Refine
Document Type
- Doctoral Thesis (6)
Has Fulltext
- yes (6) (remove)
Is part of the Bibliography
- no (6) (remove)
Keywords
- PrV (6) (remove)
Institute
This work focuses the glycoprotein H of PrV which was analysed by structure-based functional analyses by targeted site-directed mutagenesis. Disulfid bridges were introduced at specific sites and the effects on the fusion mechanism investigated. A revertant was obtained and characterised during the studies, as well as chimeric glycoprotein H proteins were constructed, combining the different domains of the glycoproteins Hs of PrV and HSV1.
Herpesviren nutzen zwei unterschiedliche Zellkompartimente für die Morphogenese. Während der Kapsid-Zusammenbau und die DNA Verpackung im Zellkern stattfinden, erfolgt die weitere Assemblierung im Zytoplasma. Um dorthin zu gelangen muss die Kernmembranbarriere überwunden werden. Hierfür knospen die Nukleokapside an der inneren Kernmembran und erhalten dort eine primäre Virushülle, die allerdings nach Fusion mit der äußeren Kernmembran wieder verloren geht. Für diesen als envelopment-deenvelopment bezeichneten Vorgang ist ein Komplex aus zwei viralen Proteinen notwendig. Er besteht aus pUL34, einem Membranprotein der Kernmembran und dessen Interaktionspartner pUL31. Beide Proteine allein reichen aus, um Membranvesikel von der inneren Kernmembran abzuschnüren. Ziel dieser Arbeit war, diesen nuclear egress weiter zu charakterisieren. Hierfür sollte zunächst geklärt werden, welche Domänen von pUL34 für dessen korrekte Lokalisierung in der Kernmembran und der Interaktion mit dem Komplexpartner pUL31 notwendig sind. Dazu wurden chimäre Proteine aus Teilen des pUL34 und zellulären Proteinen der inneren Kernmembran hergestellt. Die Ergebnisse zeigten, dass die pUL34-Transmembrandomäne keine virusspezifische Funktion besitzt und durch entsprechende Bereiche zellulärer Proteine ausgetauscht werden kann. Auch die Erweiterung der Substitution auf 50 C-terminale Aminosäuren führte zu einem funktionellen Protein, während ein Konstrukt mit einem Austausch von 100 C-terminalen Aminosäuren durch entsprechende Lap2ß Sequenzen den Defekt der PrV-deltaUL34-Deletionsmutante nicht mehr komplementieren konnte. Dennoch war noch immer eine Interaktion mit dem Komplexpartner möglich. Dies zeigte, dass zwischen den C-terminalen Aminosäuren 50 und 100 ein virusspezifischer, funktionell wichtiger Bereich liegt, der in nachfolgenden Arbeiten weiter eingegrenzt werden muss. In früheren Arbeiten konnte gezeigt werden, dass die Aminosäuren 1-162 des PrV pUL34 für die Interaktion mit pUL31 ausreichen. Für das engverwandte HSV-1 konnte dieser Bereich jedoch auf die Aminosäuren 137 und 181 eingegrenzt werden. Um dies für PrV pUL34 näher zu untersuchen wurde das Konstrukt pUL34-LapNT hergestellt, bei dem die 100 N-terminalen Aminosäuren durch Lap2ß Sequenzen ersetzt wurden. Hier zeigte sich jedoch, dass pUL34-LapNT das pUL31 nicht mehr an die innere Kernmembran rekrutieren konnte und folglich den Defekt der PrV-delta UL34-Deletionsmutante nicht mehr komplementierte. Im Gegensatz zu HSV-1 scheinen hier auch die N-terminalen 100 Aminosäuren für die Interaktion mit pUL31 notwendig zu sein. Da die Expression von pUL34 und pUL31 allein ausreicht, um die Bildung von Membranvesikeln von der inneren Kernmembran abzuschnüren, sollte im Weiteren getestet werden, ob auch Kapside in diese Vesikel aufgenommen werden. Da bei Herpesviren die Kapside autokatalytisch gebildet werden und dies bereits für einige Herpesviren über Expression in rekombinanten Baculoviren nachgestellt werden konnte, sollte versucht werden, dies auch für PrV zu etablieren. Dabei sollte die Kapsidbildung über Transduktion in Säugerzellen unabhängig von einer PrV Infektion nachgestellt werden. Hierbei sollte geklärt werden, welche weiteren viralen Proteine, neben den eigentlichen Kapsidproteinen, wie z.B. das pUL17 und pUL25, für den nuclear egress notwendig sind. Obwohl alle Kapsidkomponenten kloniert und auch in Zellen exprimiert werden konnten, konnte keine Kapsidbildung nachgewiesen werden. Die Ursachen hierfür konnten nicht geklärt werden. Auffällig war, dass das Triplexprotein pUL38 in den Baculovirus-transduzierten Zelllysaten ein etwas anderes Laufverhalten als das in Zelllysaten PrV-infizierter Zellen aufwies, dessen Ursache nicht auf der Verwendung eines downstream lokalisierten Startkodons beruhte. Mit Hilfe dieser rekombinanten Baculovirusvektoren konnte jedoch gezeigt werden, dass das Hauptkapsidprotein pUL19 mit dem Gerüstprotein (pUL26 bzw. pUL26.5) und die Triplexproteine pUL18 und pUL38 gemeinsam in den Kern transportiert werden. Die Beteiligung zellulärer Proteine am nuclear egress sollte über siRNA Experimente untersucht werden. In einer vorangegangen Arbeit war gezeigt worden, dass p97, eine zelluläre AAA+ATPase, nach Infektion vermehrt exprimiert wurde. Ziel war es, die p97 Expression über siRNA zu reduzieren und den Effekt auf die Virusinfektion zu untersuchen. Eine erfolgreiche siRNA Studie war bereits für p97 in Rattenzellen publiziert und sollte hier angewandt werden. Leider waren die zur Verfügung stehenden Rattenzelllinien nur sehr ineffizient transfizierbar und zusätzlich auch schlecht mit PrV infizierbar. Das eigene Design und die Anwendung von p97 spezifischer siRNA für Kaninchenzellen zeigte zwar die gewünschte Reduktion der p97 Expression, war jedoch nur sehr schlecht reproduzierbar und konnte daher nicht für aussagekräftige Infektionsversuche verwendet werden.
Die Serin/Threonin Proteinkinase pUS3 ist innerhalb der Alphaherpesvirinae konserviert. Für pUS3-Homologe der Subfamilie wurden bereits zahlreiche Funktionen bei der Beeinflussung des Zellstoffwechsels und der Virusreplikation gezeigt, dennoch ist pUS3 für die Virusreplikation in vitro nicht essentiell. PrV exprimiert zwei unterschiedlich lange Isoformen dieses Proteins in unterschiedlicher Menge, so dass das kürzere pUS3S im Vergleich zu pUS3L die abundante Isoform darstellt. Während die carboxyterminalen Sequenzen beider Isoformen identisch sind, weist der Amino-Terminus der langen Form 54 zusätzliche Aminosäuren auf. Innerhalb der Wirtszelle liegt pUS3S vor allem im Nukleus vor, wohingegen pUS3L vorwiegend im Zytoplasma, der Plasmamembran und den Mitochondrien lokalisiert ist. Ziel dieser Arbeit war die Untersuchung der möglichen unterschiedlichen Funktionen der beiden pUS3-Isoformen und der Bedeutung des Expressionsniveaus dieser Isoformen während der Virusmorphogenese. Im Vordergrund stand dabei die Analyse von Virusmutanten, bei denen die Expression von pUS3S bzw. pUS3L auf unterschiedliche Weise manipuliert wurde oder bei denen eine Inaktivierung der enzymatischen Aktivität erfolgte. Diese wurden auf empfänglichen Zelllinien dreier Tierarten phänotypisch charakterisiert und auf Unterschiede hinsichtlich ihres Replikationsverhaltens untersucht. Ein weiterer Teil dieser Arbeit umfasste Untersuchungen zur Identifizierung potentieller Substrate der Proteinkinase pUS3 mittels 32P-Radioimmunpräzipitation und Proteomanalytik, die eine weitere Analyse der Strukturkomponenten von PrV-Partikeln sowie die Prüfung einer Methode zur Präparation nukleärer Proteine einschloss.
Der effiziente intrazelluläre Transport viraler Nukleokapside ist eine grundlegende Voraussetzung für eine erfolgreiche Virusinfektion. Aufgrund seiner engen Verwandtschaft zum humanpathogenen Herpes Simplex Virus 1 (HSV-1) und seiner Eigenschaft zur einfachen gentechnischen Veränderung stellt das Pseudorabies Virus (PrV) ein geeignetes Modell zur Untersuchung molekularer Mechanismen der Replikation und des Neurotropismus von Herpesviren dar. Der intrazelluläre Transport herpesviraler Kapside erfolgt aktiv entlang von Mikrotubuli durch zelluläre Motorproteinkomplexe. Die hieran beteiligten viralen Proteine konnten bisher jedoch nicht eindeutig identifiziert werden. Ziel der vorliegenden Arbeit war die Untersuchung der Funktionen viraler Proteine im intrazellulären Transport von PrV. In erster Linie wurde die Rolle von PrV pUL35 und pUL37 untersucht, die auf intrazytoplasmatischen Kapsiden an der Oberfläche liegen und der Interaktion mit zellulären Proteinen zugänglich sind. Neben der Charakterisierung der Virusreplikation nach Deletion der einzelnen Gene in vitro und in vivo wurde auch der intrazelluläre Transport von GFP-markierten Mutanten zum Zellkern untersucht. In einem weiteren Teil der Arbeit wurden Kapsid- und eng mit dem Kapsid assoziierte Proteine in yeast two-hybrid Studien analysiert, um virale und zelluläre Interaktionspartner zu identifizieren. Die Ergebnisse dieser Arbeit lassen sich wie folgt zusammenfassen: (1) PrV pUL35 und pUL37 sind für die Virusreplikation in vitro nicht essentiell. Die Replikation von UL35- bzw. UL37-Mutanten war jedoch vermindert. In Abwesenheit von funktionellem pUL35 und pUL37 gleichzeitig trugen die beiden Mutationen unabhängig voneinander zu einem verstärkten Phänotyp bei. Beide Proteine scheinen demnach in unterschiedliche Prozesse der Virusreplikation involviert zu sein. (2) Die N-terminale EGFP-Fusion von pUL35 zum Zweck der Fluoreszenzmarkierung viraler Kapside resultierte im Funktionsverlust des Proteins. Die Inkorporation in Kapside wurde aber nicht beeinträchtigt. Für die Interaktion von PrV pUL35 mit dem Kapsid könnte der konservierte C-Terminus des Proteins relevant sein. (3) Auch in Abwesenheit eines funktionellen pUL35 werden PrV Kapside effizient transportiert. PrV pUL35 kommt somit keine entscheidende Rolle beim intrazellulären Transport viraler Nukleokapside zu. Die verzögerte Neuroinvasion von UL35-Mutanten in vivo lässt jedoch eine möglicherweise akzessorische Funktion von pUL35 vermuten. (4) PrV pUL37 ist für den intrazellulären Transport viraler Nukleokapside nicht essentiell, erhöht jedoch deutlich dessen Effizienz. Der positive Einfluss auf den retro- und anterograden Transport viraler Kapside lässt darauf schließen, dass pUL37 in Transportprozesse während des Viruseintritts und der Freisetung involviert ist. (5) Der N-Terminus von PrV pUL36 interagierte im yeast two-hybrid System mit den Untereinheiten Rp3, LC8 und Tctex1 des Dynein-Motorproteinkomplexes. PrV pUL36 könnte daher für den MT-abhängigen Transport viraler Nukleokapside relevant sein.
Funktionelle Charakterisierung des essentiellen Tegumentproteins pUL36 des Pseudorabies Virus
(2008)
Das Pseudorabies Virus ist der Erreger der Aujeszkyschen Erkrankung, einer fieberhaften Allgemeinerkrankung mit neurologischen Symptomen beim Schwein. Aufgrund seiner biologischen Eigenschaften und unkomplizierten Kultivierung in Zellkultur sowie der Verfügbarkeit eines Mausmodells hat sich PrV als geeignetes Modellsystem zur Untersuchung der alphaherpesviralen Replikation etabliert. Das Tegument stellt den komplexesten und noch am wenigsten verstandenen Teil des Herpesviruspartikels dar. Für PrV konnten mehr als 15 dem Tegument zugeordnete Proteine identifiziert werden, die neben ihrer strukturellen Bedeutung auch regulatorische Funktionen erfüllen. Ziel der vorliegenden Arbeit war die Identifizierung und Charakterisierung funktioneller Domänen des essentiellen Tegumentproteins pUL36 des Pseudorabies Virus. Mit Hilfe eines Transkomplementationsassays konnten verschiedene rekombinante UL36-Proteine auf ihre Fähigkeit, den letalen Replikationsdefekt einer UL36-Deletionsmutante zu komplementieren, überprüft werden. Bei positiver Komplementation wurden stabile Virusrekombinanten isoliert und diese auf ein möglicherweise verändertes Replikationsverhalten in der Zellkultur (in vitro) oder im Mausmodell (in vivo) untersucht. Negative Komplementationsergebnisse weisen auf eine essentielle Funktion dieser Region innerhalb des UL36-Proteins hin. Die durchgeführten Primärsequenzvergleiche homologer UL36-Proteine zeigten einen geringen Grad an Sequenzhomologie. Jedoch konnten mehrere konservierte Domänen und putative Motive identifiziert werden. Dem im N-Terminus gelegenen Modul konnte die für HSV-1 sowie Vertretern aller drei Unterfamilien beschriebene Deubiquitinylierungsaktivität zugeordnet werden. Weiterhin zeigte sich, dass die 62 C-terminalen Aminosäuren innerhalb der Alphaherpesviren stark konserviert sind, was auf eine wichtige Bedeutung dieser Region für die Funktion des UL36-Proteins hindeutet. Eine große prolinreiche Domäne im C-terminalen Bereich spricht für eine extreme Flexibilität des Proteins und eine mögliche Konformationsänderung während des Replikationszykluses. Leucin-Zipper-Motive könnten eine pUL36-Homodimerisierung oder eine bisher noch nicht beschriebene Interaktion mit viralen oder zellulären Proteinen vermitteln. Nach Charakterisierung verschiedener rekombinanter UL36 Proteine lässt sich Folgendes zum essentiellen Tegumentprotein pUL36 des Pseudorabies Virus sagen: 1) Es konnten verschiedene Domänen innerhalb des PrV-UL36-Proteins identifiziert werden, die für die Replikation sowohl in der Zellkultur als auch im Tiermodell von unterschiedlich wichtiger Bedeutung sind. Insgesamt wurden fast 50% des Proteins deletiert, ohne einen letalen Funktionsverlust zu bewirken. 2) Der C-Terminus des UL36-Proteins des Pseudorabies Virus ist für die Funktion des Proteins im Replikationsgeschehen essentiell, was auf eine mögliche Interaktion mit Kapsid- und/oder kapsidassoziierten Proteinen zurückzuführen sein könnte. 3) Die reifen Virionen der Mutanten zeigen keine Veränderungen hinsichtlich ihrer Morphologie. Auch biochemisch wurden keine Veränderungen in der Proteinzusammensetzung der untersuchten Virionen festgestellt. 4) Keine der charakterisierten Mutanten wies einen Defekt bei der Freisetzung neugebildeter Kapside aus dem Zellkern auf, d. h., die deletierten Bereiche haben keine Bedeutung während der nukleären Phasen der Virusmorphogenese. 5) PrV-pUL36 könnte weiterhin für den Ablauf der Infektion des Nervensystems von Bedeutung sein, da eine deutliche Einschränkung der Neuroinvasion einiger Mutanten im Mausmodell beobachtet wurde.