Refine
Year of publication
Language
- German (28) (remove)
Keywords
- Plasmadiagnostik (4)
- Polyelektrolyt (4)
- Adsorption (3)
- Ellipsometrie (3)
- Plasmaphysik (3)
- Abstimmbarer Laser (2)
- Atmosphärendruck (2)
- Barrierenentladung (2)
- Beschichten (2)
- Beschichtung (2)
- Diffusion (2)
- Glimmentladung (2)
- Helium (2)
- Lipide (2)
- Magnetron (2)
- Oxidation (2)
- Plasma (2)
- Polymere (2)
- Reflektometrie (2)
- Röntgenreflektometrie (2)
- Selbstorganisation (2)
- Weiche Materie (2)
- Xenon (2)
- atmospheric pressure (2)
- AFM (1)
- AFM-Kraft-Abstandskurven (1)
- AOM (1)
- Aktivität <Konzentration> (1)
- Aminogruppen (1)
- Atmosphärendruckplasma (1)
- Atomabsorptionsspektroskopie (1)
- Atomgewicht (1)
- Binäres Gemisch (1)
- Biomembran (1)
- Brennfleck (1)
- Brennstoffzelle (1)
- Bündelbildung (1)
- DNA (1)
- Diodenlaser mit externem Resonator (1)
- Drift-Diffusions-Modell (1)
- Durchbruch (1)
- Dünne Filme (1)
- ECDL (1)
- Einmodenlaser (1)
- Eisen-Polypyrrol (1)
- Elektrischer Strom / Messung (1)
- Elektronendichte (1)
- Elektronenkinetik (1)
- Emission (1)
- Emissionsentwicklung (1)
- Emissionsspektroskopie (1)
- Ethylenglykol (1)
- FCT-Verfahren (1)
- FT-IR-Spektroskopie (1)
- Feldlinienverschmelzung (1)
- Fluktuationen (1)
- Fluoreszenz (1)
- GID (1)
- Gallium (1)
- Gallium-Oxide (1)
- Galliumoxid (1)
- Gasaufzehrung (1)
- Gastemperatur (1)
- Hamburg / Deutsches Elektronen-Synchrotron (1)
- HiPIMS (1)
- Hochfrequenzplasma (1)
- Hybrid-Verfahren (1)
- Impulsübertragung (1)
- Intermittenz (1)
- Interpenetrierendes polymeres Netzwerk (1)
- Ionendichte (1)
- Ionenimplantation (1)
- Jet (1)
- Katalysator (1)
- Kathode (1)
- Kernmassenmessungen (1)
- Kobalt-Polypyrrol (1)
- Kreuzkorrelationsspektroskopie (1)
- Kupfer-Release (1)
- Kupfer-T (1)
- Kupferoxid <Kupfer(I)oxid> (1)
- Kupferoxid <Kupfer(II)-oxid> (1)
- Lamellare Phase (1)
- Laser (1)
- Laserdiod (1)
- Laserdurchstimmung (1)
- Leuchtstofflampe (1)
- Leuchtwerbung (1)
- Linienprofilfunktion (1)
- Lokale-Feld-Näherung (1)
- Lokale-Mittlere-Energie-Näherung (1)
- MG-63 Zellen (1)
- MG-63 cells (1)
- Massenspektrometrie (1)
- Massenspektroskopie (1)
- Mathematische Modellierung (1)
- Mehrschichtsystem (1)
- Metall-Polymer Verbindungen (1)
- Metalle (1)
- Mikroplasma (1)
- Mikrowelleninterferometer (1)
- Mikrowellenplasma (1)
- Monoschicht (1)
- Multireflexionsflugzeitmassenspektrometrie (1)
- Multiterm (1)
- NIR-Spektroskopie (1)
- Nanoparticles (1)
- Nanopartikel (1)
- Neutronenbeugung (1)
- Neutronenreflektometrie (1)
- Neutronenschalenabschluss (1)
- Nichtisothermisches Plasma (1)
- Niederdruckentladung (1)
- Niedertemperaturplasma (1)
- Oberflächenladung (1)
- Optisches Messgerät (1)
- PECVD (1)
- PECVD-Verfahren (1)
- PVD (1)
- Permeationsbarriere (1)
- Phaseresolved Diagnostic (1)
- Plasma-Immersions-Implantation (1)
- Plasma-Wand-Wechselwirkung (1)
- Plasmadynamik (1)
- Pockels-Effekt (1)
- Pockels-effect (1)
- Polyethylenglykole (1)
- Polyethylenimin (1)
- Polymer (1)
- Quecksilber (1)
- RF-Entladung (1)
- ROS (1)
- Radialverteilung (1)
- Radikal (1)
- Radionuklide (1)
- Rasterkraftmikroskopie (1)
- Reaktive Sauerstoffspezies (1)
- Reaktives Sputtern (1)
- Reflektometer (1)
- Röntgen-Photoelektronens (1)
- Röntgendiffraktion (1)
- Röntgenreflektivität (1)
- Sauerstoff (1)
- Schalenabschluss (1)
- Schutzschicht (1)
- Spot (1)
- Sputtering (1)
- Sputtern (1)
- Startverhalten (1)
- Stickstoff (1)
- Strukturbildung (1)
- Teflon (1)
- Titanaluminide (1)
- Titanatom (1)
- Titandioxid (1)
- Titanlegierung (1)
- Titannitrid (1)
- Transport (1)
- Turbulenz (1)
- Verlustprozess (1)
- Widerstand <Elektrotechnik> (1)
- Wärmeschutz (1)
- X-ray diffraction (1)
- X-ray reflectivity (1)
- Zeitaufgelöste Diagnostik (1)
- adsorption (1)
- akusto-optischer Effekt (1)
- aminogroups (1)
- binary mixture (1)
- bundle formation (1)
- cathode (1)
- closed neutron shell (1)
- cobalt-polypyrrole (1)
- conductive (1)
- continuously tuning (1)
- copper release (1)
- cross-correlation spectroscopy (1)
- deposition (1)
- dielectric barrier discharge (1)
- edelmetallfreie Katalysatoren (1)
- electron kinetics (1)
- external cavity diode laser (1)
- fluctuations (1)
- flüssig (1)
- gas consumption (1)
- hybrid method (1)
- ignition behavior (1)
- intermittency (1)
- iron-polypyrrole (1)
- jet (1)
- lamellar phase (1)
- leitfähig (1)
- line profile function (1)
- liquid (1)
- local-field-approximation (1)
- local-mean-energy-approximation (1)
- loss process (1)
- magische Zahlen (1)
- mercury-free (1)
- metal polymer structures (1)
- microplasma (1)
- multi-reflection time-of-flight mass spectrometry (1)
- multiterm (1)
- non noble metal catalysts (1)
- nuclear mass measurements (1)
- permeation barrier (1)
- plasma dynamics (1)
- polyelectrolytes (1)
- polymer (1)
- quecksilberfrei (1)
- radial distribution (1)
- radio frequency discharge (1)
- radionuclides (1)
- resonant state (1)
- resonanter Zustand (1)
- single mode (1)
- soft matter (1)
- spot (1)
- surface charges (1)
- teflon-like (1)
- temperatur (1)
- transport (1)
- turbulence (1)
- ultra-thin (1)
- ultradünn (1)
- xenon (1)
Institute
- Institut für Physik (28) (remove)
Es wurde eine Methode zur Herstellung ultradünner Filme aus Metall bzw. metallischen Verbindungen (Legierungen) etabliert. Die Struktur und die physikalischen Eigenschaften der Filme wurden untersucht. Die entwickelte Präparationsmethode beruht auf induzierter Filmkontraktion nach erzwungener Benetzung (iFCaFW). Die Filme bestehen aus ultradünnen vertikal heterostrukturierten Multischichten (2D-VHML), sie entstehen durch den Beschichtungsvorgang und bestehen aus jeweils einer nm-dicken metallischen Schicht (M) eingebettet zwischen zwei Metall(hydr)oxidschichten (MOxHy) im nm- bis sub-nm Bereich. Dieser vertikal heterostrukturierte Aufbau wurde bei allen untersuchten Filmmaterialien beobachtet. Alle in dieser Arbeit vorgestellten Schichtsysteme wurden unter atmosphärischem Druck hergestellt. Es konnten Substrate aus Silicium und Muskovit sowie aus Borosilikat- und Kalk-Natron-Glas (Objektträger) beschichtet werden. Jede, aus flüssigem Metall bzw. flüssiger Legierung hergestellte Schicht verfügt über eine feste (Hydr)oxidschicht an der Luftgrenzfläche. Diese feste (Hydr)oxidschicht fungiert als Substrat für die nächste darüber aufgebrachte Schicht aus flüssigem Metall bzw. flüssiger Legierung. Somit entstehen vertikal heterostrukturierte Multischichten durch identische Wiederholung des Beschichtungsvorgangs. Dies ist eine innovative und vergleichsweise umweltfreundliche Methode, um transparente, elektrisch leitfähige und lateral homogene nm-dünne ein- oder mehrschichtige Metallfilme herzustellen. Verwendet wurden Metalle mit sehr niedriger Schmelztemperatur (kleiner als 300 °C), wie Bismut, Gallium, Indium, Zinn und ihre Legierungen. Die hohe Oberflächenspannung der geschmolzenen Metalle und Legierungen sowie die Adhäsion mit der die (Hydr)oxidhaut dieser Metalle und Legierungen auf verschiedenen Substraten haftet ermöglicht die Beschichtungsmethode.
Polyelektrolyt-Multischichten (PEMs) werden durch sequentielle Adsorption von entgegengesetzt geladenen Polyelektrolyten (PE) auf festen Substraten adsorbiert. Die Layer-by-Layer Präparation ermöglicht es cm2 große Flächen zu beschichten und außerdem die Möglichkeit die Molekülanordnung senkrecht zur Substratoberfläche im nm-Bereich zu kontrollieren. Der Schwerpunkt dieser Arbeit ist die Untersuchung der Adsorption hinsichtlich des Molekulargewichts der beteiligten PEs von PEMs bestehend aus dem Polykation Polydiallyldimethylammonium (PDADMA) und dem Polyanion Polystyrolsulfonat (PSS). Zu diesem Zweck wird das Schichtwachstum unter in-situ Bedingungen mittels der Ellipsometrie untersucht. Das Schichtwachstum im Fall von PDADMA/PSS Multischichten verläuft nichtlinear mit der Anzahl an deponierten Schichtpaaren. Dabei wird das nichtlineare Wachstumsregime durch die unterschiedliche Linienladungsdichte zwischen einer PDADMA und PSS Kette in Verbindung gebracht. Die quantitative Analyse der Messungen zeigt, dass alle untersuchten PDADMA/PSS Multischichten präpariert aus 0,1 M NaCl bei Raumtemperatur mindestens zwei verschiedene Wachstumsregimes aufweisen. Zunächst wächst die Schicht parabolisch bis sie nach Nlin Schichtpaaren in ein lineares Wachstumsregime übergeht. Dieses wird durch einen konstanten Schichtdickenzuwachs pro adsorbiertes Schichtpaar Δdlin charakterisiert. Das Adsorptionsverhalten der PDADMA und PSS Ketten wird analysiert indem das Molekulargewicht Mw der Polyelektrolyte systematisch variiert wird (zwischen Mw(PDADMA)=24 kDa…322 kDa, sowie Mw(PSS)=8,6 kDa…168 kDa). Eine Analyse der Schichtparameter Nlin und Δdlin ergibt bei hohen Molekulargewichten von PDADMA und PSS, dass Nlin und Δdlin unabhängig von den jeweiligen Molekulargewichten sind (Nlin=15 und Δdlin=12,3 ± 1,3 nm). Reduziert man das Molekulargewicht von PDADMA auf einen Wert unterhalb eines Schwellwertes von Mw (PDADMA)=80 kDa, so nehmen Nlin und Δdlin linear ab. Unterschreitet das PSS-Molekulargewicht den Schwellwert Mw (PSS)=25 kDa, beobachtet man den gegenteiligen Effekt: beide Wachstumsparameter Nlin und Δdlin nehmen zu und ein zusätzliches exponentielles Wachstumsregime tritt auf. Damit wächst die Multischicht zunächst exponentiell, geht nach Nexp Schichtpaaren ins parabolische Wachstum bis dieses nach Nlin Schichtpaaren ins lineare Wachstumsregime übergeht. Neutronenreflexionsmessungen mit selektiv deuterierten PSS Schichten zeigen eine Diffusion der leichten PSS Ketten innerhalb der Multischicht. Ein solches Diffusionsverhalten ist typisch für exponentiell wachsende Schichten und wurde bereits theoretisch vorhergesagt. Um den molekularen Mechanismus der Adsorptionsprozesse besser zu verstehen, werden PEMs aus binären Mischungen präpariert. Diese setzen sich aus einem Molekulargewicht oberhalb und unterhalb des jeweiligen Schwellwertes (Mw(PDADMA)=80 kDa bzw. Mw(PSS)=25 kDa) zusammen. Dabei wird der Molenbruch des schweren Polyelektrolyts (ΦPDADMA(Mw(PDADMA)>80 kDa) bzw. ΦPSS(Mw(PSS)>25 kDa)) variiert. Im Falle der binären PDADMA Mischung beinhaltet die Adsorptionslösung Moleküle mit den Molekulargewichten Mw(PDADMA)= 35 kDa und 322 kDa. Ellipsometrische Messungen zeigen einen linearen Anstieg der Schichtparameter Nlin und Δdlin mit Erhöhung des Molenbruchs ΦPDADMA(322 kDa). Daraus wird gefolgert, dass die Zusammensetzung in der Adsorptionslösung derjenigen in der Multischicht entspricht. Es wird eine Formel zur Bestimmung der Schichparameter Nlin und Δdlin entwickelt, die zumindest auch auf ternäre Mischungen anwendbar ist. Damit lassen sich die Schichtparameter Nlin und Δdlin bei bekannten Molenbrüchen ΦPDADMA(Mw(PDADMA)) vorhersagen. Der Einfluss der Zusammensetzung der PSS-Adsorptionslösung zeigt ein anderes Verhalten: Die Zusammensetzung des Films entspricht hier nicht derjenigen der Adsorptionslösung. Bereits bei einem Anteil von ΦPSS (76 kDa) = 5% des schweren PSSd Moleküls (95% der Moleküle in der Adsorptionslösung sind leichte PSS Moleküle), findet einerseits kein exponentielles Wachstum statt und die Wachstumsparameter Nlin und Δdlin entsprechen denen solcher PEMs, welche ausschließlich aus schweren PSS Molekülen präpariert wurden. Neutronenreflexionsmessungen bei binären PSS-Mischungen mit schwerem deuteriertem PSSd und leichtem protonierten PSS zeigen, dass bei einer Adsorptionszeit von 30 min, ab ΦPSSd (80,8 kDa)=5% (ΦPSS(10,6 kDa)=95%) lediglich das schwere PSSd in die Multischicht eingebaut wurde. Durch die Streulängendichte wird die genaue Anzahl der PSS bzw. PSSd Moleküle in den PEM quantifiziert und damit die Menge an deponiertem Material bestimmt. Eine Hypothese ist, dass die leichten Moleküle die Oberfläche zwar schneller erreichen, in die Multischicht gelangen und durch den Film diffundieren. Dabei können diese gemäß der IN und OUT Diffusion den Film auch wieder verlassen. Um dies zu verifizieren wird die Adsorptionszeit der PSS Moleküle bei einer binären PSS Mischung mit ΦPSSd(80,8 kDa)=5% reduziert.
Polyelektrolyt-Multischichten werden durch die sequentielle Adsorption von entgegengesetzt geladenen Polyelektrolyten auf einem festen Substrat hergestellt. Die Präparation layer-by-layer ermöglicht die Beschichtungen von Flächen im cm-Bereich mit Schichtdicken im µm-Bereich sowie einer Kontrolle der Molekülanordnung senkrecht zur Substratoberfläche im nm-Bereich. Aus diesen Eigenschaften ergeben sich zahlreiche Anwendungsmöglichkeiten. Ein Schwerpunkt dieser Arbeit ist die Analyse der Polyelektrolyt-Adsorption bei der Präparation von Multischichten bestehend aus dem Polykation Polyallylaminhydrochlorid (PAH) und dem Polyanion Polystyrolsulfonat (PSS) bzw. Polydiallyldimethylammonium (PDADMA) und PSS. Die Untersuchung der Multischichten unter in-situ Bedingungen erfolgt mittels Ellipsometrie. Zu diesem Zweck wird ein Formalismus der ellipsometrischen Datenauswertung entwickelt, um die Messgenauigkeit bei der Untersuchung dünner, transparenter Schichten zu optimieren. Im Fall von PDADMA/PSS-Multischichten verläuft das Schichtwachstum nicht-linear mit der Anzahl an adsorbierten Doppelschichten. Der nicht-lineare Verlauf wird mit der unterschiedlichen Linienladungsdichte zwischen einer PDADMA- und einer PSS-Kette in Verbindung gebracht. Die quantitative Analyse der ellipsometrischen in-situ-Messungen ergibt, dass alle untersuchten PDADMA/PSS-Multischichten (präpariert aus 0,1 mol/L NaCl-Lösung bei Raumtemperatur) mindestens zwei verschiedene Wachstumsregimes aufweisen: Erst wächst die Schichtdicke parabolisch mit der Anzahl an deponierten Polyanion/Polykation-Schichtpaaren, nach Nlin Schichtpaaren erfolgt ein Übergang in lineares Schichtwachstum, charakterisiert durch eine konstante Dicke pro Schichtpaar dBL. Das parabolische Wachstumsregime lässt sich mit einer Asymmetrie im Adsorptionsverhalten von PDADMA und PSS erklären: Während die adsorbierenden PSS-Moleküle die Oberflächenladung lediglich neutralisieren, führt ein PDADMA-Beschichtungsschritt zu einer Ladungsüberkompensation und hinterlässt eine effektiv positiv geladene Oberfläche. Die deponierte Stoffmenge nimmt mit jeder PDADMA/PSS-Doppelschicht zu, bis nach Nlin Doppelschichten die adsorbierenden PSS-Ketten nicht mehr imstande sind alle positiven Oberflächenladungen zu neutralisieren. Die beiden Wachstumsparameter Nlin und dBL hängen in einem linearen Zusammenhang voneinander ab, da beide einem gemeinsamen Mechanismus folgen: Je mehr Doppelschichten ein parabolisches Wachstumsverhalten zeigen (Nlin), desto höher ist die Oberflächenbelegungsdichte am Ende des parabolischen Wachstumsregimes und desto größer die Doppelschichtdicke dBL. Das Adsorptionsverhalten von PDADMA- und PSS-Ketten wird analysiert, indem das Molekulargewicht Mw beider Polyelektrolyte systematisch variiert wird (zwischen Mw(PDADMA) = 24 kDa ... 322 kDa sowie Mw(PSS) = 8,6 kDa ... 168 kDa). Die Flächenbelegungsdichte pro Doppelschicht wächst proportional zu Mw(PDADMA) an, bis ab dem Schwellwert Mw(PDADMA) = 80 kDa eine Sättigung eintritt und das Schichtwachstum unabhängig vom Wert des PDADMA-Molekulargewichts wird (Nlin = 15 Doppelschichten und dBL = (12,3 ± 1,3) nm). Die Daten legen nahe, dass unterhalb des PDADMA-Schwellwerts lediglich ein Teil einer PDADMA-Kette auf der PSS-terminierten Multischicht adsorbiert und der restliche Teil der adsorbierten Kette in Lösung ragt. Oberhalb des PDADMA-Schwellwertes adsorbiert mindestens noch ein zweiter Abschnitt der Kette und es ragt mindestens ein loop in Lösung. Dies führt zu einer konstanten Gleichgewichtsdicke der Monoschicht unabhängig vom Molekulargewicht. Unterschreitet das PSS-Molekulargewicht den Schwellwert Mw(PSS) = 25 kDa, so beobachtet man den gegenteiligen Effekt: beide Wachstumsparameter Nlin und dBL nehmen deutlich zu. Die größten gemessene Werte (unter Verwendung von 8,6 kDa PSS) lauten Nlin = 33 und dBL = 28,7 nm. Neutronenreflektionsmessungen zeigen, dass dieser Effekt mit der Diffusion der kurzen PSS-Ketten innerhalb der Multischicht einhergeht. Die Ausdehnung der Diffusionszone von 8,6 kDa PSS beträgt 80 nm und nimmt bis zum Erreichen des PSS-Schwellwertes monoton mit Mw(PSS) ab. Im Gegensatz dazu bilden PSS-Ketten mit einem Molekulargewicht oberhalb des Schwellwertes klar lokalisierte, lateral homogene Schichten (mit einer Grenzflächenunschärfe von 2 ... 4,6 nm). Entgegen der intuitiven Erwartung hat eine höhere Adsorptionszeit keinen Einfluss auf die Diffusionszone. Der limitierende Faktor ist die Diffusionszone selbst. In Übereinstimmung mit der theoretischen Erwartung führt die Diffusion von kurzen PSS-Ketten während der Multischicht-Präparation zu einem exponentiellen Wachstum der PDADMA/PSS-Multischichten, sobald Mw(PSS) < 25 kDa. In diesem Fall durchläuft das Schichtwachstum nacheinander erst ein exponentielles, dann ein parabolisches und schließlich ein lineares Regime.
In dieser Arbeit wird ein einfaches Verfahren zur Herstellung ultradünner (3 nm) Galliumschichten unter Umgebungsbedingungen beschrieben. Die Schichten sind stabil bis zu einem Auflage-Druck im GPa-Bereich und replizieren die zugrundeliegende Substratrauheit sowie größere Strukturen. Weiterhin wird ihre Eignung als Permeationsbarriere gezeigt. Mithilfe von optischen und elektrischen Messungen wird schließlich anhand des Drude-Modells die Alterung (Oxidation) der Schichten unter Umgebungsbedingungen beschrieben.
In this thesis, the first on-line mass measurements of the isotopes 52,53K have been performed. These measurements by multi-reflection time-of-flight mass spectrometry with the ISOLTRAP setup at ISOLDE/CERN are linked to previously measured masses of exotic Ca isotopes, which had shown an unexpected large neutron-shell gap at the neutron number N = 32 for the magic proton core Z = 20. The new measurements provide the first exploration of the N = 32 neutron-shell closure below the proton number Z = 20. With a measured empirical two-neutron shell gap of about 3MeV for 51K, the N = 32 gap is smaller as compared to that of 52Ca, which measures about 4MeV, but is still significantly present. This confirms that the nuclear shell effect measured for calcium isotopes is not a phenomenon purely raised by its closed-proton-shell configuration, but is also present in potassium isotopes that possess an open proton shell and an unpaired proton. The second main objective of this thesis was the development of new techniques for efficient mass separation in Penning traps and multi-reflection devices, because the success of nuclear mass measurements with high precision depends crucially on the purity of the ion ensemble. The two main difficulties that have been addressed are, first, when the masses of the ions of interest and the masses of contaminant ions are very similar, and second, when the contaminant ions are predominantly present in the beam from ISOLDE. For the removal of contaminant ions in a high-vacuum Penning trap with high resolving power, a new technique for mass separation has been developed. A simultaneous application of a dipolar radio-frequency field at the magnetron frequency of all ions (mass independent at leading order) and a quadrupolar radio-frequency field at the cyclotron frequency (highly mass dependent) of a chosen ion species provides a new way of ion purification. The result is that the magnetron radius of all ions is increased by the effect of the dipolar excitation, and, at the same time, the quadrupolar excitation leads to a conversion of the radial eigenmotions for the chosen species. The consequence of this simultaneous process is that the wanted ions move back to the trap axes while all other ions are radially ejected from the trap. The advantage of the new method is the simultaneous ejection of all unwanted species in a high vacuum, which otherwise have to be addressed by a dipolar excitation at different frequencies, or by use of complex waveforms if a broadband ejection is required. A comparable (general) broadband ejection as achieved by the new method was previously only achieved in buffer-gas filled Penning traps. Further technical developments were performed with ISOLTRAP’s multi-reflection time-of-flight mass separator. The goal was to improve on situations when dealing with highly contaminated beams from ISOLDE during on-line Penning-trap measurements. In such cases, the number of events obtained in a limited time can be very low for the reason that only a limited number of ions, which predominantly consist of contaminant ions, can be stored and separated in the multi-reflection device at a given time to avoid non-negligible Coulomb interactions between the ions. The situation at ISOLTRAP has been significantly improved by a more efficient use of the separation cycle of the multi-reflection device. The mass-separation cycle is by far shorter (on the order of 10 ms) than a Penning-trap mass measurement (on the order of seconds). Thus, the separation in the multi-reflection device has been decoupled from the Penning-trap mass measurement and is repeated rapidly, while the purified ions are accumulated, stored, and cooled in the preparation Penning trap of ISOLTRAP. The collected ions of interest can then be transferred to the precision-measurement trap. This method increases the possible ratio of the number of contaminant ions to ions of interest by up to two orders of magnitude, i.e. the ratio of the corresponding process durations. Additionally, space-charge problems in multi-reflection devices have been investigated by setting up an off-line apparatus at Greifswald. The dynamical effects of ions in multi-reflection devices under non-negligible Coulomb interactions have been investigated in order to search for possibilities for improvements on such situations. This resulted in a new method of manipulating the ion densities in the device. The ions move in a cloud with large spatial extend for the major part of the trapping time and can later be compressed to small bunches for high-resolution mass separation. Proof-of-principle measurement have been performed with a low number of stored ions, where successful isobar separation has been demonstrated.
In der vorliegenden Arbeit wurden die Wechselwirkungen zwischen den reaktiven Sauerstoffspezies (ROS) und den Lipiden, die das Grundgerüst der Zellmembran bilden, sowie die daraus resultierenden chemischen und physikalischen Veränderungen der Membran untersucht. Außerdem wurde der Schutz einer Modellmembran durch Adsorption eines Polymers untersucht. Da natürliche Zellmembrane hoch komplexe Systeme sind, in und an denen chemische und strukturelle Prozesse häufig gleichzeitig ablaufen, wurden Lipidmonoschichten und Liposomen als Modellmembranen für die Untersuchungen gewählt. Die Radikale wurden mithilfe der Fenton-Reaktion erzeugt. Um ein vollständiges Bild des Radikalangriffs auf Modellmembrane zu erhalten, war es notwendig verschiedene Untersuchungsmethoden zu verwenden. Die Lipidmonoschichten und deren Phasenumwandlungen wurden vor und nach dem Radikalangriff mithilfe des Langmuir-Troges und den damit aufgenommenen Isothermen untersucht. Die Fluoreszenz- und die Brewsterwinkel-Mikroskopie wurde genutzt, um die Veränderungen des Phasenübergangs und somit die Veränderungen der Form und des Wachstums von Lipid-Domänen (flüssig-kondensierten Phase) durch den Radikalangriff zu beobachten. Die laterale periodische Struktur und das vertikale Elektronendichteprofil der Lipidmonoschicht wurden mit der Röntgendiffraktion und Röntgenreflexion vor und nach dem Radikalangriff untersucht. Mit der Infrarot-Reflexion-Absorption Spektroskopie (IRRAS) können Aussagen über die chemische Veränderungen der Lipide nach dem Radikalangriff getroffen werden. Die Liposomen wurden mit Differenzkalorimetrie untersucht, um die Verschiebung der Phasenübergangstemperatur durch den Radikalangriff zu beobachten. Der Radikalangriff auf Liposomen wurde mit Fluorenzmikroskopie verfolgt. Im ersten Teil der Arbeit wurde die Wechselwirkung von ROS mit zwitterionisch geladenen Lipiden untersucht. Die Modellmembranen bestanden aus Phosphatidylcholinen. Fasst man alle Ergebnisse der Untersuchungen zusammen, führt dies zum folgenden Resultat: Die Radikale reagieren bevorzugt mit der Kopfgruppe der zwitterionischen Phosphatidylcholinen. Es entstehen negativ geladene Phospholipide mit einer kleineren Kopfgruppe. Die Alkylketten bleiben nach dem Radikalangriff unverändert. Wie die Isothermen und die Brewsterwinkel-Mikroskopie bei Monoschichten sowie die Thermogramme bei Liposomen zeigen, hat die Reaktion keinen erkennbaren Einfluss auf das thermodynamische Verhalten. Erst durch Zugabe bzw. bei Vorhandensein von „freien“ Eisen-Ionen wird die Veränderung der Phosphocholine durch die Radikale beobachtbar. Die „freien“ Eisen-Ionen binden an die negativ geladenen Phospholipde. Dies führt im Fall von DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) Monoschichten zu einer irreversiblen Verfestigung. Weiterhin kommt es zur Abnahme der molekularen Fläche in der flüssig-kondensierten Phase. Im Fall von DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) Liposomen führt der Radikalangriff, bei Vorhandensein von „freien“ Eisen-Ionen, ebenfalls zu einer Verfestigung. Am Ende des Radikalangriffs sind die Liposomen zerstört. Im zweiten Teil der Arbeit wurde die Wechselwirkung von ROS mit negativ geladenen Phospholipiden untersucht. Dabei wurde herausgefunden, dass die negative Ladung der Phospholipide nach dem Radikalangriff erhalten bleibt. Die Alkylkettenlänge bleibt konstant. Die durchgeführten IRRAS Messungen zeigen ebenfalls keine Veränderungen der Alkylketten. Aufgrund der Beobachtung, dass Eisen-Ionen negativ geladene Modellmembranen verfestigen, sollte im dritten Teil dieser Arbeit die Eisenanbindung an negativ geladene Monoschichten am Beispiel des Cardiolipin TMCL quantifiziert werden. Bei einem physiologischen pH-Wert führt eine Eisen-Ionen Konzentration im mikromolaren Bereich zu einer irreversiblen Verfestigung der Monoschicht. Der pH-Wert ist ein entscheidender Parameter. Eine irreversible Verfestigung der Monoschicht kann durch einen pH-Wert von 1,3 oder niedriger verhindert werden, wenn die Eisenkonzentration kleiner als 1000 µM ist. Bei höheren Eisenkonzentrationen tritt auch bei diesem pH-Wert eine Verfestigung ein. Im vierten Teil dieser Arbeit wurde die Wechselwirkung von ROS mit einer negativ geladenen Lipid-Monoschicht (DMPG) mit adsorbierten Polykationen (Polyethylenimin (PEI)) untersucht. Die adsorbierte Polymerschicht dient zum Schutz der Lipidmonoschicht. Der Radikalangriff wurde mit verschiedenen Fenton-Konzentrationen durchgeführt. Es war eine signifikant höhere Fenton-Konzentration als bei dem Radikalangriff auf eine DPPC Monoschicht notwendig, um Veränderungen zu induzieren.
Im ersten Teil der Arbeit wird der erfolgreiche Aufbau einer Diagnostik zur quantitativen Bestimmung von Oberflächenladungsdichten beschrieben. Das Messprinzip bedient sich des elektro-optischen Pockelseffekts eines BSO-Kristalls, der in der Entladungszelle als Dielektrikum eingesetzt ist. Diese Methode arbeitet zeitlich und lateral aufgelöst, was die Untersuchung der Dynamik von Oberflächenladungen auf drei verschiedenen Zeitskalen ermöglicht. Die erste Zeitskala liegt in der Größenordnung von einigen 100 ns. Damit kann erstmals die Deposition von elektrischer Ladung auf einer dielektrischen Oberfläche während eines Entladungsdurchbruchs beobachtet werden. Die Deposition beginnt im Zentrum eines zuvor deponierten Ladungsspots. Die Polarität der neudeponierten Ladung ist der des ursprünglichen Ladungsspots entgegengesetzt. Die Folge ist, dass die absolute Ladungsdichte im Zentrum im Verlauf einiger hundert Nanosekunden kleiner wird als in den Randbereichen. Der Umladungsprozess wird so lange fortgesetzt, bis das elektrische Feld der neu deponierten Ladungen dem äußeren Feld so stark entgegenwirkt, dass die Spannung zur Aufrechterhaltung der Entladung unterschritten wird und die Entladung erlischt. Die zweite untersuchte Zeitskala liegt in der Größenordnung der Periodendauer der externen Spannung. Im Nulldurchgang der Spannung liegen zeitlich stationäre Ladungsdichteverteilungen auf dem Dielektrikum vor. Die Geometrie eines mittleren Ladungsspots wird in Abhängigkeit der anliegenden Spannungen und des Gasdrucks untersucht. Einerseits ist der Spotradius abhängig von den Ionisationsprozessen im Volumen, weil die Dichte der Raumladungen die Stärke des Elektronenfokus in das Innere der Entladung steuert. Andererseits wird die Spotbildung durch eine laterale Drift von Ladungsträgern kurz vor der Oberfläche aufgrund des elektrischen Feldes deponierter Ladungsträger beeinflusst. Die dritte untersuchte Zeitskala liegt in einer Größenordnung von Sekunden. Im Fall einer initial homogenen Oberflächenladungsverteilung nimmt die mittlere Ladungsdichte in einer Größenordnung von Sekunden monoton ab. Dieser Prozess stellt einen Ladungsabbau dar, dessen zeitliches Verhalten durch zwei überlagerte Exponentialfunktionen beschreiben ließ. Dadurch werden zwei Ladungsträgerpopulationen im BSO angenommen, die verschieden abgebaut werden. Im Fall einer initial inhomogenen Ladungsdichteverteilung wird ein Transport elektrischer Ladung auf der BSO-Oberfläche in einer Größenordnung von Sekunden beobachtet. Es wird weiterhin erstmals die durch einen Atmosphärendruck-Plasmajet deponierten Ladungen auf BSO zeitaufgelöst gemessen. Die zeitliche Entwicklung der Oberflächenladungen kann mit der Messung des elektrischen Stroms an einer der Ringelektroden des Jets korreliert werden. Dadurch wird geschlossen, dass der Ladungsaustauch nicht direkt durch einen Bullet verursacht wird. Er erzeugt stattdessen einen elektrisch leitfähigen Kanal zwischen der Düse des Jets zur BSO-Oberfläche. Infolgedessen kann Ladung, die sich auf der Innenseite der Jetkapillare befindet, auf den BSO-Kristall transportiert werden. Im zweiten Teil der Arbeit werden Kenngrößen entwickelt, die den Ordnungszustand einer aus Einzelobjekten zusammengesetzten Entladungsstruktur quantitativ beschreiben. Die Kenngrößen werten dabei die laterale Leuchtdichteverteilung der Entladungsemisssion, u.a. auf Basis der Tripel-Korrelationsfunktion. Dabei werden zwei separate Bifurkationsspannungen zwischen einer hexagonalen und einer ungeordneten Anordnung beobachtet: Bei der Verringerung der Spannung wird zunächst der Bifurkationspunkt der azimutalen Ordnung durchlaufen und anschließend der Bifurkationspunkt der radialen Ordnung. Die Systeme gehen jeweils in einen Zustand geringerer Ordnung über. Die Ursache des Ordnungsverlusts ist das zunehmende Fehlen von Entladungsspots, was im Mittel zu einer geringeren Wechselwirkung der Spots untereinander führt und das System an Freiheitsgraden gewinnt. Im dritten Teil dieser Arbeit wird erstmals ein Ansatz verfolgt, der die Steuerung lateral strukturierter Entladungen ermöglicht. Dafür wurde ein Aufbau konstruiert, bei dem ein gekühlter Halbleiter als Dielektrikum in der Entladungszelle dient. Dessen externe Beleuchtung führt bei einer anliegenden Spannung zu einer Änderung des Spannungsteilerverhältnisses der kapazitiven Elemente und schließlich zu einer lokalen Erhöhung der Spannung über dem Entladungsraum. Die Größe und Leuchtintensität der durch die Beleuchtung gezündeten Entladung ist stark abhängig von der beleuchteten Fläche, der Leistungsdichte der Beleuchtung und der anliegenden Spannung.
Ein System zu Abscheidung intermetallischer Cu-Ti basierter Schichten durch Magnetronsputtern wurde entworfen, aufgebaut und plasmadiagnostisch charakterisiert. Die duale, extern schaltbare Leistungselektronik mit hoher Parallelkapazität erlaubt den Pulsbetrieb beider Magnetrons gegeneinander mit beliebiger Frequenz f, Tastgrad t_a/T und Pulsverzögerung t_d. Auf diese Weise kann neben konventionellen Pulsmodi (dual-MS: f = 4.6 kHz, t_a/T = 50 %) das Hochenergieimpulsmagnetronsputtern (dual-HiPIMS: f = 100 Hz, t_a/T = 1 %) realisiert werden. Außerdem können die unterschiedlichen Sputterausbeuten von Ti und Cu durch individuell einstellbare mittlere Entladungsströme kompensiert werden. Die Entladungscharakteristika zeigen besonders hohe temporäre Ströme (I > 50 A) während HiPIMS. Langmuir-Sondenmessungen bestätigen höhere Elektronendichten (n_e = 10^18 m^-3) und eine breitere Elektronenenergieverteilung im Vergleich zu dual-MS. Als Folge kommt es zur verstärkten Ionisierung und Anregung von Plasmaspezies, nachgewiesen durch optische Emissionsspektroskopie (OES). Spektral integrierte OES wurde zur Beschreibung der räumlich und zeitlichen Entladungsentwicklung herangezogen, während mittels Gegenfeldanalysator die für die Schichtbildung wichtige Ionengeschwindigkeitsverteilung zeitaufgelöst erfasst wurde. Die gewonnenen Schichten wurden röntgenographisch analysiert und deren Eigenschaften in Hinblick auf ihre Bildung unter verschiedenen Entladungsmodi gedeutet. Schichtdicke, Kristallinität und Dichte zeigen eine klare Abhängigkeit vom Entladungsmodus mit vorwiegend höherer Güte durch HiPIMS. Die Variation des mittleren Cu-Entladungsstromes erlaubt Einfluss auf die Schichtzusammensetzung, maßgeblich für praktische Anwendungen. Des Weiteren wurden Kompositschichten auf Basis von Cu-Nanopartikeln (Cluster) eingebettet in einem dielektrischen Matrixmaterial (TiO2) synthetisiert und untersucht. Zunächst wurde das Cu-Clusterwachstum durch ein neues Buffergas-Pulsverfahren zeitaufgelöst untersucht und die damit einhergehende Performance der Partikelquelle auf Basis eines einfachen Modells evaluiert. Als Resultat kann die Größen-/Massenverteilung und damit die Eigenschaften der Cluster auf einfache Weise beeinflusst werden. Schließlich wurden die Cu-TiO2-Kompositschichten in einem eigens angefertigten Co-Depositionssystem erstellt. Dabei werden die aus der Gasaggregationsquelle emittierten Cu-Cluster simultan zu reaktiv (mit O2) gesputtertem Ti abgeschieden. Separat abgeschiedene Cu-Cluster zeigen vorwiegend polykristallines fcc-Cu, dass an Luft oder unter Zugabe von molekularem O2 oberflächlich Cu2O ausbildet. Während auch das separat reaktiv abgeschiedene Ti Titandioxid (TiO2) bildet, weist das Cu im Nanokomposit grundlegende strukturelle Unterschiede auf: Im Komposit liegt kein metallisches Cu mehr vor, stattdessen ist es vollständig zu CuO konvertiert. Dies ist auf die Anwesenheit eines reaktiven Sauerstoffplasmas beim Co-Depositionsprozess zurückzuführen. Es konnte gezeigt werden, dass molekularer O2 lediglich eine diffusionsbegrenzte Menge Cu2O erzeugt, während entladungsaktivierte Sauerstoffspezies zur völligen Durchoxidation der Cu-Cluster zu CuO führt. Dies ist eine wichtige Erkenntnis für die zukünftige Herstellung ähnlicher Komposite.
Die Forschung an mikrowelleninduzierten Atmosphärendruckplasmen am INP führte zu verschiedenen potentiellen Applikationen. Dabei besitzt die mikrobiologische Dekontamination sowohl von thermolabilen Medizinprodukten als auch von Lebensmitteln schon zum jetzigen Zeitpunkt ein hohes industrielles Anwendungspotential. Den aufgeführten Anwendungen gemeinsam ist, dass für eine erfolgreiche Weiterentwicklung der Prozesse, sowie der Plasmaquelle, ein grundlegendes Verständnis der vorliegenden dynamischen Mikrowellenplasmawechselwirkung notwendig ist. Durch den begrenzten diagnostischen Zugang der zu untersuchenden Plasmaquelle wird ein kombinierter Ansatz aus diagnostischen Methoden und Modellierung gewählt. Die Entladung wird in Argon bei reduziertem Druck (ab 10 mbar) zur Vereinfachung des Modells betrieben. Daher musste die Plasmaquelle für diesen Einsatz weiterentwickelt werden. Dieses beinhaltet die Neuauslegung der Prozesswärmeabfuhr, auf Grund der nicht oder nur teilweisen Anwendbarkeit von etablierten Verfahren im Atmosphärendruck (hohe Gasflüsse, Wasserkühlung). Die Plasmamikrowellenwechselwirkung dieser Quelle ist anschließend mit Methoden zur Charakterisierung des Plasmas und des Mikrowellenfeldes für unterschiedliche Arbeitspunkte in Druck und Leistung untersucht worden. Zur Bestimmung der Elektronendichte des Plasmas wurde ein frequenzvariables Mikrowelleninterferometer auf Basis eines Vektornetzwerkanalysators erstmalig etabliert. Dieses neue Messsystem wurde im Vorfeld detailliert untersucht, um das korrekte Zusammenspiel aller Komponenten zu überprüfen. In diesem Zusammenhang wurde ein frequenzaufgelöstes Mikrowelleninterferometer zur Messung der Elektronendichte in einer Fluoreszenzlampe aufgebaut. Durch diesen neuartigen Ansatz konnte der Einfluss der dielektrischen Umhüllung (Glasrohr der Lampe) auf die Mikrowelleninterferometrie untersucht werden. In einer weiteren Untersuchung an einem Induktiv Gekoppelten Plasma wurden die Resultate dieses Messsystems mit denen von Langmuir-Sondenmessungen. Auf Grund der konstruktiven Gegebenheiten des Reaktors ist das Plasma nur über ein Fenster für das Mikrowelleninterferometer zugänglich. Der Vergleich der ermittelten Elektronendichten ergab einen Unterschied von Faktor zwei zwischen Interferometer und Langmuir-Sonde. Die Untersuchungen an der Fluoreszenzlampe und dem Induktiv Gekoppelten Plasma zeigten zum einen die korrekte Funktion des neu etablierten frequenzvariablen Mikrowelleninterferometers mit erreichbaren Phasenauflösungen unterhalb von 0,1 mrad. Zum anderen wurde festgestellt, dass die dielektrische Umhüllung des Plasmas zu einem systematischen Fehler von bis 53 % bei der Elektronendichtebestimmung führen kann. Diese gewonnenen Erkenntnisse hatten bei der Konzipierung des Mikrowelleninterferometers zur Untersuchung der Plasmamikrowellenwechselwirkung einen entscheidenden Einfluss. Neben der Untersuchung des Plasmas ist ebenfalls eine Diagnostik des Mikrowellenfeldes nötig, um die Plasmamikrowellenwechselwirkung dieser Entladung experimentell zu charakterisieren. Auf Grundlage dieser Daten können die Resultate des Modells bewertet werden, die einen Einblick in die Plasmaquelle und ihrer dynamischen Vorgänge erlaubt, was für die Weiterentwicklung der Applikationen essentiell ist. Aus diesem Grund ist ein heterodynes Reflektometer entwickelt worden. Dieses Messsystem wurde umfangreich getestet und kann mit einer maximalen Zeitauflösung von 100 ns den komplexen Reflektionsfaktor mit einer Phasengenauigkeit von 10 mrad bestimmen. Das Reflektometer erlaubt einen experimentellen Zugang zur aktiven Zone schon in der Frühphase der Entladung. Mit Hilfe der Diagnostiken zur Untersuchung des Plasmas und des Mikrowellenfeldes wurde die Entladung von der Zündung bis zur stationären Phase charakterisiert und mit den Ergebnissen des Modells verglichen. Es zeigte sich eine gute Übereinstimmung im Millisekundenzeitbereich, sowie eine starke Dynamik im Reflektionsfaktor in der ersten Millisekunde, hervorgerufen durch die Plasmamikrowellenwechselwirkung. Durch die hohe Zeitauflösung des Reflektometers konnten diese Vorgänge im Mikrosekundenzeitbereich erstmalig experimentell aufgelöst werden, was die Interpretation mittels des Modells möglich macht. Es konnten die Vorgänge während der Zündung des Plasmas detailliert untersucht werden und damit die Richtigkeit von Annahmen, die bei der Entwicklung der Zündtechnologie getroffen wurden, überprüft werden. Dieses erworbene grundlegende Verständnis ermöglicht eine Weiterentwicklung dieser Technologie. Mit Hilfe der erzielten Ergebnisse wurde eine neue Optimierungsstrategie für die Abstimmung der Mikrowellenplasmaquelle entwickelt. Dies führte zu einer wesentlichen Verbesserung der Reproduzierbarkeit der mikrobiologischen Ergebnisse. Darüber hinaus bilden die erzielten Ergebnisse eine solide Grundlage für weitere experimentelle und theoretische Untersuchungen dieser Entladung in beispielsweise anderen Arbeitsgasen.
In der vorliegenden Arbeit wurde die Wechselwirkung reaktiver Sauerstoffspezies (ROS) mit organischen Molekülen anhand zweier unterschiedlicher Systeme analysiert. Während einerseits der Einfluss von ROS auf eine organische Monoschicht am Beispiel des synthetischen, kationischen Polyelektrolyten Polyethylenimin (PEI) untersucht wurde, stand andererseits die Wechselwirkung von ROS mit einem DNS-Molekül, dem Biopolyelektrolyten pBR322 im Fokus des Interesses. Für die Untersuchungen der ROS-PEI-Wechselwirkung wurde zunächst verzweigtes PEI flach (RMS-Rauigkeit < 1 nm) auf einem Silizium-Substrat adsorbiert. Mit Hilfe der Fenton-Reaktion wurde die PEI-Monoschicht dem Einfluss von ROS ausgesetzt. Anhand von Kraft-Abstands-Kurven (KAK) konnte gezeigt werden, dass die flache Konformation der PEI-Monoschicht nach dem ROS-Einfluss erhalten bleibt. Des Weiteren konnte mittels Adsorption negativ geladener Gold-Nanopartikel (AuNP) demonstriert werden, dass die PEI-Oberfläche auch nach der Wechselwirkung mit ROS positiv geladene Gruppen enthält. Darüber hinaus konnte mit Hilfe der KAK gezeigt werden, dass sowohl die Oberflächenladungsdichte (OFL) als auch das Oberflächenpotential (OFP) unter ROS-Einfluss um einen Faktor 0,5 reduziert wurden. Es wurde gezeigt, dass die Reduzierung von OFL bzw. OFP auf die Abspaltung positiv geladener Gruppen der PEI-Monoschicht zurückgeführt werden kann. Mit Hilfe der dreidimensionalen Kraftspektroskopie wurde gezeigt, dass OFL und OFP auf einer Längenskala von 1,8 bis 30 µm lateral homogen sind. Darüber hinaus wurde anhand der AuNP-Belegungsdichte demonstriert, dass die Ladungsträger innerhalb der PEI-Oberfläche auf einer Längenskala oberhalb von 36 nm homogen verteilt sind. Hinsichtlich kleiner Längenskalen (< 36 nm) kann konstatiert werden, dass aufgrund einer verzögerten Adsorptionskinetik der AuNP nach der ROS-PEI-Wechselwirkung mit einer partiell reduzierten Bindungswahrscheinlichkeit zu rechnen ist. Vermutlich bewirkt der ROS-Einfluss eine inhomogene Verteilung der positiven Ladungsträger innerhalb der PEI-Monoschicht auf einer Längenskala von einigen nm. Experimentell ergibt sich darüber hinaus, dass eine 50 %ige Reduzierung des PEI-Oberflächenpotentials einer Abnahme von etwa 10 % der maximalen, anteiligen AuNP-Belegungsdichte entspricht. Diese experimentell bestimmten Parameter konnten unter Einbeziehung eines erweiterten drei-Körper RSA-Modelles erklärt werden. Im zweiten Teil der vorliegenden Arbeit wurde eine neue Methode der Quantifizierung ROS-induzierter DNS-Schäden eingeführt. Dazu wurden die DNS-Moleküle zunächst mittels Fenton-Reaktion dem Einfluss von ROS ausgesetzt, auf Polyallylamin-Hydrochlorid-funktionalisiertem Glimmer adsorbiert und mittels des RKM im intermittierenden Modus (RKM-IM) abgebildet. Die Klassifizierung der DNS-Moleküle erfolgt unter Berücksichtigung des Kettenhöhenunterschiedes von doppelsträngiger- (dsDNS) und einzelsträngiger (esDNS) DNS. Als ROS-induzierter DNS-Schaden wird hierbei der Konformationsübergang von dsDNS (intakt) in esDNS (defekt) identifiziert. Die zentrale Messgröße der vorgestellten Methode ist demnach die DNS-Kettenhöhe, welche sich im Falle immobilisierter DNS-Moleküle mit einer Genauigkeit im Sub-Ångström-Bereich mit Hilfe des RKM-IM bestimmen lässt. Für die automatisierte Quantifizierung der Flächen, welche mit dsDNS respektive esDNS belegt sind, wurde ein Höhengrenzwert-basierter Auswertungs-Algorithmus konstruiert. Neben der Variation der Stärke der ROS-DNS-Wechselwirkung mittels verschiedener H2O2-Konzentrationen innerhalb der Fenton-Reaktion, wurde der Einfluss eines Radikalfängers am Beispiel des Natriumacetats (NaOAc) auf diese Wechselwirkung untersucht. Mit der Quantifizierung der ROS-DNS-NaOAc-Wechselwirkung wurde gezeigt, dass der anteilige DNS-Schaden mit wachsender H2O2-Konzentration zunimmt und mit steigender NaOAc-Konzentration abnimmt. Darüber hinaus wurde die Anwendbarkeit der in dieser Arbeit eingeführten Quantifizierung ROS-induzierter DNS-Schäden mit Hilfe eines reaktionskinetischen Ansatzes unter Verwendung des Modelles der kompetitiven Hemmung analysiert. Auf diese Weise wurden Ratenkonstanten der Wechselwirkung zwischen NaOAc mit Hydroxylradikalen verifiziert und somit die Validität des eingeführten Konzeptes demonstriert. Des Weiteren ermöglicht die automatisierte Datenanalyse einen vergleichsweise hohen Datendurchsatz und eignet sich daher gut für die Untersuchung der komplexen Wechselwirkung zwischen ROS, Radikalfänger und DNS. Anhand eines Vergleiches mit den etablierten Methoden zur Quantifizierung ROS-induzierter DNS-Schäden ergibt sich unter Einbeziehung des, in dieser Arbeit eingeführten Analyseverfahrens, ein komplementäres Verständnis der ROS-DNS-Wechselwirkung über einen großen Längenskalenbereich.