to levels of uninfected cells. Allicin further reduced the abundance of the structural viral proteins N, M, S and ORF3 in the host-virus proteome. In conclusion, our data demonstrate the antiviral and immunomodulatory activity of biocompatible doses of allicin in SARS-CoV-2-infected cell cultures. Future drug research should be directed to exploit the thiol-reactivity of allicin derivatives with increased stability and lower human cell toxicity as antiviral lead compounds.
Re-Establishment Techniques and Transplantations of Charophytes to Support Threatened Species
(2021)
Re-establishment of submerged macrophytes and especially charophyte vegetation is a common aim in lake management. If revegetation does not happen spontaneously, transplantations may be a suitable option. Only rarely have transplantations been used as a tool to support threatened submerged macrophytes and, to a much lesser extent, charophytes. Such actions have to consider species-specific life strategies. K-strategists mainly inhabit permanent habitats, are perennial, have low fertility and poor dispersal ability, but are strong competitors and often form dense vegetation. R-strategists are annual species, inhabit shallow water and/or temporary habitats, and are richly fertile. They disperse easily but are weak competitors. While K-strategists easily can be planted as green biomass taken from another site, rare R-strategists often must be reproduced in cultures before they can be planted on-site. In Sweden, several charophyte species are extremely rare and fail to (re)establish, though apparently suitable habitats are available. Limited dispersal and/or lack of diaspore reservoirs are probable explanations. Transplantations are planned to secure the occurrences of these species in the country. This contribution reviews the knowledge on life forms, dispersal, establishment, and transplantations of submerged macrophytes with focus on charophytes and gives recommendations for the Swedish project.
Abstract
Amphidiploid fungal Verticillium longisporum strains Vl43 and Vl32 colonize the plant host Brassica napus but differ in their ability to cause disease symptoms. These strains represent two V. longisporum lineages derived from different hybridization events of haploid parental Verticillium strains. Vl32 and Vl43 carry same‐sex mating‐type genes derived from both parental lineages. Vl32 and Vl43 similarly colonize and penetrate plant roots, but asymptomatic Vl32 proliferation in planta is lower than virulent Vl43. The highly conserved Vl43 and Vl32 genomes include less than 1% unique genes, and the karyotypes of 15 or 16 chromosomes display changed genetic synteny due to substantial genomic reshuffling. A 20 kb Vl43 lineage‐specific (LS) region apparently originating from the Verticillium dahliae‐related ancestor is specific for symptomatic Vl43 and encodes seven genes, including two putative transcription factors. Either partial or complete deletion of this LS region in Vl43 did not reduce virulence but led to induction of even more severe disease symptoms in rapeseed. This suggests that the LS insertion in the genome of symptomatic V. longisporum Vl43 mediates virulence‐reducing functions, limits damage on the host plant, and therefore tames Vl43 from being even more virulent.
The function and mode of action of small regulatory RNAs is currently still understudied in archaea. In the halophilic archaeon Haloferax volcanii, a plethora of sRNAs have been identified; however, in-depth functional analysis is missing for most of them. We selected a small RNA (s479) from Haloferax volcanii for detailed characterization. The sRNA gene is encoded between a CRISPR RNA locus and the Cas protein gene cluster, and the s479 deletion strain is viable and was characterized in detail. Transcriptome studies of wild-type Haloferax cells and the deletion mutant revealed upregulation of six genes in the deletion strain, showing that this sRNA has a clearly defined function. Three of the six upregulated genes encode potential zinc transporter proteins (ZnuA1, ZnuB1, and ZnuC1) suggesting the involvement of s479 in the regulation of zinc transport. Upregulation of these genes in the deletion strain was confirmed by northern blot and proteome analyses. Furthermore, electrophoretic mobility shift assays demonstrate a direct interaction of s479 with the target znuC1 mRNA. Proteome comparison of wild-type and deletion strains further expanded the regulon of s479 deeply rooting this sRNA within the metabolism of H. volcanii especially the regulation of transporter abundance. Interestingly, s479 is not only encoded next to CRISPR–cas genes, but the mature s479 contains a crRNA-like 5′ handle, and experiments with Cas protein deletion strains indicate maturation by Cas6 and interaction with Cas proteins. Together, this might suggest that the CRISPR–Cas system is involved in s479 function.
Background: Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the control of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of PTW on the vitality and biofilm formation of Listeria monocytogenes, a common foodborne pathogen.
Results: Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100, 300, and 900 s (pre-treatment time), after which the bacterial biofilm was exposed to the PTW for 1, 3, and 5 min (post-treatment time) for each pre-treatment time, separately. Colony-forming units (CFU) were significantly reduced by 4.7 log10 ± 0.29 log10, as well as the metabolic activity decreased by 47.9 ± 9.47% and the cell vitality by 69.5 ± 2.1%, compared to the control biofilms. LIVE/DEAD staining and fluorescence microscopy showed a positive correlation between treatment and incubation times, as well as reduction in vitality. Atomic force microscopy (AFM) indicated changes in the structure quality of the bacterial biofilm.
Conclusion: These results indicate a promising antimicrobial impact of plasma-treated water on Listeria monocytogenes, which may lead to more targeted applications of plasma decontamination in the food industry in the future.
Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name-giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses confirm the partition of functions in lichen partnerships. The ample functional diversity of the mycobiont contrasts the predominant function of the photobiont in production (and secretion) of energy-rich carbohydrates, and the cyanobiont’s contribution by nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify the bacterial community present on L. pulmonaria as a surprisingly abundant and structurally integrated element of the lichen symbiosis. Comparative metaproteome analyses of lichens from different sampling sites suggest the presence of a relatively stable core microbiome and a sampling site-specific portion of the microbiome. Moreover, these studies indicate how the microbiota may contribute to the symbiotic system, to improve its health, growth and fitness.