### Refine

#### Year of publication

- 2013 (3) (remove)

#### Language

- English (3) (remove)

#### Keywords

- Plasmaphysik (3) (remove)

There is a wide variety of AlfvÃ©n waves in tokamak and stellarator plasmas. While most of them are damped, some of the global eigenmodes can be driven unstable when they interact with energetic particles. By coupling the MHD code CKA with the gyrokinetic code EUTERPE, a hybrid kinetic-MHD model is created to describe this waveâ€“particle interaction in stellarator geometry. In this thesis, the CKA-EUTERPE code package is presented. This numerical tool can be used for linear perturbative stability analysis of AlfvÃ©n waves in the presence of energetic particles. The equations for the hybrid model are based on the gyrokinetic equations. The fast particles are described with linearized gyrokinetic equations. The reduced MHD equations are derived by taking velocity moments of the gyrokinetic equations. An equation for describing the AlfvÃ©n waves is derived by combining the reduced MHD equations. The AlfvÃ©n wave equation can retain kinetic corrections. Considering the energy transfer between the particles and the waves, the stability of the waves can be calculated. Numerically, the AlfvÃ©n waves are calculated using the CKA code. The equations are solved as an eigenvalue problem to determine the frequency spectrum and the mode structure of the waves. The results of the MHD model are in good agreement with other sophisticated MHD codes. CKA results are shown for a JET and a W7-AS example. The linear version of the EUTERPE code is used to study the motion of energetic particles in the wavefield with fixed spatial structure, and harmonic oscillations in time. In EUTERPE, the gyrokinetic equations are discretized with a PIC scheme using the delta-f method, and both full orbit width and finite Larmor radius effects are included. The code is modified to be able to use the wavefield calculated externally by CKA. Different slowing-down distribution functions are also implemented. The work done by the electric field on the particles is measured to calculate the energy transfer between the particles and the wave and from that the growth rate is determined. The advantage of this approach is that the full magnetic geometry is retained without any limiting assumptions on guiding center orbits. Extensive benchmarks have been performed to test the new CKA-EUTERPE code. Three tokamak benchmarks are presented, where the stability of TAE modes are studied as a function of fast particle energy, or in one case as a function of the fast particle charge. The benchmarks show good agreement with other codes. Stellarator calculations were performed for Wendelstein 7-AS and the results demonstrate that the finite orbit width effects tend to be strongly stabilizing.

The confinement of energy has always been a challenge in magnetic confinement fusion devices. Due to their toroidal shape there exist regions of high and low magnetic field, so that the particles are divided into two classes - trapped ones that are periodically reflected in regions of high magnetic field with a characteristic frequency, and passing particles, whose parallel velocity is high enough that they largely follow a magnetic field line around the torus without being reflected. The radial drift that a particle experiences due to the field inhomogeneity depends strongly on its position, and the net drift therefore depends on the path taken by the particle. While the radial drift is close to zero for passing particles, trapped particles experience a finite radial net drift and are therefore lost in classical stellarators. These losses are described by the so-called neoclassical transport theory. Recent optimised stellarator geometries, however, in which the trapped particles precess around the torus poloidally and do not experience any net drift, promise to reduce the neoclassical transport down to the level of tokamaks. In these optimised stellarators, the neoclassical transport becomes small enough so that turbulent transport may limit the confinement instead. The turbulence is driven by small-scale-instabilities, which tap the free energy of density or temperature gradients in the plasma. Some of these instabilities are driven by the trapped particles and therefore depend strongly on the magnetic geometry, so the question arises how the optimisation affects the stability. In this thesis, collisionless electrostatic microinstabilities are studied both analytically and numerically. Magnetic configurations where the action integral of trapped-particle bounce motion, J, only depends on the radial position in the plasma and where its maximum is in the plasma centre, so-called maximum-J configurations, are of special interest. This condition can be achieved approximately in quasi-isodynamic stellarators, for example Wendelstein 7-X. In such configurations the precessional drift of the trapped particles is in the opposite direction from the direction of propagation of drift waves. Instabilities that are driven by the trapped particles usually rely on a resonance between these two frequencies. Here it is shown analytically by analysing the electrostatic energy transfer between the particles and the instability that, thanks to the absence of the resonance, a particle species draws energy from the mode if the frequency of the mode is well below the charateristic bounce frequency. Due to the low electron mass and the fast bounce motion, electrons are almost always found to be stabilising. Most of the trapped-particle instabilities are therefore predicted to be absent in maximum- J configurations in large parts of parameter space. Analytical theory thus predicts enhanced linear stability of trapped-particle modes in quasi-isodynamic stellarators compared with tokamaks. Moreover, since the electrons are expected to be stabilising, or at least less destabilising, for all instabilities whose frequency lies below the trapped-electron bounce frequency, other modes might benefit from the enhanced stability as well. In reality, however, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with another, non-quasiisodynamic stellarator, the National Compact Stellarator Experiment (NCSX) and a typical tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, several microinstabilities, driven by the density as well as both ion and electron temperature gradients, are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilising when the electrostatic energy transfer is analysed. In contrast, if only the ions are treated kinetically but the electrons are taken to be in thermodynamic equilibrium, no such stabilising effect is observed. These results suggest that imperfectly optimised stellarators can retain most of the stabilising properties predicted for perfect maximum-J configurations. Quasi-isodynamic stellarators, in addition to having reduced neoclassical transport, might therefore also show reduced turbulent transport, at least in certain regions of parameter space.

The development of innovative coatings with multifunctional properties is an ambitious task in modification of material surfaces. A novel approach is a hybrid method combining the non-thermal plasma processing with nanotechnology for the development of multifunctional surface coatings. The conception of the hybrid coating process is based on three steps: the preparation of a suspension consisting of an organic liquid and functional nanoparticles, the deposition of the suspension as a thin liquid film on the material surface, and the plasma modification of the liquid organic film to achieve a thin solid composite film with embedded nanoparticles demonstrating multifunctional properties and good adherence on the substrate material. In this work the liquid polydimethylsiloxane (PDMS) was applied as a model system, and the experimental investigations were focused on the PDMS plasma modification. In particular, the specific role of the different plasma components and the influence of the plasma and processing parameters on the PDMS modification were studied. The applied capacitively coupled radio frequency (CCRF) plasma was analyzed by electric probe measurements and optical emission spectroscopy, whereas the molecular changes in PDMS due to plasma-induced chemical reactions were studied by the Fourier transform infrared reflection absorption spectroscopy. Additionally, the photocatalytic activity of thin composite films consisting of plasma cross-linked PDMS with embedded TiO2 nanoparticles was demonstrated. During the investigation it was found that the CCRF discharge modifies efficiently thin liquid PDMS films to solid coatings. The samples were positioned in the plasma bulk at floating potential. The penetration depth of particles like neutrals, ions, electrons and radicals in the film is strongly limited. The heating of samples in the CCRF discharge is weak to modify PDMS by itself and only the plasma radiation is able to transform the liquid bulk to solid one. It is known that the absorption onset of PDMS lies in the VUV region (below 200 nm). The energetic VUV radiation penetrates into the PDMS film on a thickness from several hundred nanometers to few micrometers and initiates photochemical reactions there. Thus, different gases like Ar, Xe, O2, H2O, air and H2 were tested to provide the strongest VUV emission intensity of the CCRF discharge. Discharge pressure and power were varied for all these gases and it was found that at all conditions the H2 plasma demonstrates drastically stronger emission. Thus, H2 gas was selected for the plasma treatment of liquid PDMS films. The IRRAS analysis revealed the transformation process of PDMS with the degradation of CH3 groups, the formation of new groups like SiOH, CH2 and SiH, the formation of the SiOx material and crosslinking. It was found that the modification effect is not uniform across the film thickness. The top region with an initial thickness up to 100 nm loses all CH3 groups, in the underlying region the CH3 concentration increases gradually from zero to the value for PDMS, if the film was thick enough. The methyl-free SiOx top layer contains also SiOH and SiH groups. Furthermore, the SiH groups are concentrated only in a very thin layer with a thickness below 10 nm. The presence of the unscreened polar SiOSi and SiOH groups on the surface causes the adsorption of H2O from the atmosphere, which was also observed by IRRAS. By means of the spectroscopic ellipsometry it was found out that all above described regions experience a shrinking. The reason is the crosslinking and loss of material. The most shrunken layer is the top SiOx layer with the shrinking ratio (final thickness/initial thickness) of 0.55 - 0.60. Further, this ratio gradually rise up to the value of 0.95 in the deeper region, which has the concentration of CH3 groups of about that for PDMS. After the analysis of all results the depth of effective modification was estimated at 300 400 nm for the most optimal conditions. The optimization of the plasma VUV intensity was realized by variation of discharge pressure and power. The strongest plasma emission at studied conditions provided the irradiance of the sample of ca. 13 mW/cm2. However, such strong radiation causes very strong production rate of the gases. These products leave the modifying film slower as they are produced, what causes their accumulation in there. Their pressure grows up leading to formation of bubbles, which later explode. Finally, the film becomes heavily damaged. To avoid this effect the pressure and the RF power were changed to reduce the irradiance to 6 - 7 mW/cm2. This resulted in the absence of any damages.