Refine
Keywords
- Streptococcus pneumoniae (4) (remove)
Institute
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (4) (remove)
Streptococcus pneumoniae is a commensal of the human upper respiratory tract and
the etiological agent of several life-threatening diseases. This pathogen is the model bacterium
for natural competence. Furthermore, the pneumococci played an important role in the
identification of DNA as the main molecule involved in bacterial transformation. As a result,
studies on the pneumococcal genome provided an initial overview of the genetic potential of
this pathogen. The pneumococcus is a highly versatile bacterium possessing a high rate of
uptake and recombination of exogenous DNA from neighboring bacteria. As such, a significant
diversity in the genome content among the different pneumococcal strains has been reported.
The capsular polysaccharide, an important pneumococcal virulence factor, is the best example
on the pneumococcal diversity. There are over 98 serotypes characterized to date presenting
differences in their capsule (cps) locus. Additional to the cps locus, the pneumococcus also
presents 13 genomic islets annotated as regions of diversity (RD) encoded in the auxiliary
genome. Remarkably, 8 of the pneumococcal RD studied so far have been associated with
virulence. Furthermore, the ongoing sequencing of over 4000 pneumococcal genomes have
shed light on the conservation level of well-known pneumococcal virulence factors.
Interestingly, important pneumococcal virulence determinants show variations in the gene and
protein sequence among the different strains. Prototypes are for example the pneumococcal
surface protein C (PspC) and pneumococcal adherence and virulence factor B (PavB).
Conversely, gene regulation in S. pneumoniae is carried out by highly conserved and genome-
wide distributed transcriptional factors. Overall, the pneumococci interplays with its
environment with 4 major regulatory systems: quorum sensing (QS), stand-alone
transcriptional regulators, small RNAs (sRNAs) and two-component regulatory systems (TCS).
Some of these systems are multifaceted and share more than one feature. Furthermore, there
is crosstalk among the different systems, requiring the activation of a signaling cascade to
function properly.
A comprehensive analysis of the distribution and conservation of pneumococcal
virulence factors and TCS was obtained in this study. The results are summarized as a
simplified variome in which 25 pneumococcal strains with a complete sequenced genome were
analyzed. Interestingly, the genes encoding the glycolytic protein enolase and the toxin
pneumolysin were the most conserved virulence determinants. Additionally, the high level of
conservation was confirmed for the pneumococcal TCS regulators, especially for WalKR,
CiaRH and TCS08.
The main focus of this study was on the regulatory functions of pneumococcal TCS.
With this in mind, an extensive and detailed systematic review of the 13 pneumococcal TCS
and its orphan RR was undertaken. For this purpose, every pneumococcal TCS was analyzed
for its reported functional and structural information along with its contribution to the main
pathophysiology of the pneumococci. In brief, S. pneumoniae can utilize its TCS for the
regulation of important cellular processes and the sensing of detectable signals in the
environment. Additionally, the role of TCS in pneumococcal processes and signal sensing can
be divided further. In the first place, pneumococcal TCS regulate competence and fratricide,
the production of bacteriocins and host-pathogen interaction processes, while the detectable
signals include cell-wall perturbations, environmental stress, and nutrients. As a conclusion
from this section, it is possible to analyze the pneumococcal TCS in a comprehensive manner.
There is a complex network among the different pneumococcal regulators and the TCS play
an important role. Moreover, these systems are highly conserved and essential for the proper
functioning of the pneumococcus as a pathogen.
Following up on pneumococcal TCS, this study focused especially on the TCS08.
Interestingly, the pneumococcal TCS08 has been previously associated with the regulation of the cellobiose metabolism. Furthermore, this system has also been reported to regulate the
expression of genes encoded in the RD4 (Pilus-1). Remarkably, the pneumococcal TCS08
was shown to be highly homologous to the SaeRS system of Staphylococcus aureus. Initially,
mutant strains lacking a single (Δrr08 or Δhk08) or both components (Δtcs08) of the TCS08
were generated in pneumococcal D39 and TIGR4 strains. Transcriptomics and functional
assays showed a downregulation of the PI-1 in the absence of the complete tcs08, while PavB
presented an upregulation in the Δhk08 knockout. Moreover, an important number of genes
coding for intermediary metabolism proteins were also found to be differentially expressed by
microarray analysis. As such, the TIGR4Δhk08 strain presented a downregulation for the
cellobiose operon (cel). In contrast, an upregulation was reported for the fatty acid biosynthesis
(fab) and arginine catabolism (arc) operons. Conversely, a decrease in gene expression was
seen in the TIGR4Δrr08 strain for the arc operon. Finally, in vivo murine pneumonia and sepsis
models highlighted an involvement of TCS08 in pneumococcal virulence. Remarkably, the
different TCS08 mutants presented a strain dependent effect on their virulence severity. The
TIGR4Δrr08, and all TCS08 mutants in D39 showed a decrease in virulence in the pneumonia
model, with no changes in sepsis. Conversely, the absence of HK08 in TIGR4 presented a
highly virulent phenotype in both pneumonia and sepsis models. To sum up, the pneumococcal
TCS08 influenced the expression of genes involved in fitness and colonization. Specifically,
those coding for the adhesins PavB and PI-1 and fitness proteins from the cel, arc and fab
operons. Remarkably, the highest changes in expression were observed in the strains lacking
the HK08. Additionally, TCS08 has a strain dependent impact on pneumococcal virulence as
showed by murine pneumonia and sepsis models when comparing the effects in D39 and
TIGR4.
Deciphering the influence of Streptococcus pneumoniae global regulators on fitness and virulence
(2019)
Streptococcus pneumoniae (S. pneumoniae; the pneumococcus) is a Gram-positive, aerotolerant, and opportunistic bacteria, which colonizes the upper respiratory tract of human. S. pneumoniae can further migrate to other sterile parts of the body, and causes local as well as fatal infections like, pneumonia, septicaemia and meningitis. Due to incomplete amino acid pathways, pneumococci are auxotrophic for eight different amino acids including glutamine and arginine. The pneumococcus has adapted to the various host environmental conditions and a number of systems are dedicated for the transport and utilization of nutrients such as monosaccharides, amino acids and oligopeptides.
In this study the amino acid metabolism was characterised by 15N-isotopologue profiling in two different pneumococcal strains, D39 and TIGR4. Efficient uptake of a labelled amino acids mixture of 15N-labelled amino acids showed that S. pneumoniae has a preference for the amino acids transport instead of a de novo biosynthesis. It is known that glutamine (Gln) serves as main nitrogen source for S. pneumoniae. The 15N-labelled Gln used in this study demonstrated an efficient 15N-enrichment of Glu, Ala, Pro and Thr. Minor enrichment was seen for the amino acids Asp, Ile, Leu, Phe, Tyr, and Val. Remarkably, labelled Gly and Ser could be determined in strain TIGR4, whereas for strain D39 these two labelled amino acids were not detected. This confirms earlier studies with 13C-labelled glucose, which showed the biosynthesis of Ser out of Gly. Strain TIGR4 was able to grow in chemically-defined medium depleted of Gly confirming that Gly can be synthesized out of serine by the action of the enzyme serine hydroxymethyltransferase (SHMT).
The transcriptional regulator GlnR controls the Gln and Glu metabolism in S. pneumoniae. Hence, the impact of the repressor GlnR on amino acids metabolism was also studied. An increased 15N-enrichment was determined for Ala and Glu in both used pneumococcal strains, while an increased level of Pro was only measured in the isogenic glnR-mutant of non-encapsulated D39.
Arginine can also serve as nitrogen source in strain TIGR4. The arginine deiminase system metabolizes Arg into ornithine, carbamoyl phosphate and CO2 by the generation of 1 ATP and 2 mol NH3. Because of the truncation of the arcA gene strain D39 lacks arginine deiminase activity and has thus no functional ADS system. When 15N-Arg was added for growth, only in strain TIGR4, thirteen (13) labelled amino acids were detected with the highest enrichment for Ala, Glu and Thr. Genes coding for the enzymes of the arginine metabolism and for arginine uptake are regulated by the activator ArgR2 in strain TIGR4. Inactivation of ArgR2 was not accompanied by an enrichment of labelled amino acids, when the argR2-mutant was grown with 15N-labelled Arg indicative of the important role of ArgR2.
The bicistronic operon arcDT encoding the arginine/ornithine transporter ArcD and a putative peptidase ArcT belong to the peptidase family M20. The in silico comparison of structures revealed a significant homology of ArcT to PepV of L. delbrueckii and to Sapep of S. aureus known as carboxypeptidase. ArcT was heterologously expressed in E. coli and purified under reducing conditions. An enzymatic reaction was established and several dipeptides like Ala-Arg, Arg-Ala, and Ala-Asp were used as substrates. In addition, the dependency on divalent cations was analysed. Cleavage of the dipeptide Ala-Arg was detected in the presence of Mn2+ as cofactor under reducing conditions. Reduced peptidase activity was observed when Zn2+ was added. No cleavage of the tripeptide Ala-Ala-Arg could be shown indicating that ArcT acts as dipeptidase with the preference to the Arg residue at the C-terminal end.
Bacterial meningitis caused by S. pneumoniae was studied in an in vivo proteomic analysis. In a mouse meningitis model S. pneumoniae was isolated from the cerebrospinal fluid (CSF) by a filter extraction step. The MS analysis identified AliB and ComDE only from CSF isolated pneumococci indicating that these proteins are expressed under infection conditions. Mice infected with D39 wild-type and isogenic aliB, comDE and aliB-comDE double knockout mutants showed significantly less number of pleocytosis in the CSF and lower bacterial load in the blood compared to the wild-type. The results indicate that AliB and ComDE play an important role during meningitis.
Phenotypic characterization was carried out to identify differences between the wild-type and the aliB-, comDE- and aliB-comDE double mutants. Oxidative stress conditions were induced by the application of hydrogen peroxide or paraquat during growth in a chemically-defined medium similar to the CSF. No alteration in growth and survival of these mutants compared to the wild-type was observed suggesting that oxygen radicals play not an important role during the progression of meningitis. In addition, no differences of AliB expression was detected in the ComDE deficient D39. No impact of aliB and comDE-mutation on the expression of different virulence factors like pneumolysin or proteins involved in capsular biosynthesis was detected.
In vitro proteome analysis was performed to compare the wild-type to the AliB, and ComDE deficient D39 in the early and mid logarithmic growth phase. More than 70 % of theoretically expressed proteins were identified. In the aliB-mutant 33 proteins were differentally expressed in the early growth phase and 50 proteins differed during mid log growth. For the comDE mutant 24 and 11 proteins differed in expression in these two growth phases. Interestingly, high level of AliA expression was identified in all samples. The aliB-mutant had a decreased abundance of the proteins resembling an oligopeptide ABC transporter (AmiA, AmiC, AmiD, AmiE). In addition, another ABC transporter for iron transport encoded by spd_1607 to spd_ 1610 was higher expressed in the aliB-mutant. In the ComDE deficient mutant lower abundance of the Ami transporter sytem was identified. An increased abundance of proteins involved in the pyrimidine metabolism (PyrF, PyrE, PyrDb, PyrB and PyrR) was recognized only in the early growth phase of the comDE-mutant. These analyses demonstrate the marginal changes in protein synthesis during growth of S. pneumoniae. These studies demonstrated the adaptation of the proteome of S. pneumoniae to different growth conditions and the impact of regulatory proteins on the availability of carbon and nitrogen sources.
Summary
Streptococcus pneumoniae (the pneumococcus), a bacterium belonging to the normal flora in the human respiratory tract, continues to be an important pathogen due to its contribution to morbidity and mortality among children, the elderly, and immunocompromised persons. Global estimates of pneumococcal deaths among children declined by 51% between 2000 and 2015. This achievement was mainly due to the introduction of pneumococcal conjugate vaccines (PCVs) in countries with the highest pneumococcal burden. Since May 2012, children in Ghana have been receiving PCV vaccination as part of routine immunization. The continuous monitoring of the pneumococcus after PCV introduction is essential to understand the changing epidemiology of the pathogen in the population.
This study therefore, aims to determine the (1) prevalence, serotypes, and sequence types of pneumococcal isolates, (2) antibiotic susceptibility patterns and the genetic basis for the antibiotic resistance among these pneumococcal isolates, and (3) prevalence of selected virulence genes that have been identified as potential vaccine candidates. Nasopharyngeal swabs were obtained from vaccinated children under five years of age in Cape Coast, Ghana. Six years after PCV implementation, we provide data on the epidemiology of pneumococcal strains circulating among children in Cape Coast Ghana. Standard microbiological and molecular techniques were used to identify and characterize the pneumococcal strains.
Overall, pneumococcal carriage prevalence was 29.4% (151/513). All participating children were fully vaccinated. Of the 26 different serotypes identified, the top five PCV13 serotypes (VT) were 6B, 23F, 19F, 3, 6A and non-PCV13 vaccine serotypes (NVT) were 23B, 13, 11A, 15B, and 34. PCV13 coverage was 38.4%, however, more than half of the isolates were NVT with a coverage rate of 61.6%. The isolates were highly susceptible to levofloxacin, ceftriaxone, vancomycin, and erythromycin. However, marked resistance to cotrimoxazole and tetracycline was observed. The reduction in penicillin resistance (35.8%) as compared to pre-vaccination data (45% - 63%) suggests an attributable effect from PCV13 vaccination. However, penicillin resistance was also detected in some NVT serotypes. Overall, 28.5% of the isolates resistant to three or more different classes of antibiotics were classified as multidrug-resistant (MDR). To analyze the genetic basis for resistance to penicillin, erythromycin and tetracycline, pbp2b, ermB, mefA, and tetM genes were amplified.
Thirty-eight (70%) out of the 54 penicillin-resistant isolates contained the pbp2b resistance gene. Out of the 11 erythromycin-resistant isolates, 7 (63.6) and 4 (36.4%) were positive for the ermB and mefA genes, respectively. The tetM gene was detected in 85 (98.8%) of the 86 tetracycline resistance isolates.
To determine the extent to which potential protein-based vaccines could be protective in Ghanaian children, we sought to determine the prevalence of selected virulence genes among the isolates. The lytA, pavB, and cpsA genes were present in all the carrier isolates. However, psrP, pcpA, pilus islet (PI) PI-1, and PI-2 were present in 62.7%, 87.5%, 11.8%, and 6.5% of the strains, respectively. The psrP and pcpA virulence genes were evenly distributed among all the serotypes. However, the pilus islets were detected in only seven serotypes namely 19F, 6B, 9V, 6A, 13, 11A, and 23B. Five serotype 19F isolates possessed both PI-1 and PI-2. Furthermore, the pilus islets were associated with multidrug resistance.
The predominant NVT serotype 23B and isolates resistant to ≥ 4 antibiotics were analysed by multilocus sequence typing (MLST). Nine known sequence types (STs) and 10 novel STs were identified. Seven out of the 10 new STs belonged to serotype 23B, while the remaining 3 were VTs 6B and 19F. A capsular switch was identified among isolates of ST802, which comprised of both serotype 23F and 19F. The majority of serotype 23B strains belonged to ST172. The ST172 is associated with serotype 23F and a single locus variant (SLV) of internationally disseminated clone ST338 (Colombia23F-26). Consequently, ST172 was characterised with marked antibiotic resistance and with traits of capsular switching. One serotype 6B strain was identified as a SLV of ST273 (Greece6B-22) while two serotype 9V strains belonged to the internationally disseminated clone ST156 (Spain9V-3).
In conclusion, this study showed a marginal decline in overall pneumococcal carriage prevalence, persistence of VTs despite the increase in NVTs, and the occurrence of serotype replacement and capsular switching. In addition, sequence types related to internationally disseminated clones are circulating in Ghana. With the high pcpA and psrP coverage detected,including these genes in protein-based vaccines could provide adequate protection for Ghanaian Children.
Immunogenicity and protectivity of surface-localized lipoproteins of Streptococcus pneumoniae
(2019)
Steptococcus pneumoniae (pneumococcus) represents a common colonizer of the human upper respiratory tract (URT). However, under certain conditions, for example following viral infections, or in indiciduals with a weakened immune system, including young children, elderly and immunocompromised persons, it can cause a wide range of life-threatening diseases, such as pneumonia, meningitis or sepsis. Based on the polysaccharide capsule that surrounds the bacterium, pneumococci are classified into so far 98 different serotypes. Prevention of S. pneumoniae infections was achieved by the development of pneumococcal polysaccharide-based (PPSV) vaccines. However, these vaccines have important limitations, including high manufacturing costs and restricted serotype coverage facilitating replacement by non-vaccine serotypes. Aiming for the development of a serotype-independent vaccine, the potential of surface-exposed and highly conserved pneumococcal lipoproteins was evaluated for being targeted as a future protein-based vaccine. Therefore, selected lipoproteins were examined i) for their surface abundance and accessibility, ii) for their presence in clinically relevant S. pneumoniae strains, and iii) for their immunogenicity. Finally, based on these initial screenings, the most promising candidates were selected to analyze their protective efficacy in a moude model of colonization. DacB and PnrA were identified as highly abundant lipoproteins on the pneumococcal surface. They showed to be immunogenic both during natural infection using convalescent patient sera and when given to mice as a subunit vaccine formulation. Following intranasal immunization and challenge of mice with two heterologous S. pneumoniae strains, both proteins reduced the pneumococcal load in the nasopharynx. The protection correlated with increased production of IL-17A indicative for a Th17-mediated immunity, which is strongly suggested to play a critical role in preventing pneumococcal colonization and infection. Lipoproteins are triggering innate receptors on antigen-presenting cells, thereby linking innate with adaptive immune responses. Therefore, lipidated proteins were evaluated for their potential to be used as an adjuvant for vaccination. Lipidation clearly enhanced humoral immune responses to DacB and PnrA without the need of an additional adjuvant. However, an additional adjuvant was required to confer protection against pneumococcal colonization. In conclusion, Lipoproteins are interesting candidates for future protein-based vaccine strategies because they are highly conserved, abundant and immunogenic. PnrA and DacB were identified as potential candidates, since they induced protection against pneumococcal colonization, which in turn may lead to a decline in infections and transmission.