### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (103)
- Article (6)

#### Language

- English (109) (remove)

#### Keywords

- Plasmaphysik (20)
- Plasma (18)
- Stellarator (9)
- Plasmadiagnostik (8)
- Cluster (5)
- Kernfusion (5)
- Komplexes Plasma (5)
- AtmosphÃ¤rendruckplasma (4)
- Fusionsplasma (4)
- Hochfrequenzplasma (4)

#### Institute

- Institut fÃ¼r Physik (109) (remove)

In this thesis wave propagation in the whistler wave frequency range Ï‰ciâ‰¤Ï‰â‰¤Ï‰ce in the linear magnetized plasma experiment VINETA is investigated. The plasma is generated by a helicon antenna and has a diameter of about 10 cm. Whistler waves are launched by a loop antenna with a diameter of 4.5 cm and the fluctuating magnetic field is mapped by á¸‚-probes. Experiments are carried out for plasma parameters Î³â‰¤1/ âˆš 2 under which the only transversal polarized wave according to plane wave dispersion theory is the whistler wave. Due to the small collision frequencies Î½â‰ª1 cyclotron damping of whistler waves in this parameter regime is dominant and depends only on the electron plasma-Î². The influence of the inhomogeneous plasma profile and excitation by a loop antenna is investigated by measurements of the fluctuating magnetic field perpendicular to the ambient magnetic field in azimuthal and radial axial planes. A mode characterized by the number of wave lengths m in the azimuthal direction is found. The mode structure is modified by the specific shape of the plasma density profile. Profiles with a homogeneous density inside the plasma radius are found to posses a comparably simple mode structure. An agreement in the mode structure of full-wave simulations in three dimensions, including a Gaussian density profile and excitation of the wave by a loop antenna, with the experimental results is found. Conclusions on the spatial structure of the excited mode are drawn using the simulations which predict excitation of an m=2 mode. The wave is found to be ducted within the plasma radius over a wide parameter range. A Helmholtz decomposition of the simulations electric field exhibits the fluctuating space charge as the dominant source for the electric field, while the contribution due to induction is negligible. The magnetic field is given partially by the electron and displacement current. Both contributions to the magnetic field are of the same order of magnitude. The frequency dependency of the excited modes spatial damping increment is investigated using measurements of the magnetic fluctuations along the symmetry axis of the plasma. In order to illustrate the parameter dependency, the electron plasma-Î² is varied over two orders in magnitude in the range Î² = 4Â·10-4 - 2.4Â·10-2. The experimental result for the spatial damping increment of the mode yields a strong damping for wave frequencies Ï‰/Ï‰ce > 0.5 at maximum plasma-Î², which shifts to higher frequencies with decreasing Î². The parameter dependency of the damping for a fixed frequency is studied in an axial ambient magnetic field gradient. In both cases an excellent agreement between the experimental result and predictions for cyclotron damping from plane wave dispersion theory is found.

In this work, the investigation of dusty plasma by means of tunable diode laser spectroscopy was carried out. Special interest was focused on the interactions of dust particles and metastable atoms. At first, Al density and temperature in dc and pulsed magnetron discharges were measured. Measurements with argon as working gas show an expected behavior of the measured atom density and temperature. Decrease of absorption signal was observed in argon/oxygen and argon/methane mixtures. A small admixture of oxygen leads to a complete disappearance of the absorption signal indicating vanishing Al atom density. The effect is believed to be caused by the oxidation of the magnetron target. This decrease reveals typical hysteresis behavior caused by poisoning of the target. Significant difference between critical oxygen flow value in dc and pulsed modes was registered. Then dust formation and plasma behaviors in hydrocarbon containing plasmas were analysed. The dust growing plasmas (Ar/C2H2, Ar/CH4 and Ar/C3H6 rf plasmas) were characterized by laser transmission and scattering methods, ion energy distribution function and mass spectrum evolution by plasma processing monitor, and the spatial distribution in pristine plasma and the temporal behavior of the metastable atom density in processing plasma using TDLAS. Pristine plasma were then characterized in term of metastable density and temperature. The radial distribution of neon metastable atom density in capacitive coupled rf discharge can be approximated to a Gaussian profile with the width smaller than plasma chamber radius. The diffusion flow of metastable atoms deduced from their spatial density distribution gives the loss of metastable atom in the plasma sheath. Argon metastable density was measured in rf plasma and compared with a simple model for metastable density. The model explains well the trend of metastable density with respect to the change of plasma input power. Metastable density of dusty plasma with injected dust particles was measured and compared to that of pristine plasma. The particle heating by metastable atoms was strongly evidenced. The power absorbed by dust particles due to bombardment of metastable atoms onto a dust particle surface in our experiments is about 0.04 Wm-2 for the low dust density case and lower for higher dust density which is in the same order as the contributions of kinetic energy of ions and electrons and the energy released by their recombination on the grain surface. The influence of dust particle density and size on metastable density was studied. Through measuring metastable density, TDLAS can be used as a tool to study the dust growth process in processing plasma.

The confinement of energy has always been a challenge in magnetic confinement fusion devices. Due to their toroidal shape there exist regions of high and low magnetic field, so that the particles are divided into two classes - trapped ones that are periodically reflected in regions of high magnetic field with a characteristic frequency, and passing particles, whose parallel velocity is high enough that they largely follow a magnetic field line around the torus without being reflected. The radial drift that a particle experiences due to the field inhomogeneity depends strongly on its position, and the net drift therefore depends on the path taken by the particle. While the radial drift is close to zero for passing particles, trapped particles experience a finite radial net drift and are therefore lost in classical stellarators. These losses are described by the so-called neoclassical transport theory. Recent optimised stellarator geometries, however, in which the trapped particles precess around the torus poloidally and do not experience any net drift, promise to reduce the neoclassical transport down to the level of tokamaks. In these optimised stellarators, the neoclassical transport becomes small enough so that turbulent transport may limit the confinement instead. The turbulence is driven by small-scale-instabilities, which tap the free energy of density or temperature gradients in the plasma. Some of these instabilities are driven by the trapped particles and therefore depend strongly on the magnetic geometry, so the question arises how the optimisation affects the stability. In this thesis, collisionless electrostatic microinstabilities are studied both analytically and numerically. Magnetic configurations where the action integral of trapped-particle bounce motion, J, only depends on the radial position in the plasma and where its maximum is in the plasma centre, so-called maximum-J configurations, are of special interest. This condition can be achieved approximately in quasi-isodynamic stellarators, for example Wendelstein 7-X. In such configurations the precessional drift of the trapped particles is in the opposite direction from the direction of propagation of drift waves. Instabilities that are driven by the trapped particles usually rely on a resonance between these two frequencies. Here it is shown analytically by analysing the electrostatic energy transfer between the particles and the instability that, thanks to the absence of the resonance, a particle species draws energy from the mode if the frequency of the mode is well below the charateristic bounce frequency. Due to the low electron mass and the fast bounce motion, electrons are almost always found to be stabilising. Most of the trapped-particle instabilities are therefore predicted to be absent in maximum- J configurations in large parts of parameter space. Analytical theory thus predicts enhanced linear stability of trapped-particle modes in quasi-isodynamic stellarators compared with tokamaks. Moreover, since the electrons are expected to be stabilising, or at least less destabilising, for all instabilities whose frequency lies below the trapped-electron bounce frequency, other modes might benefit from the enhanced stability as well. In reality, however, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with another, non-quasiisodynamic stellarator, the National Compact Stellarator Experiment (NCSX) and a typical tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, several microinstabilities, driven by the density as well as both ion and electron temperature gradients, are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilising when the electrostatic energy transfer is analysed. In contrast, if only the ions are treated kinetically but the electrons are taken to be in thermodynamic equilibrium, no such stabilising effect is observed. These results suggest that imperfectly optimised stellarators can retain most of the stabilising properties predicted for perfect maximum-J configurations. Quasi-isodynamic stellarators, in addition to having reduced neoclassical transport, might therefore also show reduced turbulent transport, at least in certain regions of parameter space.

Experience in the construction of optimized stellarators shows the coil system is a significant challenge. The precision necessary allow the generation of accurate flux surfaces in recent experiments affected both cost and schedule negatively. Moreover, recent experiments at Wendelstein 7-X have shown that small field corrections were necessary for the operation of specific desired magnetic configurations. Therefore, robust magnetic configurations in terms of coil geometry and assembly tolerances have a high potential to facilitate swifter and less expensive construction of future, optimized stellarators. We present a new coil optimization technique that is designed to seek out coil configurations that are resilient against 3D coil displacements. This stochastic version of stellarator coil optimization uses the sampling average approach to incorporate an iterative perturbation analysis into the optimization routine. The result is a robust magnetic configuration that simultaneously reproduces the target magnetic field more accurately and leads to a better fusion performing coil configuration.

This thesis is devoted to experiments on three-dimensional dust clouds which are confined in low temperature plasmas. Such ensembles of highly electrically charged micrometer-sized particles reveal fascinating physics, such as self-excited density waves and vortices. At the same time, these systems are challenging for experimental approaches due to their three-dimensional character. In this thesis, new optical diagnostics for dusty plasmas have been developed and, in combination with existing techniques, have been used to study these 3D dusty plasmas on different size and time scales.

In the present work, a time- and radial-dependent fluid model has been developed to describe the glow-to-arc transition of the positive column in the course of constriction. The self-consistent model comprises the particle balance equations for the relevant species, the balance equation of the mean electron energy and the heavy particle temperature in the plasma, the Poisson equation for the space-charge potential, and a current balance determining the axial electric field. The model adopts the nonlocal moment method, i.e., the system of the balance equations resulting from the moments of the radially dependent Boltzmann equation is solved. The electron transport and rate coefficients are adapted as functions of the mean energy of the electrons, the gas temperature and the ionization degree. The model is applied to a description of the constriction of the dc positive column in argon, for a wide range of pressures and applied currents. Pronounced nonlocal features of the mean electron energy balance are found and their influence on the constricted argon positive column is analyzed. Different assumptions concerning the electron velocity distribution function (EVDF) have been considered in the present model. The assumption of a Maxwellian distribution for the electrons was found to be inappropriate, while the assumption of a Druyvesteyn distribution for the electrons was found to be suitable for describing qualitatively the glow-to-arc transition. However, the standard model using the EVDF obtained from the solution of the steady-state, spatially homogeneous electron Boltzmann equation including electron-electron collisions allows to describe the constriction effect and provides best agreement with experimental data and other available modelling results. The fluid model has also been used to study a medium-pressure pulsed positive column in xenon at conditions of the contracted discharge. The simulation results provide a detailed insight in the physical mechanisms of xenon discharges in pulsed mode. The stepwise ionization of the excited atoms, the conversion of the atomic ions into molecular ions as well as the dissociative recombination of the molecular ions are found to be the most important processes for the pulsed positive column in xenon plasmas at conditions of the contracted discharge. The comparison of the model predictions with experimental results generally shows good agreement. In particular, the model predictions are suitable for qualitative reproduction of the significant increase of low-lying atomic levels densities as well as of the higher and of the relaxed lowest vibrational states of the Xe2* excimers in the afterglow phase of the pulse.

The present work is the first work dealing with turbulence in the WEGA stellarator. The main object of this work is to provide a detailed characterisation of electrostatic turbulence in WEGA and to identify the underlying instability mechanism driving turbulence. The spatio-temporal structure of turbulence is studied using multiple Langmuir probes providing a sufficiently high spatial and temporal resolution. Turbulence in WEGA is dominated by drift wave dynamics. Evidence for this finding is given by several individual indicators which are typical features of drift waves. The phase shift between density and potential fluctuations is close to zero, fluctuations are mainly driven by the density gradient, and the phase velocity of turbulent structures points in the direction of the electron diamagnetic drift. The structure of turbulence is studied mainly in the plasma edge region inside the last closed flux surface. WEGA can be operated in two regimes differing in the magnetic field strength by almost one order of magnitude (57mT and 500mT, respectively). The two regimes turned out to show a strong difference in the turbulence dynamics. At 57mT large structures with a poloidal extent comparable to the machine dimensions are observed, whereas at 500mT turbulent structures are much smaller. The poloidal structure size scales nearly linearly with the inverse magnetic field strength. This scaling may be argued to be related to the drift wave dispersion scale. However, the structure size remains unchanged when the ion mass is changed by using different discharge gases. Inside the last closed flux surface the poloidal ExB drift in WEGA is negligible. The observed phase velocity is in good agreement with the electron diamagnetic drift velocity. The energy in the wavenumber-frequency spectrum is distributed in the vicinity of the drift wave dispersion relation. The three-dimensional structure is studied in detail using probes which are toroidally separated but aligned along connecting magnetic field lines. As expected for drift waves a small but finite parallel wavenumber is found. The ratio between the average parallel and perpendicular wavenumber is in the order of 10^-2. The parallel phase velocity of turbulent structures is in-between the ion sound velocity and the AlfvÃ¨nvelocity. In the parallel dynamics a fundamental difference between the two operational regimes at different magnetic field strength is found. At 500mT turbulent structures can be described as an interaction of wave contributions with parallel wavefronts. At 57mT the energy in the parallel wavenumber spectrum is distributed among wavenumber components pointing both parallel and antiparallel to the magnetic field vector. In both cases turbulent structures arise preferable on the low field side of the torus. Some results on a novel field in plasma turbulence are given, i.e. the study of turbulence as a function of resonant magnetic field perturbations leading to the formation of magnetic islands. Magnetic islands in WEGA can be manipulated by external perturbation coils. A significant influence of field perturbations on the turbulence dynamics is found. A distinct local increase of the fluctuation amplitude and the associated turbulent particle flux is found in the region of magnetic islands.

This thesis highlights the impact of surface charges and negative ions on the pre-ionization, breakdown mechanism, and lateral structure of dielectric barrier discharges operated in binary mixtures of helium with nitrogen or electronegative oxygen. Sophisticated diagnostic methods, e.g., non-invasive optical emission spectroscopy and the electro-optic Pockels effect as well as invasive laser photodetachment and laser photodesorption, were applied at one plane-parallel discharge configuration to investigate both relevant volume and surface processes. Moreover, the experimental findings were supported by numerical fluid simulations of the discharge. For the first time, the memory effect of the measured surface charge distribution was quantified and its impact on the local self-stabilization of discharge filaments was pointed out. As well, it turned out that a few additional seed electrons, either desorbed from the charged dielectric surface or detached from negative ions in the volume, significantly contribute to the pre-ionization resulting in a reduced voltage necessary for discharge breakdown. Finally, effective secondary electron emission coefficients of different dielectrics were estimated from the measured breakdown voltage using an analytical model.

This work describes the recent scientific and technical achievements obtained at the high-precision Penning trap mass spectrometer SHIPTRAP. The scientific focus of the SHIPTRAP experiment are mass measurements of short-lived nuclides with proton number larger than 100. The masses of these isotopes are usually determined via extrapolations, systematic trends, predictions based on theoretical models or alpha-decay spectroscopy. In several experiments the masses of the isotopes 252-255No and 255,256Lr have been measured directly. With the obtained results the region of enhanced nuclear stability at the deformed shell closure at the neutron number 152 was investigated. Furthermore, the masses have been used to benchmark theoretical mass models. The measured masses were compared selected mass models which revealed differences between few keV/cÂ² up to several MeV/cÂ² depending on the investigated nuclide and model. In order to perform mass measurements on superheavy nuclei with lower production rates, the efficiency of the SHIPTRAP setup needs to be increased. Currently, the efficiency is 2% and mainly limited by the stopping- and extraction efficiency of the buffer gas cell. The stopping and extraction efficiency of the current buffer gas cell is 12%. To this end, a modified version of the buffer gas cell was developed and characterized with 223Ra ion source. Besides a larger stopping volume and a coaxial injection the new buffer gas cell is operated at a temperature of 40K. The operation at cryogenic temperatures increases the cleanliness of the buffer gas. From extraction measurements and simulations an overall efficiency of 62(3)% was determined which results in an increase by a factor of 5 in comparison to the current buffer gas cell. Aside from high-precision mass measurements of heavy radionuclides the mass differences of metastable isobars was measured to identify candidates for the neutrinoless double-electron capture. Neutrinoless double-electron capture can only occur if the neutrino is its own antiparticle and a physics beyond the standard model exists since the neutrinoless double-electron capture violates the conservation of the lepton number. Due to its expected long half-life this decay has not yet been observed. However, the decay rate is resonantly enhanced if mother and daughter nuclide are degenerate in energy. Suitable candidates for the search of the neutrinoless double-electron capture have been identified with mass difference measurements uncertainties of about 100eV/cÂ². In this work the results of the mass difference measurements of 12 possible candidates are presented.