Immunogenicity and protectivity of surface-localized lipoproteins of Streptococcus pneumoniae
(2019)
Steptococcus pneumoniae (pneumococcus) represents a common colonizer of the human upper respiratory tract (URT). However, under certain conditions, for example following viral infections, or in indiciduals with a weakened immune system, including young children, elderly and immunocompromised persons, it can cause a wide range of life-threatening diseases, such as pneumonia, meningitis or sepsis. Based on the polysaccharide capsule that surrounds the bacterium, pneumococci are classified into so far 98 different serotypes. Prevention of S. pneumoniae infections was achieved by the development of pneumococcal polysaccharide-based (PPSV) vaccines. However, these vaccines have important limitations, including high manufacturing costs and restricted serotype coverage facilitating replacement by non-vaccine serotypes. Aiming for the development of a serotype-independent vaccine, the potential of surface-exposed and highly conserved pneumococcal lipoproteins was evaluated for being targeted as a future protein-based vaccine. Therefore, selected lipoproteins were examined i) for their surface abundance and accessibility, ii) for their presence in clinically relevant S. pneumoniae strains, and iii) for their immunogenicity. Finally, based on these initial screenings, the most promising candidates were selected to analyze their protective efficacy in a moude model of colonization. DacB and PnrA were identified as highly abundant lipoproteins on the pneumococcal surface. They showed to be immunogenic both during natural infection using convalescent patient sera and when given to mice as a subunit vaccine formulation. Following intranasal immunization and challenge of mice with two heterologous S. pneumoniae strains, both proteins reduced the pneumococcal load in the nasopharynx. The protection correlated with increased production of IL-17A indicative for a Th17-mediated immunity, which is strongly suggested to play a critical role in preventing pneumococcal colonization and infection. Lipoproteins are triggering innate receptors on antigen-presenting cells, thereby linking innate with adaptive immune responses. Therefore, lipidated proteins were evaluated for their potential to be used as an adjuvant for vaccination. Lipidation clearly enhanced humoral immune responses to DacB and PnrA without the need of an additional adjuvant. However, an additional adjuvant was required to confer protection against pneumococcal colonization. In conclusion, Lipoproteins are interesting candidates for future protein-based vaccine strategies because they are highly conserved, abundant and immunogenic. PnrA and DacB were identified as potential candidates, since they induced protection against pneumococcal colonization, which in turn may lead to a decline in infections and transmission.
The influence of regulatory proteins on the physiology and virulence of Streptococcus pneumoniae
(2015)
In conclusion, this work identifies the regulator ArgR2 as activator of the S. pneumoniae TIGR4 arginine deiminase system and arginine-ornithine transporter ArcD, which is needed for uptake of the essential amino acid arginine. Although ArgR2 activates ArcD expression and uptake of arginine is required to maintain pneumococcal fitness, the deficiency of ArgR2 increases TIGR4 virulence under in vivo conditions, suggesting that other factors regulated by ArgR2 counterbalance the reduced uptake of arginine by ArcD. Thus this works illustrates that the physiological homeostasis of pneumococci is complex and that ArgR2 plays a key role in maintaining bacterial fitness. Moreover, Rex was identified as a regulator of housekeeping genes including genes encoding glycolytic enzymes. In vitro studies and gene expression analyses suggested that the regulator Rex does not have an influence on the physiology of S. pneumoniae. However, a co-infection experiment demonstrated that Rex is involved in maintaining pneumococcal fitness and robustness under in vivo conditions.
Streptococcus pneumoniae (Pneumokokken) sind Gram-positive und Katalase-negative humanspezifische Kommensalen der oberen und unteren Atemwege. Diese Bakterien sind andererseits auch als schwere Krankheitserreger bekannt und verursachen bei verschiedenen Bevölkerungsgruppen, wie beispielsweise Kindern, Älteren und immungeschwächten Personen sowohl Atemwegs- als auch lebensbedrohliche invasive Erkrankungen wie eine ambulant erworbene Pneumonie, Meningitis und Sepsis. Pneumokokken haben aufgrund ihrer Besiedelung des Respirationstraktes effiziente Mechanismen entwickelt, um in einer sauerstoffreichen Nische überleben zu können. Dabei richten sich die Mechanismen vor allem gegen reaktive Sauerstoffspezies (Reactive Oxygen Spezies, ROS), die einerseits als Abwehrfunktion des Wirts (oxidative burst) vom angeborenen Immunsystem und andererseits von den Pneumokokken selbst produziert werden, um als chemische Waffe zur Bekämpfung bakterieller Konkurrenten in ihrem Habitat eingesetzt zu werden. In der vorliegenden Arbeit wurde ein hochkonserviertes Zwei-Operon-System, das für die extrazelluläre oxidative Stress-Resistenz in S. pneumoniae verantwortlich ist, identifiziert und auf pathophysiologischer sowie struktureller Ebene charakterisiert. Dieses komplexe System besteht aus zwei integralen Cytochrom C-ähnlichen Membranproteinen (CcdA1 und CcdA2), zwei Thioredoxin-ähnlichen Lipoproteinen (Etrx1 und Etrx2) und einer Methioninsulfoxid-Reduktase AB2 (MsrAB2). Die Etrx-Proteine werden zwar in zwei räumlich voneinander getrennten Operonen kodiert, sind aber funktionell miteinander verbunden. Der Einfluss des Systems auf die Pathogenese der Pneumokokken wurde in Maus-Virulenz-Studien und Untersuchungen der Phagozytose unter Verwendung von isogenen Mutanten gezeigt. Sowohl in den in vivo als auch den in vitro Experimenten konnte gezeigt werden, dass der Verlust der Funktion beider Etrx-Proteine beziehungsweise der Methioninsulfoxid-Reduktase MsrAB2 die Virulenz der Pneumokokken stark reduziert. Hieraus resultierte eine erheblich verringerte Letalität des Wirts, eine beschleunigte bakterielle Aufnahme durch die Makrophagen sowie ein schnelleres Abtöten der Pneumokokken durch eine oxidative Schädigung von Oberflächen-lokalisierten Proteinen mittels Wasserstoffperoxid. Die Ergebnisse deuten darauf hin, dass Etrx2 die Abwesenheit von Etrx1 und umgekehrt Etrx1 das Defizit von Etrx2 kompensieren kann. Durch Strukturaufklärung der beiden Thioredoxin-ähnlichen Proteine Etrx1 und Etrx2 sowie der Modellierung der beteiligten Komponenten CcdA und MsrAB2 konnte die Rolle jedes einzelnen Proteins dieses Systems (CcdA-Etrx-MsrAB2-System) bei der Reparatur beschädigter Oberflächen-lokalisierter Proteine in einem Modell dargestellt werden. Das postulierte Modell konnte über in vivo und in vitro Untersuchungen des Elektronentransfers innerhalb dieses Systems bestätigt werden. Mit der Bestimmung der Standardredoxpotentiale der rekombinanten Proteine Etrx1, Etrx2 und der Einzeldomänen MsrA2 und MsrB2 konnte in vitro gezeigt werden, dass der Elektronenfluss in Richtung von Etrx1 und Etrx2 zu MsrAB2 erfolgen muss. Die direkte Elektronenübertragung zwischen diesen Proteinen konnte in kinetischen Experimenten gezeigt werden. Die Messungen ergaben, dass Etrx1 bevorzugt mit der MsrA2-Untereinheit interagiert beziehungsweise Etrx2 sowohl mit der MsrA2-Untereinheit als auch mit der MsrB2-Untereinheit in Wechselwirkung treten kann. Der in vivo Redoxzustand von MsrAB2 wurde unter Verwendung der nicht-reduzierenden/reduzierenden „2D-Diagonal“-SDS-PAGE in den isogenen ccdA- und etrx-Mutanten bestimmt. Hierbei konnte ein Unterschied im Redoxzustand von MsrAB2 in den isogenen Einzelmutanten und Doppelmutanten von ccdA und etrx beobachtet werden. Während in den Einzelmutanten der Elektronenfluss innerhalb des CcdA-Etrx-MsrAB2-Systems unverändert war, zeigte sich in den Doppelmutanten ccdA1/ccdA2 und etrx1/etrx2 eine deutliche Beeinträchtigung der Elektronenübertragung auf MsrAB2, welche sich in der Zunahme der oxidierten Form von MsrAB2 deutlich machte. Somit konnte der Elektronenfluss von sowohl von CcdA1 über Etrx1 zu MsrAB2 als auch von CcdA2 über Etrx2 zu MsrAB2 in vivo betätigt werden. In Anbetracht der Ergebnisse dieser Arbeit könnte das hochkonservierte CcdA-Etrx-MsrAB2-System der extrazellulären oxidativen Stress-Resistenz von S. pneumoniae zur Entwicklung proteinbasierter Pneumokokken-Impfstoffe und zum Angriffspunkt für Behandlungen gegen diese wichtigen humanpathogenen Erreger beitragen.
Summary
Streptococcus pneumoniae (the pneumococcus), a bacterium belonging to the normal flora in the human respiratory tract, continues to be an important pathogen due to its contribution to morbidity and mortality among children, the elderly, and immunocompromised persons. Global estimates of pneumococcal deaths among children declined by 51% between 2000 and 2015. This achievement was mainly due to the introduction of pneumococcal conjugate vaccines (PCVs) in countries with the highest pneumococcal burden. Since May 2012, children in Ghana have been receiving PCV vaccination as part of routine immunization. The continuous monitoring of the pneumococcus after PCV introduction is essential to understand the changing epidemiology of the pathogen in the population.
This study therefore, aims to determine the (1) prevalence, serotypes, and sequence types of pneumococcal isolates, (2) antibiotic susceptibility patterns and the genetic basis for the antibiotic resistance among these pneumococcal isolates, and (3) prevalence of selected virulence genes that have been identified as potential vaccine candidates. Nasopharyngeal swabs were obtained from vaccinated children under five years of age in Cape Coast, Ghana. Six years after PCV implementation, we provide data on the epidemiology of pneumococcal strains circulating among children in Cape Coast Ghana. Standard microbiological and molecular techniques were used to identify and characterize the pneumococcal strains.
Overall, pneumococcal carriage prevalence was 29.4% (151/513). All participating children were fully vaccinated. Of the 26 different serotypes identified, the top five PCV13 serotypes (VT) were 6B, 23F, 19F, 3, 6A and non-PCV13 vaccine serotypes (NVT) were 23B, 13, 11A, 15B, and 34. PCV13 coverage was 38.4%, however, more than half of the isolates were NVT with a coverage rate of 61.6%. The isolates were highly susceptible to levofloxacin, ceftriaxone, vancomycin, and erythromycin. However, marked resistance to cotrimoxazole and tetracycline was observed. The reduction in penicillin resistance (35.8%) as compared to pre-vaccination data (45% - 63%) suggests an attributable effect from PCV13 vaccination. However, penicillin resistance was also detected in some NVT serotypes. Overall, 28.5% of the isolates resistant to three or more different classes of antibiotics were classified as multidrug-resistant (MDR). To analyze the genetic basis for resistance to penicillin, erythromycin and tetracycline, pbp2b, ermB, mefA, and tetM genes were amplified.
Thirty-eight (70%) out of the 54 penicillin-resistant isolates contained the pbp2b resistance gene. Out of the 11 erythromycin-resistant isolates, 7 (63.6) and 4 (36.4%) were positive for the ermB and mefA genes, respectively. The tetM gene was detected in 85 (98.8%) of the 86 tetracycline resistance isolates.
To determine the extent to which potential protein-based vaccines could be protective in Ghanaian children, we sought to determine the prevalence of selected virulence genes among the isolates. The lytA, pavB, and cpsA genes were present in all the carrier isolates. However, psrP, pcpA, pilus islet (PI) PI-1, and PI-2 were present in 62.7%, 87.5%, 11.8%, and 6.5% of the strains, respectively. The psrP and pcpA virulence genes were evenly distributed among all the serotypes. However, the pilus islets were detected in only seven serotypes namely 19F, 6B, 9V, 6A, 13, 11A, and 23B. Five serotype 19F isolates possessed both PI-1 and PI-2. Furthermore, the pilus islets were associated with multidrug resistance.
The predominant NVT serotype 23B and isolates resistant to ≥ 4 antibiotics were analysed by multilocus sequence typing (MLST). Nine known sequence types (STs) and 10 novel STs were identified. Seven out of the 10 new STs belonged to serotype 23B, while the remaining 3 were VTs 6B and 19F. A capsular switch was identified among isolates of ST802, which comprised of both serotype 23F and 19F. The majority of serotype 23B strains belonged to ST172. The ST172 is associated with serotype 23F and a single locus variant (SLV) of internationally disseminated clone ST338 (Colombia23F-26). Consequently, ST172 was characterised with marked antibiotic resistance and with traits of capsular switching. One serotype 6B strain was identified as a SLV of ST273 (Greece6B-22) while two serotype 9V strains belonged to the internationally disseminated clone ST156 (Spain9V-3).
In conclusion, this study showed a marginal decline in overall pneumococcal carriage prevalence, persistence of VTs despite the increase in NVTs, and the occurrence of serotype replacement and capsular switching. In addition, sequence types related to internationally disseminated clones are circulating in Ghana. With the high pcpA and psrP coverage detected,including these genes in protein-based vaccines could provide adequate protection for Ghanaian Children.
Analyse der metabolischen Anpassung von Streptococcus pneumoniae an antimikrobielle Umwelteinflüsse
(2019)
Das Gram-positive Bakterium Streptococcus pneumoniae ist ein humanspezifisches Pathogen des oberen Respirationstraktes. Der opportunistische Krankheitserreger kann jedoch mehrere Organe befallen und tiefer in den Körper vordringen, was zu lokalen Entzündungen wie Sinusitis und Otitis media oder zu lebensbedrohlichen Infektionen wie Pneumonie, Meningitis oder Sepsis führen kann. Für das Bakterium S. pneumoniae wurden bisher kaum Metabolom-Daten erhoben. Daher war das Ziel dieser Dissertation eine umfassende Charakterisierung des Metaboloms von S. pneumoniae. In dieser Dissertation wurden als analytische Methoden die Gaschromatografie (GC) und Flüssigkeitschromatografie (LC) jeweils gekoppelt mit Massenspektrometrie (MS) sowie die Kernspinresonanzspektroskopie (NMR) verwendet, um die Metaboliten zu analysieren. Es sind mehrere Analysetechniken erforderlich, um den Großteil des Metaboloms mit seinen chemisch verschiedenen Metaboliten zu erfassen. Artikel I fasst die Literatur zu Untersuchungen des Metabolismus von S. pneumoniae in den letzten Jahren zusammen. Um eine Momentaufnahme des biologischen Systems zum jeweiligen Zeitpunkt zu erhalten, ist neben dem reproduzierbaren Wachstum während der Kultivierung auch die exakte Probenahme zu beachten. Aus diesem Grund wurde in dieser Dissertation ein Probenahmeprotokoll für das Endometabolom von S. pneumoniae etabliert (Artikel II). Mithilfe des optimierten Protokolls wurde eine umfassende Metabolomanalyse in einem chemisch definierten Medium durchgeführt (Artikel II). Um S. pneumoniae in einer Umgebung ähnlich der im Wirt zu untersuchen, wurde in einem modifizierten Zellkulturmedium kultiviert. Intermediate zentraler Stoffwechselwege von S. pneumoniae wurden analysiert. Das intrazelluläre Stoffwechselprofil wies auf einen hohen glykolytischen Flux hin und bot Einblicke in den Peptidoglykan-Stoffwechsel. Darüber hinaus widerspiegelten die Ergebnisse die biochemische Abhängigkeit von S. pneumoniae von aus dem Wirt stammenden Nährstoffen. Ein umfassendes Verständnis der Stoffwechselwege von Pathogenen ist wichtig, um Erkenntnisse über die Anpassungsstrategien während einer Infektion zu gewinnen und so neue Angriffspunkte für Wirkstoffe zu identifizieren.
Die zunehmende Verbreitung von resistenten S. pneumoniae-Stämmen zwingt zur Suche nach neuen antibiotisch wirksamen Substanzen. Im Zuge dessen wurde in Artikel III die metabolische Reaktion von S. pneumoniae während des Wachstums unter dem Einfluss antibakterieller Substanzen mit dem Ziel der Identifizierung metabolischer Anpassungsprozesse untersucht. Dabei wurden Antibiotika mit unterschiedlichen Wirkmechanismen verwendet, wie die Beeinflussung der Zellwandbiosynthese (Cefotaxim, Teixobactin-Arg10), der Proteinbiosynthese (Azithromycin) sowie Nukleotidsynthese (Moxifloxacin). Es konnten keine Wirkmechanismus-spezifischen Marker-Metaboliten identifiziert werden. Jedes Antibiotikum verursachte weitreichende Veränderungen im gesamten Metabolom von S. pneumoniae. Die Nukleotid- und Zellwandsynthese waren am stärksten betroffen. Besonders vielversprechend sind Antibiotika mit zwei Wirkorten wie Teixobactin-Arg10 und Kombinationen aus zwei Antibiotika. In dieser Dissertation wurde das erste Mal das synthetisch hergestellte Teixobactin-Arg10 mittels einer der modernen OMICS-Techniken untersucht. Die vorliegende umfassende Metabolom-Studie bietet wertvolle Erkenntnisse für Forscher, die an der Identifizierung neuer antibakterieller Substanzen arbeiten.
Insgesamt tragen die Ergebnisse der Dissertation zu einem besseren Verständnis der bakteriellen Physiologie bei.
Streptococcus pneumoniae (the pneumococcus) is a harmless resident of the human nasopharyngeal cavity, and, in general, every individual is likely to be colonized asymptomatically at least once during life. However, under certain conditions, the bacterium can spread to other tissues and organs causing local, non-invasive infections but also lifethreatening, invasive diseases. Pneumococcal carriage and infection is a highly regulated interplay between pathogen- and host-specific factors and the intimate contact of S. pneumoniae with the surface of the nasopharynx is the crucial step in pneumococcal pathogenesis. Pneumococcal adherence to the respiratory epithelium is mediated by surface-exposed adhesins. These adhesins engage host cell receptors either directly or indirectly by recognizing glycoproteins of the extracellular matrix (ECM) including structural components, such as collagens, laminins, and fibronectins, as well as plasma-derived ECM modulators, like vitronectin and Factor H. Pneumococcal surface protein C (PspC) is a surface-exposed protein and important virulence factor of S. pneumoniae. The multifunctional PspC protein promotes pneumococcal adherence to host cells by interacting with the secretory component of the human polymeric Immunoglobulin receptor of respiratory cells. In addition, PspC facilitates pneumococcal immune evasion by recruiting the complement inhibitor proteins C4b-binding protein (C4BP) and Factor H. Moreover, Factor H bound to the pneumococcal surface promotes bacterial adhesion to human epithelial and endothelial cells. S. pneumoniae also interacts with the human glycoprotein vitronectin. In plasma, monomeric vitronectin regulates thrombosis, fibrinolysis and the terminal complement cascade, while it additionally mediates cell-matrix interactions, cell adhesion and migration in the ECM. It was shown that multimeric, ECM-associated vitronectin facilitates pneumococcal adherence to respiratory epithelial cells. In addition, the interaction of pneumococci with vitronectin promotes their uptake by mucosal epithelial cells via the engagement of the integrin αvβ3 receptor and activation of intracellular signaling pathways culminating in cytoskeletal rearrangements. This study aims to identify and characterize the surface-exposed protein(s) that mediate binding of pneumococci to vitronectin and to elucidate the impact of vitronectin on pneumococcal pathogenesis beyond its function as molecular bridge between pneumococcus and host. Flow cytometric, immunosorbent and surface plasmon resonance experiments revealed that PspC is a vitronectin-binding protein of S. pneumoniae. The specificity of the interaction with vitronectin was confirmed using recombinant PspC proteins and Lactococcus lactis heterologously expressing PspC on their surface. Factor H did not hinder vitronectinbinding to PspC indicating that vitronectin recognizes the central part of PspC. Secretory IgA inhibited but not completely prevented vitronectin-binding to PspC, strongly suggesting that vitronectin binds near, but not directly to, the SC-binding region within the R domain(s) of PspC. In addition, PspC proteins comprising two R domains bound with higher affinity to vitronectin than PspC containing only one R domain, indicating that two interconnected R domains are required for efficient vitronectin-binding. Despite the sequential and structural differences to classical PspC, the PspC-like protein Hic specifically interacted with vitronectin with similar affinity than PspC containing two linked R domains. Binding studies confirmed that Factor H interacts with the very N-terminal region of Hic showing high sequence homology to classical PspC proteins, while vitronectin recognizes an adjacent region in the N-terminal region of Hic. The studied PspC proteins bound to both soluble and immobilized vitronectin, and the C-terminal heparin-binding domain (HBD3) was identified as PspC-binding motif in soluble vitronectin. However, in its immobilized form, vitronectin likely exposes additional binding sites for PspC since a region N-terminally to the identified HBD3 conferred binding of PspC. Vitronectin inhibits the terminal complement pathway, thereby preventing proinflammatory immune reactions and tissue damage. In general, pneumococci are protected from opsonization and MAC-dependent lysis by their capsule. However, pneumococci in close contact to human cells can become susceptible to complement attack due to reduced amounts of capsule. In addition, they can be severely affected by TCC-induced inflammatory responses. Vitronectin bound to PspC significantly inhibited the formation of terminal complement complexes. Thus, the interaction of PspC with vitronectin might aid in immune evasion of S. pneumoniae by inhibiting complement-mediated lysis and/or suppressing proinflammatory events. In conclusion, the results revealed the multifunctional PspC and Hic as vitronectin-binding proteins and proposed a novel role for the specific interaction of S. pneumoniae with vitronectin in regulating the complement cascade, beside its function as molecular bridge to the respiratory epithelium.
Deciphering the influence of Streptococcus pneumoniae global regulators on fitness and virulence
(2019)
Streptococcus pneumoniae (S. pneumoniae; the pneumococcus) is a Gram-positive, aerotolerant, and opportunistic bacteria, which colonizes the upper respiratory tract of human. S. pneumoniae can further migrate to other sterile parts of the body, and causes local as well as fatal infections like, pneumonia, septicaemia and meningitis. Due to incomplete amino acid pathways, pneumococci are auxotrophic for eight different amino acids including glutamine and arginine. The pneumococcus has adapted to the various host environmental conditions and a number of systems are dedicated for the transport and utilization of nutrients such as monosaccharides, amino acids and oligopeptides.
In this study the amino acid metabolism was characterised by 15N-isotopologue profiling in two different pneumococcal strains, D39 and TIGR4. Efficient uptake of a labelled amino acids mixture of 15N-labelled amino acids showed that S. pneumoniae has a preference for the amino acids transport instead of a de novo biosynthesis. It is known that glutamine (Gln) serves as main nitrogen source for S. pneumoniae. The 15N-labelled Gln used in this study demonstrated an efficient 15N-enrichment of Glu, Ala, Pro and Thr. Minor enrichment was seen for the amino acids Asp, Ile, Leu, Phe, Tyr, and Val. Remarkably, labelled Gly and Ser could be determined in strain TIGR4, whereas for strain D39 these two labelled amino acids were not detected. This confirms earlier studies with 13C-labelled glucose, which showed the biosynthesis of Ser out of Gly. Strain TIGR4 was able to grow in chemically-defined medium depleted of Gly confirming that Gly can be synthesized out of serine by the action of the enzyme serine hydroxymethyltransferase (SHMT).
The transcriptional regulator GlnR controls the Gln and Glu metabolism in S. pneumoniae. Hence, the impact of the repressor GlnR on amino acids metabolism was also studied. An increased 15N-enrichment was determined for Ala and Glu in both used pneumococcal strains, while an increased level of Pro was only measured in the isogenic glnR-mutant of non-encapsulated D39.
Arginine can also serve as nitrogen source in strain TIGR4. The arginine deiminase system metabolizes Arg into ornithine, carbamoyl phosphate and CO2 by the generation of 1 ATP and 2 mol NH3. Because of the truncation of the arcA gene strain D39 lacks arginine deiminase activity and has thus no functional ADS system. When 15N-Arg was added for growth, only in strain TIGR4, thirteen (13) labelled amino acids were detected with the highest enrichment for Ala, Glu and Thr. Genes coding for the enzymes of the arginine metabolism and for arginine uptake are regulated by the activator ArgR2 in strain TIGR4. Inactivation of ArgR2 was not accompanied by an enrichment of labelled amino acids, when the argR2-mutant was grown with 15N-labelled Arg indicative of the important role of ArgR2.
The bicistronic operon arcDT encoding the arginine/ornithine transporter ArcD and a putative peptidase ArcT belong to the peptidase family M20. The in silico comparison of structures revealed a significant homology of ArcT to PepV of L. delbrueckii and to Sapep of S. aureus known as carboxypeptidase. ArcT was heterologously expressed in E. coli and purified under reducing conditions. An enzymatic reaction was established and several dipeptides like Ala-Arg, Arg-Ala, and Ala-Asp were used as substrates. In addition, the dependency on divalent cations was analysed. Cleavage of the dipeptide Ala-Arg was detected in the presence of Mn2+ as cofactor under reducing conditions. Reduced peptidase activity was observed when Zn2+ was added. No cleavage of the tripeptide Ala-Ala-Arg could be shown indicating that ArcT acts as dipeptidase with the preference to the Arg residue at the C-terminal end.
Bacterial meningitis caused by S. pneumoniae was studied in an in vivo proteomic analysis. In a mouse meningitis model S. pneumoniae was isolated from the cerebrospinal fluid (CSF) by a filter extraction step. The MS analysis identified AliB and ComDE only from CSF isolated pneumococci indicating that these proteins are expressed under infection conditions. Mice infected with D39 wild-type and isogenic aliB, comDE and aliB-comDE double knockout mutants showed significantly less number of pleocytosis in the CSF and lower bacterial load in the blood compared to the wild-type. The results indicate that AliB and ComDE play an important role during meningitis.
Phenotypic characterization was carried out to identify differences between the wild-type and the aliB-, comDE- and aliB-comDE double mutants. Oxidative stress conditions were induced by the application of hydrogen peroxide or paraquat during growth in a chemically-defined medium similar to the CSF. No alteration in growth and survival of these mutants compared to the wild-type was observed suggesting that oxygen radicals play not an important role during the progression of meningitis. In addition, no differences of AliB expression was detected in the ComDE deficient D39. No impact of aliB and comDE-mutation on the expression of different virulence factors like pneumolysin or proteins involved in capsular biosynthesis was detected.
In vitro proteome analysis was performed to compare the wild-type to the AliB, and ComDE deficient D39 in the early and mid logarithmic growth phase. More than 70 % of theoretically expressed proteins were identified. In the aliB-mutant 33 proteins were differentally expressed in the early growth phase and 50 proteins differed during mid log growth. For the comDE mutant 24 and 11 proteins differed in expression in these two growth phases. Interestingly, high level of AliA expression was identified in all samples. The aliB-mutant had a decreased abundance of the proteins resembling an oligopeptide ABC transporter (AmiA, AmiC, AmiD, AmiE). In addition, another ABC transporter for iron transport encoded by spd_1607 to spd_ 1610 was higher expressed in the aliB-mutant. In the ComDE deficient mutant lower abundance of the Ami transporter sytem was identified. An increased abundance of proteins involved in the pyrimidine metabolism (PyrF, PyrE, PyrDb, PyrB and PyrR) was recognized only in the early growth phase of the comDE-mutant. These analyses demonstrate the marginal changes in protein synthesis during growth of S. pneumoniae. These studies demonstrated the adaptation of the proteome of S. pneumoniae to different growth conditions and the impact of regulatory proteins on the availability of carbon and nitrogen sources.
Pneumokokken haben verschiedene Virulenzfaktoren, die nicht nur den Kolonisierungsprozess unterstützen, sondern auch das Vordringen des Pathogens in tiefere Gewebsschichten ermöglichen oder einen Schutz vor den Komponenten des Immunsystems vermitteln. Diese Virulenzfaktoren stehen im Mittelpunkt der Untersuchungen für die aktuelle Impfstoffentwicklung. Die genomische Analyse verschiedener Streptococcus pneumoniae Stämme identifizierte den Pneumococcal adherence and virulence factor B (PavB) als LPXTG-verankertes Oberflächenprotein. PavB enthält repetitive SSURE-Sequenzen (Streptococcal Surface Repeats), die mit humanem Fibronektin interagieren. Das Molekulargewicht des hochkonservierten Proteins wird von der Anzahl der SSURE-Domänen bestimmt und variiert zwischen den unterschiedlichen Pneumokokkenstämmen. In dieser Arbeit konnte gezeigt werden, dass PavB ein Adhäsin auf der Oberfläche von Pneumokokken darstellt und am Kolonisierungsprozess der Pneumokokken unter in vivo Bedingungen beteiligt ist. Mäuse, die intranasal mit pavB-Deletions-Mutanten infiziert wurden, überlebten signifikant länger als die mit den Wildtypbakterien infizierten Tiere. Der PavB-defiziente Stamm zeigte im Vergleich zum parentalen Wildtyp eine verringerte Kolonisierung des Nasopharynx sowie eine verzögerte Ausbreitung in die Lunge. Dies konnte in Echtzeit unter Verwendung von biolumineszierenden Pneumokokken gezeigt werden. In Koinfektionsexperimenten mit gleichen Infektionsdosen von Wildtyp-Pneumokokken und isogenen pavB-Mutanten war die Mutante in ihrer Fähigkeit, sich in den Organen der oberen und unteren Atemwege auszubreiten, eingeschränkt. Im Gegensatz dazu war die Pathogenese einer Meningitis nach intrazerebraler Injektion der Pneumokokken, sowie die Erkennung und Phagozytose durch phagozytierende Zellen des angeborenen Immunsystems, unabhängig von der Produktion des PavB Proteins. Die Immunogenität des Oberflächenproteins unter relevanten Bedingungen wurde durch den Nachweis von PavB-spezifischen Antikörpern in Patientenseren gezeigt. Auf eine Rolle des Oberflächenproteins PavB während der bakteriellen Adhäsion an eukaryotische Zellen deuteten die Infektionsexperimente mit humanen Epithelzelllinien. Es wurden verschiede His6-getaggte PavB-Derivate (SSURE2, SSURE2+3, SSURE1-5) für die weitere funktionelle Charakterisierung von PavB gereinigt und in Bindungsstudien eingesetzt. Die Funktion von PavB als Adhäsin konnte in Kompetitionsexperimenten unter Verwendung eines PavB-Derivats als Inhibitor bestätigt werden. Ebenso konnte die direkte Bindung des Proteins an eukaryotische Zellen nachgewiesen werden, wobei der eukaryotische Rezeptor noch nicht identifiziert wurde. In Protein-Protein-Interaktionsstudien wurden zusätzlich zu Fibronektin weitere humane Proteine des Plasmas und der extrazellulären Matrix (EZM), die im Laufe einer Infektion mit Pneumokokken einen Vorteil für das bakterielle Überleben im Wirt vermitteln könnten, als Bindungspartner für die drei gereinigten SSURE-Proteine identifiziert. Als neues Fibronektin-Bindungsprotein (FnBP) von S. pneumoniae diente PavB desweiteren für die Bestimmung der Bindungsregion von FnBPs von Pneumokokken im Fibronektinmolekül. Die Verwendung rekombinanter Fibronektinfragmente (His6-FnIII-Fragmente) ermöglichte den Nachweis der Beteiligung der Typ III-Domänen des C-terminalen Bereichs von Plasmafibronektin an der Interaktion zwischen PavB-Derivaten und Fibronektin. Die Bedeutung von Plasmafibronektin (pFn) für die Pathogenese einer Pneumonie wurde in einem induzierbaren knockout-Mausmodell für Plasmafibronektin untersucht. Nach intranasaler Infektion der Mäuse mit S. pneumoniae hatte der Verlust des Plasmaproteins unter den verwendeten Bedingungen keine signifikante Auswirkung auf die Entstehung einer Lungenentzündung oder die Überlebensaussicht der pFn-knockout-Mäuse. Unter in vitro Bedingungen bewirkte die Bindung von pFn an phagozytierende Zellen eine erhöhte Bindung der Pneumokokken an die Phagozyten. Dagegen beeinflusste die Rekrutierung von pFn an die Pneumokokkenoberfläche nicht die Phagozytose. Bisher konnte nicht eindeutig geklärt werden, welche Funktion Fibronektin während der Infektion mit Pneumokokken ausübt. Neben seinen multifunktionellen Bindungseigenschaften stellt das hochkonservierte Protein PavB einen interessanten Bestandteil für ein neues, Protein-basiertes Pneumokokkenvakzin dar.
Als Mitglieder der Ordnung Lactobacillales ist das Hauptkatabolit der Pneumokokken sowohl unter aerober wie auch microaerophiler Atmosphäre Lactat. Des Weiteren synthetisiert S. pneumoniae eine große Bandbreite an ABC-Transportersystemen, die an der Assimilation und an dem Stoffwechsel von Kohlenhydraten, löslichen Verbindungen und Aminosäuren beteiligt sind. In dieser Arbeit wurde der Kohlenstoffmetabolismus mittels 13C-Isotopologen Verteilung nach Wachstum der Pneumokokkenkultur in chemisch definiertem Medium (CDM) mit [U-13C6]Glucose, [1,2-13C2]Glucose oder [U-13C2]Glycin analysiert. GC/MS-Analysen zeigten ein Muster an schwer-markierten und unmarkierten Kohlenstoffatomen in den Aminosäuren. Die Ergebnisse ließen den Schluss zu, dass Pneumokokken sowohl einzelne Aminosäuren aufnehmen, wie auch über klassische oder nicht-klassische Biosynthesewege de novo synthetisieren können. His, Glu, Ile, Leu, Val, Pro und Gly blieben im Isotopolog Profiling unmarkiert, was ein Hinweis auf das Fehlen von Biosynthesewegen oder ihrer Regulation unter bestimmten Umweltbedingungen sein könnte. Obwohl die genetische Information für die Biosynthese der essentiellen verzweigtkettigen Aminosäuren (BAA; Ile, Leu und Val) in S. pneumoniae vorhanden ist, ergaben die 13C-Markierungsversuche keine de novo Synthese. Jedoch konnte durch Langzeit-1H-NMR (LT-NMR) Analysen eine aktive Aufnahme dieser Aminosäuren nachgewiesen werden. Darüber hinaus wird Aspartat nicht über den allgemeinen Stoffwechselweg mit Pyruvat und Acetyl-CoA synthetisiert. Die Aspartat-Synthese erfolgt im ersten Schritt durch die Umwandlung von Phosphoenolpyruvat (PEP) und CO2 zu Oxalacetat. Im zweiten Schritt wird Oxalacetat dann in Aspartat mit der Nebenreaktion Glutamat zu alpha-Ketoglutarat durch die Aspartat-Transaminase metabolisiert. GC/MS Analysen ergaben weiterhin, dass komplett markierte aromatische Aminosäuren aus Erythrose-4-Phosphat und zwei Molekülen PEP über das Intermediat Chorismat synthetisiert wurden. Es zeigte sich außerdem, dass [M+1] markiertes Serin durch die Hydroxymethylierung von unmarkiertem Glycin über 5,10-Methylentetrahydrofolat als Teil des C1-Pools hergestellt wurde. Weiterhin wurden In LT-NMR-Untersuchungen Konzentrationsänderungen der extrazellulären Metabolite quantifizert. Die homofermentative Milchsäuregärung konnte in Pneumokokken durch einen extrazellulären Anstieg der Lactatkonzentration nachgewiesen werden. Als essentielle Kandidaten wurden Glutamin und Uracil identifiziert, die das Pneumokokkenwachstum bei Mangel einschränken. Diese Ergebnisse zeigen die Vielzahl von Aminosäuren-Synthesewegen in Pneumkokken und die notwendige Rolle der Transportersysteme in Pneumokokken für die bakterielle Fitness und für die Adaption an verschiedene Wirtsnischen. Sechs mögliche Glutamin-Aufnahmesysteme konnten durch Genomanalysen von Streptococcus pneumoniae Stämmen identifiziert werden. Die Reverse Transkriptions-PCR haben gezeigt, dass die sechs gln-Operons unter in vitro Bedingungen exprimiert werden. Vier der gln-Gencluster bestehen aus den Genen glnQPH, während in zwei Regionen das Gen glnH, welches für eine lösliche Glutamin-Bindungsdomäne kodiert, fehlt. In dieser Arbeit wurde der Einfluss zwei dieser Glutamin-ABC-Transporter, mit den Operons glnQPH0411/0412 und glnQPH1098/1099, in S. pneumoniae D39 auf Virulenz und Phagozytose untersucht. Die zwei charakterisierten Transportersysteme bestehen jeweils aus der ATPase GlnQ und einem translatorischem Fusionsprotein aus der Permease GlnP und dem Bindungsprotein GlnH. Für die Untersuchungen wurden diese beiden Transporter mittels Insertations-Deletions-Mutagenese inaktiviert. CD-1 Mäuse, die intranasal mit biolumineszierenden D39delgln0411/0412 infiziert wurden, zeigten in Echtzeit eine signifikant erhöhte Überlebenszeit und eine Attenuierung bei der Ausprägung einer Pneumonie im Vergleich zu biolumineszierenden Wildtyp D39 Pneumokokken. Im murinen Sepsismodell mit der D39delgln0411/0412-Mutante zeigte sich eine gemäßigte, aber signifikante Abschwächung der Pathogenese. Im Gegensatz dazu war die D39delgln1098/1099 Mutante sowohl im murinen Pneumonie- wie auch Sepsismodell massiv attenuiert. Es war eine 100- bis 10000- fach höhere Infektionsdosis erforderlich, um mit der D39delgln1098/1099-Mutante eine vergleichbare Pathogenese der Pneumonie oder Sepsis wie beim Wildtypstamm D39 hervorzurufen. Im experimentellen Meningitismodell zeigten sich bei der D39delgln1098/1099-Mutante eine erniedrigte Anzahl an Leukozyten im Liquor und ein reduzierter Bakterientiter im Blut im Vergleich zu D39 und D39delgln0411/0412. Auch die Phagozytose-Experimente bestätigten eine signifikante verminderte Überlebensrate der beiden gln-Mutanten im Vergleich zum Wildtyp S. pneumoniae D39, was auf den Einfluss der bakteriellen Fitness auf den Schutz gegen oxidativen Stress hinweist. Diese Ergebnisse demonstrierten, dass beide Glutamin-Aufnahmesysteme für die vollständige Virulenz der Pneumokokken essentiell sind, aber verschiedene Auswirkungen auf die Pathogenese der Bakterien unter in vivo Bedingungen haben. Das Zelloberflächenprotein PavA der Pneumokokken ist ein Virulenzfaktor, der für invasive Erkrankungen wichtig ist. In dieser Arbeit wurde gezeigt, dass PavA essentiell für die in vivo Besiedlung von Streptococcus pneumoniae D39 in den oberen Atemwegen von Mäusen ist. In dem murinen Pneumoniemodell wurden pavA-Mutanten nicht aus den infizierten Mauslungen eliminiert, sondern persistierten und lösten somit eine chronische Infektion aus, während Wildtyp-Pneumokokken systemische Erkrankungen verursachten. PavA-defiziente Pneumokokken konnten unter experimentellen Bedingungen nicht aus der Lunge in die Blutbahn streuen. Diese Ergebnisse ließen den Schluss zu, dass PavA an der erfolgreichen Kolonisation der Schleimhautoberflächen und an der Translokation der Pneumokokken durch Wirtsbarrieren beteiligt ist.
Streptococcus pneumoniae is one of the leading human pathogen causing morbidity and mortality worldwide. The pneumococcus can cause a variety of different diseases ranging from mild illnesses like otitis media and sinusitis to life-threatening diseases such as pneumonia, meningitis and sepsis. Mostly affected are infants, elderly and immune-suppressed patients. Although, there are vaccines against pneumococci available, still hundreds of thousands of people got infected each year. These vaccines are targeting the pneumococcal polysaccharide capsule. Because of the high number of different serotypes, it is not possible to generate a vaccine against all present serotypes. In the last years a shift to non-vaccine serotypes was noticed. This strengthens the need for the development of vaccines which do not target polysaccharides. Thus, proteins came into focus as potential new vaccine candidates or targets for drug treatment, because several proteins are highly conserved among different strains or even genera. Proteome analyses can give insights into the protein composition in a certain state of a bacterium. So, targets can be identified, which are especially expressed under infection-relevant conditions. Iron limitation is one of these conditions and the knowledge on iron acquisition in pneumococci is still limited. Iron is an essential trace element and as redox-active catalyst or as cofactor involved in various key metabolic pathway in nearly all living organisms and thus also in bacteria. For instance, iron is necessary during biosynthesis of amino acids and in electron transport as well as in DNA replication. Within the human host iron is extremely limited due to its high insolubility under physiological conditions, which is part of the nutritional immunity of its human host. Hence, bacteria had to evolve mechanism to overcome iron starvation. In this thesis the adaptation process triggered by iron limitation in the S. pneumoniae serotype 2 strain D39 was investigated in a global mass spectrometry-based proteome analysis.
In preceding growth experiments the pneumococcal growth was adapted to the needs of proteomic workflows. In order to investigate the pneumococcal response to iron limitation, the organic iron-chelating agent 2,2’-bipyridine (BIP) was applied. For the quantification of changes in protein abundances comparing stress to control conditions the very reliable and robust metabolic labeling technique Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) was used. This method requires the bacterial cultivation in a chemically defined medium, for which reason modified RPMI 1640 medium was chosen. A pooled protein extract with heavy labeled amino acids was applied as an internal standard, which included proteins expressed under control and stress condition, to control, BIP and BIP-iron-complex (BIP control experiment) samples. Samples were analyzed by liquid chromatography coupled directly to a tandem mass spectrometer. It is described that under iron-restricted conditions proteins associated to pathogenesis are higher abundant in pathogenic bacteria like Staphylococcus aureus. Hence, similar observations were expected also for the proteomic adaptation of S. pneumoniae, but the first results showed a reduction in protein abundance of virulence factors. In order to explain these results inductively-coupled-plasma mass spectrometry was executed to determine the iron concentration of chemically defined medium (CDM) used in this experiment. The analysis revealed a relatively low iron concentration of approximately 190 µg l-1. Therefore, the iron concentration of the complex medium THY, in which pneumococci are usually grown, was investigated. THY contains four-fold (740 µg l-1) more iron than the CDM. Subsequently, an additional iron limitation approach was carried out in THY. As SILAC is not applicable in complex media like THY, MaxLFQ was applied as quantification method in this case. Because two different media were used, an additional comparative proteome analysis with regard to the two investigated media was executed.
Comparing the protein composition in both cultivation media it became clear that pneumococci exhibit a totally different proteome depending on the medium. Major differences were found in metabolisms of amino acids, vitamins and cofactors as well as in pathogenesis-associated proteins. These differences have to be taken into account during the analyses of both iron limitation approaches. Overall, more proteins were identified and quantified in CDM samples. The pneumococcal adaptation to iron limitation in both media was different; especially, the alterations in protein abundances of virulence factors. In contrast to the iron limitation in CDM, proteins involved in pathogenesis were higher abundant under iron limitation in THY, which was the expected result. Because of proteomic changes of cell division and lipid metabolism involved proteins in iron-limited pneumococci in CDM, electron microscopic pictures were taken in order to proof cell morphology. The pictures showed an impaired cell division in iron-limited CDM, but not in THY medium. However, both datasets have similarities as well. Thus, the iron uptake protein PiuA is strongly increased in iron-restricted conditions and the abundance of the iron storage protein Dpr is significantly decreased in both datasets. Notably, PiuA and Dpr seem to have important roles during the pneumococcal adaptation to iron-restricted environments.
One the basis of these results, it could be shown that the proteomic response of pneumococci to iron limitation is strongly dependent to the initial iron concentration of the environment. Hence, pneumococci will adapt differently to varying niches and thus potential vaccine candidates should be expressed independently of the localization within the human host.