Refine
Year of publication
Document Type
- Doctoral Thesis (139)
- Article (48)
Has Fulltext
- yes (187)
Is part of the Bibliography
- no (187)
Keywords
- - (47)
- Biokatalyse (23)
- Proteindesign (15)
- Enzym (13)
- biocatalysis (10)
- Biotechnologie (8)
- Biochemie (7)
- RNA (7)
- Ribozym (7)
- Biocatalysis (6)
- Protein-Engineering (6)
- Enzyme (5)
- Hydrolasen (5)
- Struktur (5)
- protein engineering (5)
- Elektrochemie (4)
- Gerichtete Evolution (4)
- Molybdopterin (4)
- Protein Engineering (4)
- RNS (4)
- Thermodynamik (4)
- Baeyer-Villiger monooxygenase (3)
- Baeyer-Villiger-Oxidation (3)
- Biokonversion (3)
- DNA-Wirkstoff-Interaktion (3)
- DNA-drug interaction (3)
- DNS (3)
- Diabetes mellitus (3)
- Enzymkatalyse (3)
- Esterasen (3)
- Gold (3)
- Indolochinolin (3)
- Magnetische Kernresonanz (3)
- Massenspektrometrie (3)
- Metabolomics (3)
- Monooxygenasen (3)
- Nucleinsäuren (3)
- Oxidativer Stress (3)
- Oxidoreduktase (3)
- Promiskuität (3)
- Protein engineering (3)
- RNS-Reparatur (3)
- RNS-Synthese (3)
- Rasterkraftmikroskopie (3)
- Reaktionsmechanismus (3)
- SELEX (3)
- Substratspezifität (3)
- Titandioxid (3)
- Transaminasen (3)
- Transaminases (3)
- asymmetric synthesis (3)
- catalytic promiscuity (3)
- electrochemistry (3)
- regioselectivity (3)
- transesterification (3)
- Acyltransferase (2)
- Amine (2)
- Arylesterase (2)
- Asymmetric synthesis (2)
- Baeyer-Villiger Monooxygenase (2)
- Benzazaphosphole (2)
- Biosensor (2)
- Chemie (2)
- Chiral amines (2)
- Chirale Amine (2)
- Cyclovoltammetrie (2)
- Cytidindesaminierung (2)
- DNA Triplex (2)
- DNA triplex (2)
- Enantioselektivität (2)
- Enoatreduktase (2)
- Flavonoide (2)
- Fluoreszenzmarkierung (2)
- G-quadruplexes (2)
- Haloalkan Dehalogenase (2)
- Heterologe Genexpression (2)
- Hydrolases (2)
- Hydroxyl (2)
- Immobilisierung (2)
- Ketoreductase (2)
- Kristallographie (2)
- Kristallstruktur (2)
- Lipase (2)
- Metabolismus (2)
- Molekulardesign (2)
- Molekulardynamik (2)
- Molybdenum (2)
- NMR spectroscopy (2)
- Pankreatitis (2)
- Phosphine (2)
- Proteine (2)
- Pterin (2)
- Schweineleberesterase (2)
- Selektionsassay (2)
- Simulation (2)
- Spektroskopie (2)
- Staphylococcus aureus (2)
- Strukturbiologie (2)
- Tetracyclinrepressor (2)
- Transaminase (2)
- Transkriptionspriming (2)
- Twinribozym (2)
- Wasserstoffperoxid (2)
- acyl transfer (2)
- acyltransferase (2)
- antibacterial activity (2)
- atomic force microscopy (2)
- biosensor (2)
- directed evolution (2)
- enzyme cascade (2)
- enzyme catalysis (2)
- high-throughput screening (2)
- hydrolases (2)
- indoloquinoline (2)
- katalytische Promiskuität (2)
- metabolomics (2)
- natural products (2)
- plastic degradation (2)
- quadruplex (2)
- rational protein design (2)
- rationales Proteindesign (2)
- redox chemistry (2)
- ribozyme (2)
- structure-activity (2)
- synthesis (2)
- thermodynamics (2)
- transaminases (2)
- transcription priming (2)
- twin ribozyme (2)
- -Enzym (1)
- 1,4-naphthoquinones (1)
- 1-deoxy sphingolipids (1)
- 3-Bis(Silyl Enol Ethers) (1)
- 31P-NMR (1)
- 3DM (1)
- 4070512-2 (1)
- 4165547-3 (1)
- 4193016-2 (1)
- 4248339-6 (1)
- 4323543-8 (1)
- 4441960-0 (1)
- 4796824-2 (1)
- 7 beta Hydroxylierung (1)
- 7β-Hydroxylierung (1)
- <i>Bacillus subtilis</i> (1)
- <i>S. aureus</i> (1)
- <i>S. pneumoniae</i> (1)
- <i>Staphylococcus aureus</i> (1)
- API Drug synthesis (1)
- Acyltransfer (1)
- Acyltransferasen (1)
- Adenosindesaminierung (1)
- Adhesion (1)
- Adsorption (1)
- Aktive Zentren (1)
- Akute Bauchspeicheldrüsenentzündung (1)
- Akute Pankreatitis (1)
- Alcohol dehydrogenase (1)
- Alkanolamine (1)
- Alkohol (1)
- Alkohole (1)
- Alphaherpesviren (1)
- Alphaherpesvirus (1)
- Amin-Transaminasen (1)
- Amine transaminase, ketoreductase (1)
- Amino Alcohol (1)
- Aminoacylierung (1)
- Aminoalkohol (1)
- Aminosäuren (1)
- Amperometric detection; EstraMonitor (1)
- Amperometrische Detektion; EstraMonitor (1)
- Analytische Chemie (1)
- Annotation (1)
- Anti-cancer and anti-microbials (1)
- Antibiotikum (1)
- Antioxidans (1)
- Antiphospholipidsyndrom (1)
- Antiterminator-Proteine (1)
- Aptamer (1)
- Aptamers (1)
- Aptazym (1)
- Aquaporins (1)
- Aquatic Interfaces (1)
- Aryl fluorides (1)
- Arzneimitteldesign (1)
- Aspzinkin (1)
- Assemblin (1)
- Atmosphärendruckplasma (1)
- Autoantikörper (1)
- Azaphospholderivat (1)
- BVMO (1)
- Bacillus subtilis (1)
- Baclofen (1)
- Baeyer-Villiger monooxygenases (1)
- Bauchspeicheldrüsenentzündung (1)
- Benzazaphospholes (1)
- Biaryle (1)
- Biocatalytic alkylation (1)
- Biogeochemie (1)
- Biokatalyse , Enzym , Alkohol , Amine , Enzymkatalyse , Asymmetrische Katalyse (1)
- Biokatalyse , Organische Synthese , Enzym , Prozessoptimierung (1)
- Biokompatibilität (1)
- Biomimetic membrane; cold physical plasma;membrane oxidation; lipid bilayer; electrochemistry; mass spectrometry; atomic force microscopy (1)
- Biophysikalische Chemie (1)
- Bioreaktor (1)
- Biosynthesis of bile acids (1)
- Biotechnologie; Biokatalyse; Metagenom; Enzym (1)
- Butyrolactonderivate (1)
- C-F activation (1)
- CAL-A (1)
- CANDLE/PRAAS (1)
- CAZymes (1)
- CODEHOP (1)
- Calcium (1)
- Campher (1)
- Caprolacton <epsilon-> (1)
- Carbamoylase (1)
- Carboxylester-Hydrolasen (1)
- Carboxylesterase (1)
- Cathepsin B (1)
- Cathepsine (1)
- Ceramide (1)
- Chalconisomerase (1)
- Chemical Stability (1)
- Chemische Stabilität (1)
- Chemische Synthese (1)
- Chemo-enzymatic synthesis (1)
- Chinhydron (1)
- Chiral amine (1)
- Chondroitinsulfate (1)
- Chronische Bauchspeicheldrüsenentzündung (1)
- Chronische Pankreatitis (1)
- Cofaktor (1)
- Collagen (1)
- Corrosion-electrochemical behaviour (1)
- Cross-coupling (1)
- Cyanoethyl (1)
- Cyclisation (1)
- Cycloalkanonmonooxygenase (1)
- Cyclohexanon-Monooxygenase (1)
- Cyclohexanone monooxygenase (1)
- Cylindrocarpon radicicola (1)
- Cystatin C (1)
- Cytochrom P450 Monooxygenase (1)
- Cytochrome P-450 (1)
- Cytotoxizität (1)
- C–C bond cleavage (1)
- DNA (1)
- DNA-Wirkstoff-Struktur (1)
- DNA-drug structure (1)
- DNA-microarray (1)
- DNAzym (1)
- DNAzyme (1)
- Darm (1)
- Dehydrocyclisation (1)
- Desorption (1)
- Diastereomere (1)
- Dihydropyrimidinase (1)
- Directed evolution (1)
- Dithiol (1)
- Dithiolen (1)
- Dithiolene (1)
- Durchflusscytometrie (1)
- Eicosanoide (1)
- Eintopfreaktion (1)
- Electrochemical Stability (1)
- Electrochemie (1)
- Elektrochemische Stabilität (1)
- Elektrochemischer Sensor (1)
- Elektrokatalyse (1)
- Enantiopreference (1)
- Enzyme Discovery (1)
- Enzyme identification (1)
- Enzymidentifizierung (1)
- Enzymkaskade (1)
- Enzymkinetik (1)
- Epoxid-Hydrolase (1)
- Epoxidhydrolase (1)
- Error-prone PCR (1)
- Erucic acid (1)
- Ethylen Oligomerisation (1)
- Ethylene oligomerisation (1)
- Ethylene oligomerization (1)
- Ethylenoligomerisation (1)
- Eubacterium ramulus (1)
- Familie-VIII-Carboxylesterase (1)
- Fatty acid enrichment (1)
- Fermentation (1)
- Festphase (1)
- Festphasensynthese (1)
- Fibronectin (1)
- Fibrose (1)
- Flavine (1)
- Flavinemononucleotide (1)
- Flavinmononukleotid (1)
- Flavivirus (1)
- Fließinjektionsanalyse (1)
- Funktionalisierung <Chemie> (1)
- Fusionsprotein (1)
- G-Quadruplex (1)
- GC-MS (1)
- Genbibliothek (1)
- Gendrift (1)
- Genregulation (1)
- Gentherapie (1)
- Gerüstprotein (1)
- Gleichgewicht (1)
- Glycolysis (1)
- Glykosaminoglykane (1)
- Gold-Nanopartikel (1)
- Gondoic acid (1)
- Graphische Darstellung (1)
- HEV (1)
- Hairpin-Ribozym (1)
- Hairpinribozym (1)
- Haloalkan-Dehalogenase (1)
- Hautkrebs (1)
- Hefeartige Pilze (1)
- Hepatitis-E-Virus , Polymerase-Kettenreaktion , Microarray , West-Nil-Virus , Flaviviren , RNS-Viren , Genotypisierung (1)
- Herpesviren (1)
- Herpesviridae (1)
- Heterocycle synthesis (1)
- Heterocyclische Verbindungen (1)
- High throughput screening (1)
- Hirudin (1)
- Hirudin‐like factors (1)
- Histidin (1)
- Histidinphosphorylierung (1)
- Hyaluronsäure (1)
- Hybrid Liganden (1)
- Hybrid ligand (1)
- Hydantoinase-Prozess (1)
- Hydrogenphosphate (1)
- Identifikation (1)
- Imin-Reduktase (1)
- Imine (1)
- Iminreduktase (1)
- Immobilization (1)
- Immunantwort (1)
- Immunsystem (1)
- Impedance Spectroscopy (1)
- Impedanzspektroskopie (1)
- Implant (1)
- Implantat (1)
- In situ product recovery (1)
- Industrie (1)
- Infektionen (1)
- Integrin (1)
- Integrin αIIbβ3 (1)
- Integrin αiibβ3 (1)
- Interleukin 33 (1)
- Isopropylamine (1)
- Isothermale Titrationskalorimetrie (1)
- KHV (1)
- KHVD (1)
- Kaltes Plasma (1)
- Karzinom (1)
- Kaskade (1)
- Kaskadenreaktion (1)
- Katalyse (1)
- Ketene (1)
- Ketoreduktase (1)
- Kip1 (1)
- Klarzelliges Nierenzellkarzinom (1)
- Kleinmolekülaktivierung (1)
- Klinische Pathologie (1)
- Kohlendioxid (1)
- Komplexe (1)
- Kontinuierliche gerichtete Evolution (1)
- Korrosion (1)
- Korrosionselektrochemische Verhalten (1)
- Kraftfeld-Rechnung (1)
- Kristallfläche (1)
- Künstliche Evolution (1)
- LC-MS (1)
- LCA (1)
- Landsat (1)
- Ligand (1)
- Ligand-DNA-Interaktion (1)
- Ligation (1)
- Limnologie (1)
- Linker (1)
- Lipasen (1)
- Lipases (1)
- Lipid Modification (1)
- Lithocholsäure (1)
- Lysosomen (1)
- Makrophagen (1)
- Meerespilze (1)
- Membrane (1)
- Metabolism (1)
- Metabolom (1)
- Methylation (1)
- Methyltransferase (1)
- MoCo (1)
- Modelle des Molybdän-Cofaktors (1)
- Modellverbindungen (1)
- Molecular Modeling (1)
- Molecular Modelling (1)
- Molecular modeling (1)
- Molecular modelling (1)
- Molybdenum Cofactor (1)
- Molybdenum cofactor (moco) (1)
- Molybdenum cofactor (moco) models (1)
- Molybdenum mediated pentathiepin synthesis (1)
- Molybdän-Cofaktor (1)
- Molybdän-Cofaktor-Defizienz (1)
- Monodithiolenkomplex (1)
- Monodithiolenkomplexe (1)
- Monooxygenase (1)
- Mutagenese (1)
- N-Acyl-L-Homoserinlakton (1)
- N-Aryl Phosphinoglycines (1)
- N-heterocyclic olefins (1)
- N-substituierter Phosphanylglycine (1)
- NNMT (1)
- Naringenin (1)
- Naturstoff (1)
- Nickel (1)
- Nickel catalysts (1)
- Nickelkatalysator (1)
- Niere (1)
- Nitric oxide (1)
- Nnucleophilic substitution (1)
- Nucleoside modification and labeling (1)
- Nukleinsäuren (1)
- Nukleosidanaloga (1)
- Nukleoside (1)
- OAT Reaction (1)
- ONX-0914 (1)
- Oberflächenbehandlung (1)
- Oberflächenmodifizierung (1)
- Oberflächenveränderung (1)
- OleP (1)
- Oligomerisation (1)
- Oligonukleotid Konjugate (1)
- One‐pot reaction (1)
- Optisch active Dithiolene (1)
- Organic Matter (1)
- Organischer Stoff (1)
- Organschaden (1)
- Ovalbumin (1)
- Oxidoreductase (1)
- Oxidoreductasen (1)
- Oxidoreductases (1)
- Oxidoreduktasen (1)
- Oxidschi (1)
- Oxocarbonsäureester (1)
- P-Arylation (1)
- P450 (1)
- P=C Verbindungen (1)
- P=C-N-Heterocyclen (1)
- P=C-N-Heterocycles (1)
- Pancreatitis (1)
- Passivierung (1)
- Pb-UPD (1)
- Pd/PTABS catalyst (1)
- Pentathiepins (1)
- Peptide (1)
- PestE (1)
- Phase Equilibrium (1)
- Phasengleichgewicht (1)
- Phenylalanin-Ammoniumlyase (1)
- Phloretin (1)
- Phosphane (1)
- Phosphanyl- (1)
- Phosphanylaminosäure (1)
- Phosphanylaniline (1)
- Phosphanylglycine (1)
- Phosphaproline (1)
- Phosphaprolines (1)
- Phosphate Substituted Dithiolene (1)
- Phosphino amino acids (1)
- Phosphinoaminosäuren (1)
- Phosphinoaniline (1)
- Phosphinoanilines (1)
- Phosphinoglycines (1)
- Phospholipase A2 (1)
- Phosphonium glycolates (1)
- Phosphoniumglykolate (1)
- Phosphoniumsalze (1)
- Phosphor-31-NMR-Spektroskopie (1)
- Phosphoramidite (1)
- Phosphorylierung (1)
- Phosphotransferasesystem (1)
- Physikalische Chemie (1)
- Plasmachemie (1)
- Plasmamedizin (1)
- Platelet Factor 4 (1)
- Platin (1)
- Platinabscheidung auf Gold (1)
- Plesiocystis pacifica (1)
- Plättchenfaktor 4 (1)
- Polycaprolactone (1)
- Polykristall (1)
- Polyphenole (1)
- Potential – pH Diagram (1)
- Potentiometrie (1)
- Potenzial – pH-Diagramm (1)
- Pr (1)
- Process engineering (1)
- Protease (1)
- Proteases (1)
- Proteinfaltung (1)
- Proteingerüst (1)
- Proteinogene Aminosäuren (1)
- Proteinreinigung (1)
- Proteinsequenz (1)
- Protonen-NMR-Spektroskopie (1)
- Prozesstechnik (1)
- Pseudomonas putida (1)
- Pseudorabies-Virus (1)
- Push–pull imines (1)
- Pyruvatdecarboxylase (1)
- QCM (1)
- QM/MM (1)
- Quadruplex (1)
- Quantenchemie (1)
- Quorum quenching (1)
- Quorum sensing (1)
- RIDD (1)
- RNA engineering (1)
- RNA recombination (1)
- RNA repair (1)
- RNA, modifizierte Nukleoside, Chemische Synthese (1)
- RNA-Reparatur (1)
- RNS-Edierung (1)
- RT-qPCR (1)
- Radikalfänger (1)
- Rasterelektronenmikroskop (1)
- Reaktionskaskade (1)
- Reaktive Sauerstoffspezies (1)
- Redox Biogeochemie (1)
- Redox Biogeochemistry (1)
- Redoxchemie (1)
- Reduktive Aminierung (1)
- Regioselektivität (1)
- Regulatorische T-Zelle (1)
- Rekombination (1)
- Renilla Luciferase (1)
- Repressorproteine (1)
- Resistenz (1)
- Rhenium (1)
- Rhodococcus rhodochrous (1)
- Riboswitch (1)
- Ring-opening polymerization (1)
- Ringöffnungspolymerisation (1)
- Röntgenkristallographie (1)
- Röntgenstrukturanalyse (1)
- SAM analogue (1)
- SNPs (1)
- Schweineleber-Esterase (1)
- Schwermetalle (1)
- Scilab (1)
- Screening (1)
- Sekundärstruktur (1)
- Sensor (1)
- Sensoren (1)
- Serinproteasen (1)
- Small RNA (1)
- Spektroelektrochemie (1)
- Sphingolipide (1)
- Spinmarkierung (1)
- Stabilität (1)
- Steroidmonooxygenase (1)
- Stickstoffmonoxid (1)
- Stoffwechsel (1)
- Streptococcus pneumoniae (1)
- Streptomyces (1)
- Strukturanalyse (1)
- Strukturaufklärung (1)
- Strukturverfeinerung (1)
- Substrat <Chemie> (1)
- Suides Herpesvirus (1)
- Sulfoxidation (1)
- Synthese (1)
- Synthetic Biology (1)
- Synthetic design (1)
- Synthetische Biologie (1)
- Targeted Proteomics (1)
- Temperaturbeständigkeit (1)
- Tetracyclin (1)
- Tetracycline (1)
- Thermal Desorption Spectrometry (1)
- Thermische Desorptionsspektroskopie (1)
- Tierphysiologie (1)
- Titan (1)
- Titration (1)
- Transition Metal Complexes (1)
- Transitional metal catalysis (1)
- Trinukleotid (1)
- Tyrosin-Ammonium-Lyase (1)
- UDCA (1)
- UPR (1)
- Umesterung (1)
- Uncoupling (1)
- Ursodeoxycholsäure (1)
- V-loop (1)
- VEEV (1)
- VHL (1)
- Veresterung (1)
- Voltammetrie (1)
- Vorhersage (1)
- WNV (1)
- Warburg effect (1)
- Wasserhärte (1)
- Water-soluble catalysis (1)
- Wein (1)
- Whole-cell enzyme cascade (1)
- Wirtsorganismus (1)
- Wnt signalling (1)
- Wnt-Signalweg (1)
- X-ray structure (1)
- Zellen (1)
- active centers (1)
- acylation (1)
- acyltransferases (1)
- adaptation (1)
- adenosine deamination (1)
- aging (1)
- airway epithelial cells (1)
- alanine scanning (1)
- alcohol dehydrogenase (1)
- alcohol dehydrogenases (1)
- aldehyde production (1)
- aldehydes (1)
- alkenes (1)
- alpha- Phosphino Amino Acids (1)
- alpha-toxin (1)
- alphaherpesvirus (1)
- amination (1)
- amine transaminase (1)
- amino alcohols (1)
- antibiotic resistance (1)
- antimicrobial (1)
- antimicrobial substance (1)
- antiterminator protein (1)
- aptazyme (1)
- aptazymes (1)
- aquaculture (1)
- aquatische Grenzzonen (1)
- assemblin (1)
- assembly protein (1)
- asymmetric catalysis (1)
- atmospheric-pressure plasma jets (1)
- autoligation (1)
- beta-Catenin (1)
- beta-catenin (1)
- bioactive compounds (1)
- biocatalytic cascades (1)
- biochemical-clinical traits (1)
- bioinformatic (1)
- biological membranes (1)
- bioluminescence (1)
- biomarker (1)
- blood coagulation (1)
- bone erosion (1)
- boronic acids (1)
- bortezomib (1)
- bulk chemical production (1)
- capsid assembly (1)
- carbamoylase (1)
- carbocations (1)
- carbon catabolite repression (1)
- carrageenan (1)
- cascade reaction (1)
- castration-resistant prostate cancer (1)
- ccRCC (1)
- cell cycle regulator (1)
- cell proliferation (1)
- cellular sensitivity (1)
- chalcone isomerase (1)
- chemical ecology (1)
- chemical identification (1)
- chemische Identifizierung (1)
- chiral amines (1)
- chondroitin sulfate (1)
- circular (1)
- cloud removal (1)
- co-infection (1)
- cold physical plasma (1)
- cold physical plasmas (1)
- collagen-induced arthritis (1)
- compensatory growth (1)
- cyclin-dependent kinase inhibitor (1)
- cycloalkanone monooxygenase (1)
- cytidine deamination (1)
- degradation (1)
- dehalogenase (1)
- derivatives (1)
- detergents (1)
- dihedral principal component analysis (1)
- dihydrogen phosphate (1)
- diketocamphane monooxygenase (1)
- diseases (1)
- dithiolene ligand (1)
- duale Substraterkennung (1)
- eQTL (1)
- eicosanoids (1)
- enantioselectivity (1)
- endosymbionts (1)
- enzyme (1)
- enzyme evolution (1)
- enzymes (1)
- epoxide hydrolase (1)
- esterase (1)
- esterases (1)
- extracellular matrix (1)
- eye lens cell membrane (1)
- family VIII carboxylesterase (1)
- fish (live) (1)
- flavin reductase (1)
- flavonoid (1)
- fluorescence (1)
- fluorine (1)
- free radicals (1)
- fusion protein (1)
- gamma-Lactamase (1)
- gamma-lactamase (1)
- genetic (1)
- genetic code expansion (1)
- genetically encoded sensors (1)
- genotyping (1)
- gerichtete Evolution (1)
- glycosaminoglycans (1)
- glycosidases (1)
- glycosidic torsion angles (1)
- gold nanoparticles (1)
- group A streptococcus (1)
- guanosine analogs (1)
- hairpin-ribozyme (1)
- halides (1)
- haloalkane (1)
- haloalkane dehalogenases (1)
- haloperoxidase (1)
- heavy metal (1)
- heterologous gene expression (1)
- histidine (1)
- host pathogen interactions (1)
- hyaluronic acid (1)
- hydantoinase (1)
- hydantoinase-process (1)
- hydrogen bond (1)
- hydrogen peroxide (1)
- hydrogen phosphate (1)
- image reconstruction (1)
- immunology (1)
- in vivo selection (1)
- industrial catalysis (1)
- industrielle Biokatalyse (1)
- infection (1)
- influenza A virus (1)
- inhibition (1)
- insulin-producing cells (1)
- integrin αIIbβ3 (1)
- intestinal (1)
- isolated sulfite oxidase deficiency (iSOD) (1)
- kINPen (1)
- ketoreductase (1)
- kinases (1)
- kinetics (1)
- laminarin (1)
- lead structure (1)
- lipase (1)
- lipid mediators (1)
- lipid monolayers (1)
- lipids (1)
- liposomes (1)
- liquid-liquid extraction (1)
- liver regeneration (1)
- luciferase (1)
- lysine acetylation (1)
- lysine acetyltransferases (1)
- lysine deacetylases (1)
- mQTL (1)
- magnetic moment (1)
- marine fungi (1)
- marine polysaccharides (1)
- mass spectrometry (1)
- medicinal leeches (1)
- membrane protein (1)
- menaquinones (1)
- metabolite (1)
- metabolites (1)
- metadynamics (1)
- methyltransferases (1)
- microglia (1)
- microorganisms (1)
- mitochondria (1)
- mixed-valence complex (1)
- molybdenum cofactor deficiency (MoCoD) (1)
- molybdopterin (1)
- monooxygenase (1)
- monoterpene acylation (1)
- n/a (1)
- neutral genetic drift (1)
- nitrosative stress (1)
- non-identical reversible reaction (1)
- nucleophilic substitution (1)
- oil (1)
- oligonucleotide conjugate (1)
- oligonucleotides (1)
- optically active dithiolene (1)
- organic synthesis (1)
- overflow metabolites (1)
- oxidation (1)
- oxidative and nitrosative stress (1)
- oxidative post-translational modifications (1)
- oxidative stress (1)
- oxidized lipids (1)
- oxylipins (1)
- pH electrode (1)
- pH-Elektrode (1)
- pH-assay (1)
- phosphorylation (1)
- phosphotransferase system (1)
- pig liver esterase (1)
- pig model (1)
- plasma liquid chemistry (1)
- plasma medicine (1)
- plastic pollution (1)
- platinum deposition on gold (1)
- polycrystalline gold (1)
- porphyran (1)
- proteasome (1)
- protein interaction (1)
- protein-engineering (1)
- proteindesign (1)
- proteomics (1)
- pseudorabies virus (1)
- pyrrolobenzodiazepine (1)
- pyruvate (1)
- pyruvate kinase (1)
- quinhydrone (1)
- radical polishing (1)
- radical reactions (1)
- radiometric interpolation (1)
- rat hepatocytes (1)
- rational design (1)
- rationales Design (1)
- reactive nitrogen species (1)
- reactive species (1)
- recombinant enzyme (1)
- recombinant expression of proteins (1)
- recombination (1)
- reconstitution (1)
- recycling (1)
- redox signaling (1)
- rekombinante Proteinexpression (1)
- respiratory tract infection (1)
- rheumatoid arthritis (1)
- riboswitch (1)
- ribozymes (1)
- scaffold (1)
- scale up for bulk chemical production (1)
- schwere akute Pankreatitis (1)
- secondary plantmetabolites (1)
- secondary structure (1)
- selection assay (1)
- selection-assay (1)
- self assembled monolayer (1)
- sensors (1)
- sepsis (1)
- septic arthritis (1)
- sirtuin (1)
- social arthropods (1)
- spectral matching (1)
- sphingomyelin (1)
- spinlabel (1)
- steered molecular dynamics (1)
- stereoselectivity (1)
- substituent (1)
- substrate specificity (1)
- sugar conformation (1)
- sugar pucker (1)
- suid herpesvirus (1)
- sulfoxidation (1)
- surface change (1)
- surface modification (1)
- surface treatment (1)
- talin (1)
- temporal fitting (1)
- tertiary alcohol (1)
- tertiärer Alkohole (1)
- tetra-nuclear nickel complex (1)
- tetracycline (1)
- three-phase electrochemistry (1)
- titanium dioxide (1)
- transbilayer lipid (flip-flop) motion (1)
- transcript (1)
- transmembrane pores (1)
- type I IFN response (1)
- ulvan (1)
- upcycling (1)
- ustilagic acid (1)
- viral diagnosis (1)
- virology (1)
- virulence factors (1)
- virus (1)
- virus host interaction (1)
- viruses (1)
- vitamin K2 (1)
- volatile organic compound (1)
- white spot syndrome virus (1)
- whole-cell biocatalysis (1)
- zirkular (1)
- Östrogen-Rezeptor-Modulator (1)
- Östrogene (1)
- Übergangsmetallkomplexe (1)
- β-amino acid (1)
- β-phenylalanine ethyl ester (1)
- ω-hydroxy fatty acid (1)
- ω-transaminase (1)
Institute
- Institut für Chemie und Biochemie (187) (remove)
Publisher
- MDPI (17)
- Wiley (11)
- Frontiers Media S.A. (7)
- John Wiley & Sons, Inc. (3)
Monodithiolenkomplexe des Wolframs und des Molybdäns des Typs [M(CO)2(dt)(PP)] (M= Mo, W; dt= Dithiolen; PP= Bisphosphan) waren bisher nur wenig zugänglich und entsprechend kaum untersucht. Im Rahmen dieser Arbeit wurden diverse Variationen an Dithiolen- und Phosphan-Liganden eingeführt und die erhaltenen Komplexe umfassend charakterisiert. Ein besonderer Fokus wurde hierfür auf die redoxbasierte Reaktivität dieser spannenden Komplexklasse gelegt, sodass eine Aktivierung von molekularem Stickstoff im Rahmen einer Kleinmolekülaktivierung ermöglicht werden sollte. Während der Untersuchungen konnte ein erstes Beispiel für die Generierung eines Dithiolen-Sulfonium-Liganden basierend auf einer Reaktivität gegenüber dem Kleinmolekül Dichlormethan erhalten werden.
Immunogenität von Hautkrebszellen und dem Modellprotein Ovalbumin nach einer Kaltplasma-Behandlung
(2021)
Eine Behandlung von Tumoren mit physikalischem Kaltplasma zeigt eine erhöhte Toxizität und ein reduziertes Tumorwachstum. Zeitgleich werden während einer Behandlung mit Plasma eine Vielzahl an reaktiven Sauerstoff- und Stickstoffspezies (RONS) generiert, welche Immunzellen stimulieren können. Viele neue Therapieansätze bestreben nicht nur eine Tumortoxizität, sondern auch eine Förderung der körpereigenen, da diese häufig durch Mechanismen der Tumorzellen unterdrückt wird. Zu solchen Therapien zählen checkpoint inhibitoren, Vakzinierungen oder ein adaptiver Zelltransfer mit transgenen oder vor-stimulierten Zellen. Die dadurch geförderte Antitumor-Immunantwort basiert grundlegend auf einem mehrphasigen Prozess. Dieser beginnt mit einer Antigen-unspezifischen frühen Phase, in der das innate Immunsystem aktiviert wird und zu einer Vermehrung und Differenzierung von Antigen-spezifischen CD4+ und CD8+ T-Zellen führt. Da während einer Entzündungsreaktion viele RONS gebildet werden, um Fremdkörper zu eliminieren und Immunzellen zu rekrutieren, ist eine Therapie mit RONS naheliegend. Durch die Anwendung von Kaltplasma können die gebildeten RONS zum Entzündungsgeschehen beitragen und Zellen des innaten und adaptiven Immunsystems stimulieren. Eine veränderte Immunogenität von Tumorzellen sowie eine daraus resultierende direkte Aktivierung von Immunzellen im Kontext einer Antitumor-Immunantwort wurden nach einer Behandlung mit Jet-Plasmen bislang nicht untersucht.
In der vorliegenden Arbeit wurde die Kaltplasma-Behandlung von Hautkrebszellen und eines Modellantigens unter Berücksichtigung einer Antitumor-Immunantwort durch natürliche Killerzellen des innaten Immunsystems sowie adaptive Immunzellen in vitro und in vivo untersucht. Es konnte gezeigt werden, dass eine Behandlung mit Kaltplasma zu einer erhöhten Tumortoxizität führt und das Repertoire der Oberflächenmoleküle auf Tumorzellen verändert. In vivo wurde eine vermehrte Infiltration von Immunzellen in das Tumormikromilieu beobachtet, welche mit einer erhöhten Aktivierung von Lymphozyten und Konzentrationen immunstimulatorischer Zytokine einherging. Durch die zeitgleich reduzierten Tumorgrößen, ist eine durch Immunzellen vermittelte Tumortoxizität als Erklärung naheliegend. In zwei Vakzinierungsstudien konnte die Immunogenität von Plasma-behandelter Tumorzellen und einem Tumorassoziierten Modellantigen bestätigt werden.
Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades
(2019)
Plant-derived carbohydrates are an abundant renewable re- source. Transformation of carbohydrates into new products, in- cluding amine-functionalized building blocks for biomaterials applications, can lower reliance on fossil resources. Herein, bio- catalytic production routes to amino carbohydrates, including oligosaccharides, are demonstrated. In each case, two-step bio- catalysis was performed to functionalize d-galactose-contain- ing carbohydrates by employing the galactose oxidase from Fusarium graminearum or a pyranose dehydrogenase from
Agaricus bisporus followed by the w-transaminase from Chro- mobacterium violaceum (Cvi-w-TA). Formation of 6-amino-6- deoxy-d-galactose, 2-amino-2-deoxy-d-galactose, and 2-amino- 2-deoxy-6-aldo-d-galactose was confirmed by mass spectrome- try. The activity of Cvi-w-TA was highest towards 6-aldo-d-gal- actose, for which the highest yield of 6-amino-6-deoxy-d-galac- tose (67%) was achieved in reactions permitting simultaneous oxidation of d-galactose and transamination of the resulting 6- aldo-d-galactose.
The soluble blood protein beta2-glycoprotein I (beta2GPI; 326 aa, MW: 48 kDa, 5 domains) is one of the most abundant proteins in human serum and exhibits two main conformational states: the circular or closed conformation, where the first domain (DI) is bound to the last domain (DV) of the protein, and the linear or open conformation. The defined physiological function of beta2GPI is still unknown, though several roles in pro- and anticoagulation as well as oxidative stress protection were discovered. The open form is considered to play a crucial role in the systemic autoimmune disease antiphospholipid syndrome (APS), which is an acquired thrombophilia characterized by recurring thrombotic events and pregnancy morbidity. Beta2GPI constitutes the main antigen for APS autoantibodies which are supposed to bind a cryptic epitope within DI after a conformational change from closed to open form. However, the pathophysiological mechanism of APS is poorly understood. Therefore, investigating the structural dynamics of this protein in relation to its antigenicity is of high interest.
Post-translational modifications (PTM) of a target protein often show an impact on the formation of neoantigens, for instance in the autoimmune-mediated diseases type 1 diabetes mellitus, rheumatoid arthritis, or multiple sclerosis. Such modified antigens may lead to immune tolerance breakdown as they are unknown to the immune system, which therefore could mistakes self for non-self proteins. In this thesis, two frequently occurring PTM were introduced to beta2GPI and their impact on the protein conformation was studied by biophysical tools (i.e. atomic force microscopy (AFM) imaging, transmission electron microscopy (TEM) imaging, dynamic light scattering (DLS), and circular dichroism (CD) spectroscopy). In order to examine immunopathophysiological relevance of these PTM, additional insights were gained from ELISA which was used to examine binding of anti-DI autoantibodies purified from the blood of APS patients to the modified beta2GPI species.
A characteristic feature of beta2GPI is the high content of lysine residues. Previously, opening of beta2GPI was found to be triggered by a drastic shift in pH and salt concentration (pH 11.5 and 1.15 M NaCl), which results in reversible uncharging of the lysine residues. The aim of this study was to investigate the beta2GPI conformation after lysine acetylation as a model system, to elucidate the role of lysine residues on the conformational dynamics of this protein, and to examine anti-DI autoantibody binding to both the untreated as well as acetylated species.
A strategy to permanently open up the closed form under physiological conditions by chemical acetylation of lysine residues utilizing the sensitive acetylation agent acetic acid N-hydroxysuccinimide ester (NHS-Ac) was established. Complete and specific lysine acetylation was verified by quantification of primary amines exerting a fluoraldehyde o-phthaldialdehyde (OPA) reagent assay, as well as by native PAGE and western blot analysis with an anti-acetylated lysine antibody. Beta2GPI acetylation revealed a partial opening of beta2GPI molecules. Compared to untreated, i.e. native beta2GPI which exhibited 93% of the molecules in closed and 7% in open form, complete lysine residue acetylation generated 39% of beta2GPI in closed and 61% in open conformation as shown by AFM high-resolution imaging. pH 11.5-treated beta2GPI was used as a reference in the applied methods and revealed 38% of the protein in closed and 62% in open conformation. Thus, a significant shift in beta2GPI conformation occurred upon lysine residue acetylation as well as basic pH-treatment. The data indicate that lysine residue acetylation destabilizes the closed form, leading to a facilitated opening of the structure. The closed conformation might be predominantly stabilized by electrostatic interactions of lysine residues, which potentially control the conformational dynamics of this glycoprotein. ELISA confirmed that anti-DI autoantibodies do not bind to untreated (closed) beta2GPI. Although acetylated beta2GPI was shown to have a substantial portion of open proteins, no binding of anti-DI autoantibodies to the acetylated species was found either. Hence, acetylated lysine residues may disrupt the immunorelevant epitope in DI which prevents antibody binding. This finding reveals a new hint for epitope organization. However, further detailed epitope mapping has to be performed.
Beta2GPI carries two structural disulfide bonds per domain, whereas an additional disulfide bond Cys288/Cys326 is located at the C-terminus of DV near the putative contact interface of DI and DV in the closed conformation. It was previously shown that beta2GPI is a substrate of thiol oxidoreductases, including human thioredoxin-1 (Trx-1) generating different redox states of disulfide bond Cys288/Cys326, which might serve as a scavenger in oxidative stress protection in the blood stream. In APS patients, anti-DI antibody titers as well as an enhanced risk for thrombotic events are associated with an increase in the oxidized state of the protein. Hitherto, no structural study has been performed in order to prove a correlation of the redox state and the conformation of beta2GPI. Therefore, investigations of beta2GPI conformation in different redox states of disulfide bond Cys288/Cys326 were carried out. In addition, binding of anti-DI autoantibodies to the untreated (native) as well as reduced protein should be explored.
At first, cysteine residues of untreated, i.e. native beta2GPI were confirmed to be completely in oxidized state using Ellman’s reagent assay and the absence of binding of a thiol-specific agent. Statistical analyses of AFM images revealed that untreated beta2GPI was mainly in closed conformation (80% in closed and 20% in open conformation) in the respective system. In this study, an optimized protocol for enzymatic reduction of disulfide bond Cys288/Cys326 was established. The agent TCEP was used to reduce human Trx-1, which in turn enzymatically reduced beta2GPI. To block reoxidation of free thiols and to facilitate product analysis, cysteine residues of reduced beta2GPI were subsequently labeled with the sensitive and thiol-specific reagent 3-(N-maleimidopropionyl) biocytin (MPB), which carries a biotin function. During protocol establishment, complete and specific reduction of disulfide bond Cys288/Cys326 was confirmed utilizing SDS-PAGE, streptavidin western blot, mass spectrometry (MS) analyses, and a biotin quantification assay. Protocol improvements constituted a homogenous system with remarkable decrease of unspecifically reduced beta2GPI. Upon beta2GPI reduction, AFM imaging revealed no significant shift in protein conformation (75% in closed and 25% in open conformation). These results were qualitatively confirmed by TEM imaging. Therefore, reduction of beta2GPI disulfide bond Cys288/Cys326 did not result in a major conformational change of the protein. Upon in vitro reduction, the closed form is still the main conformation and a direct correlation of beta2GPI redox state and conformation must be refused. Furthermore, beta2GPI reduction led to a strong and statistically highly significant increase in anti-DI autoantibody binding compared to untreated beta2GPI. Thus, the reduced form might be the antigenic form of the protein. In contrast to previous knowledge, these findings suggest that anti-DI autoantibodies may also bind to the closed conformation under certain conditions. Hypothetically, reduction of beta2GPI could induce a minor structural change in DV that might facilitate the binding of APS autoantibodies.
Overall, this study reveals that PTM of beta2GPI may lead to a critical level of destabilization of the closed conformation (as in the case of acetylated beta2GPI) or significantly increase the binding of APS autoantibodies (as in the case of reduced beta2GPI), both of which could have a large impact on APS disease. However, further investigations are necessary to put these new findings in the context of APS immunopathophysiology.
Haloalkanes are serious environmental pollutants commonly employed as pesticides, herbicides, and chemical warfare agents. Although haloalkane production is performed mostly in the chemical industry, it also occurs naturally, mostly enzymatically (halide methyltransferases and haloperoxidases). Elimination of toxic haloalkanes is very important and using haloalkane dehalogenases is a promising and environmentally friendly way to achieve this.[53] Therefore, assays are needed for detecting dehalogenase activity either to find new enzymes or to generate laboratory-evolved variants. In this thesis, a new assay for dehalogenase activity was developed based on halide detection. In this assay halides, as dehalogenase products, are oxidized under mild conditions using the vanadium-dependent chloroperoxidase from Curvularia inaequalis, forming hypohalous acids that are detected using aminophenyl fluorescein.[53] This new halide oxidation assay is much more sensitive than previously known assays, with detection limits of 20 nM for bromide and 1 μM for chloride and iodide. Validation of the assay was done by comparison to a well-established GC-MS method in terms of determining the specific activities of two dehalogenases towards five common substrates (Figure 5).
The HOX assay was modified for iodide-specific detection by using two other dyes, o-phenylenediamine (OPD) and 3,3′,5,5′-tetramethylbenzidine (TBM), instead of APF. Also, selective bromide detection in the presence of the common contaminant chloride was achieved by using a bromoperoxidase. Since the assay relies on halide detection, it is possible to use it for other halide-producing enzymes (Section 8.1). For example, the TMB-modified version was used for screening of halide methyltransferase libraries towards various alkyl iodides.[166] Furthermore, the HOX assay was used to identify promiscuous dehalogenase activity of the epoxide hydrolase CorEH from Corynebacterium sp. C12.[105]
Moreover, studies showed that the HOX assay could be used with in-vitro synthesized protein. Selected dehalogenases, DhlA, DhaA, and DmmA, were synthesized in vitro and used in the assay; the product formation was also validated using GC-MS. In conclusion, the HOX assay can be used with purified protein, whole cells, or in vitro synthesized proteins.
The HOX assay application in microfluidic droplets was investigated since an ultra-high-throughput assay for haloalkane dehalogenases is needed. This investigation showed no leakage of reaction components and products in the short term (~24 h), based on tests done on water-in-oil droplets generated by microfluidic chips. Even though 20 μM droplets were not working, 70 μM droplets were successful for assay implementation. Since the Damborsky group in Brno (CZ) and the deMello group in Zürich (CH), have large dehalogenase libraries and more experience in microfluidics, respectively, we collaborated with these groups to finalize implementation of the assay in an ultrahigh-throughput format. Since the studies are ongoing, final results could not yet be shown in this thesis. However, it can be noted that the issue with 20 μm droplets has been sorted out since our collaborators in Brno noticed that the low fluorescence of the droplets is actually caused by excessive accumulation of fluorescein, which is self-quenching, resulting in low fluorescence once the concentration exceeds 1 μM. By lowering the APF concentration they could optimize the maximum amount of fluorescein formed, and a mutant library has now been successfully screened by our collaborators at the ETH. The last topic of the thesis was an investigation of converting an epoxide hydrolase into a haloalkane dehalogenase. These studies focused on increasing the minor dehalogenase activity of two previously identified epoxide hydrolase (Cif) variants. These Cif variants hardly led to soluble proteins, the PROSS algorithm was used to increase soluble expression. New variants of Cif were generated using a 3DM analysis and the PROSS[164] design. The activities of these variants were determined with the newly developed HOX assay in a whole-cell format. Cif23 E153N-H269D and the PROSS D7 E153N-H269D variant, were found being active against 1,2-dibromoethane. Since the determination of enzyme concentration was hard to measure due to the expression/purification problem, specific activities could not be determined. To solve this problem, a HiBiT-tag was added to the selected variants for determining soluble expression. However, the planned studies could not be completed because of a lack of time and will form the basis for a future study.
This thesis focuses on the establishment of biocatalytic cascade reactions for the production and detection of industrially relevant flavor and fragrance compounds for food and cosmetic products. To meet the consumer’s demand for those products to be natural, environmentally friendly biocatalytic manufacturing processes that operate GMO-free must be established. Thus, this thesis presents such pathways for the production of an industrially relevant long-chain hydroxy fatty acid and the important flavor and aroma compound raspberry ketone. Furthermore, a biosensor for aldehyde detection was implemented to facilitate screening for suitable biocatalysts that produce industrially relevant aldehydes that are widely applied in the flavor and fragrance industry.
The development of the two main types of diabetes mellitus, type 1 and type 2 (T1D, T2D), is closely associated with the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in insulin-secreting pancreatic β-cells. In T1D, β-cell death
is triggered by proinflammatory cytokines, which mainly lead to the formation of ROS
in mitochondria and RNS in the cytosol. Pancreatic β-cells are extraordinarily sensitive
to oxidative stress due to their low glutathione peroxidase and catalase expression.
Thus, hydrogen peroxide (H2O2) cannot be detoxified, neither sufficiently, nor rapidly.
H2O2 itself is a rather weakly reactive ROS but can react in the Fenton reaction to form
highly reactive hydroxyl radicals (●OH), that can damage cells in a variety of ways and
induce cell death. The cell and its organelles are bounded by biological membranes
that differ in their permeability to H2O2. Aquaporins (AQPs) are water-transporting
transmembrane proteins, and some isoforms have been shown to facilitate a bidirectional transport of H2O2 across cellular membranes in addition to water. The role of
AQP8 was investigated in an insulin-producing cell model by stably overexpressing
AQP8 (AQP8↑) and by a CRISPR/Cas9-mediated AQP8 knockout. However, AQP8
proved to be an essential protein for the viability of the insulin-producing RINm5F cells, and so we established a tet-on-regulated AQP8 knockdown (AQP8 KD). Our results highlight that AQP8 is involved in H2O2 transport across the plasma and mitochondrial membranes, and that AQP8 expression gets upregulated by proinflammatory cytokines (in vitro) and in an acutely diabetic rat model (in vivo). Furthermore, it was shown that the increased proinflammatory cytokine toxicity is due to enhanced mitochondrial oxidative stress, because H2O2 cannot be efficiently transported in AQP8 KD cells and ●OH
are increasingly generated. Caspase activity then raises, and apoptosis is increasingly
induced coupled with a proportion of ferroptosis-mediated cell death because of a concomitant decrease in nitric oxide (NO●) concentration. In conclusion, AQP8 is localized in the plasma and mitochondrial membrane of insulin-producing RINm5F cells, where it is involved in H2O2 transport. In T1D, AQP8 plays an important role in the transport of H2O2 from the mitochondrial matrix to the cytosol so that the concentration is lowered in the mitochondria. This wider distribution of H2O2 may ease the inactivation of H2O2.
Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains’ size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.
Die akute Pankreatitis ist durch eine vorzeitige Aktivierung von Verdauungsenzymen noch innerhalb der Azinuszellen gekennzeichnet. Die lysosomale Hydrolase Cathepsin B (CTSB) spielt hierbei eine entscheidende Rolle, indem sie Trypsinogen zu Trypsin aktiviert. Für die Trypsinogenaktivierung durch CTSB ist eine Co-Lokalisierung beider Enzyme innerhalb desselben subzellulären Kompartiments erforderlich. Ziel dieser Arbeit war es, die Regulation der CTSB-Aktivität durch den Cysteinprotease-Inhibitor Cystatin C im Verlauf der akuten und chronischen Pankreatitis näher zu untersuchen.
Subzelluläre Fraktionierungsexperimente zeigten eine deutliche Lokalisation von Cystatin C und aktiven Cathepsin B im sekretorischen Kompartiment muriner Azinuszellen. Immunofluoreszenzfärbungen zeigten ebenfalls, dass Cystatin C zusammen mit der pankreatischen Amylase im sekretorischen Kompartiment von Azinuszellen lokalisiert ist. Auch in humanen Probenmaterial konnten wir zeigen, dass Cystatin C im sekretorischen Kompartiment lokalisiert ist und auch sekretiert wird. Experimente mit rekombinanten Proteinen zeigten eine deutliche pH-abhängige inhibitorische Wirkung von Cystatin C auf Cathepsin B. Unter sauren pH Bedingungen dimerisiert Cystatin C und ist somit nicht mehr in der Lage die Aktivität von CTSB zu inhibieren. Weiterhin konnten wir zeigen, dass aktives Trypsin Cystatin C prozessiert. Bei dieser Spaltung entsteht ein Cystatin C-Fragment, welches nicht mehr in der Lage ist, CTSB zu inhibieren, sondern vielmehr die auto-inhibitorische Kapazität von Cathepsin B unterbindet und somit die Aktivität stabilisiert. Neben Cystatin C wird in Azinuszellen auch Cystatin B exprimiert, ein weiterer Inhibitor der Cystein-Proteasen. Im Gegensatz zu Cystatin C ist Cystatin B exklusiv im cytosolischen Kompartiment der Azinuszelle lokalisiert. Dies ist wahrscheinlich ein Schutzmechanismus, welcher die Zelle vor einer cytosolischen Cathepsin-Aktivität schützen soll. Die genetische Deletion von Cystatin C im Mausmodell der akuten Pankreatitis führte zu einer erhöhten Aktivität sekretorischer Proteasen in Azinuszellen, sowie im Gesamthomogenat und in subzellulären Fraktionen. Dementsprechend zeigte sich auch ein deutlich erhöhter Schweregrad in der akuten und chronischen Pankreatitis.
Unsere Experimente lassen vermuten, dass die Aktivität von Cathepsin B unter physiologischen Bedingungen durch Cystatin C unterbunden wird, um so eine verfrühte Aktivierung des Trypsinogens zu verhindern. Im Verlauf der Pankreatitis wird dieser protektive Mechanismus jedoch überwunden. Die Aktivität von Cathepsin B steigt deutlich in der schweren Zymogengranula-Fraktion an, trotz der Präsenz von Cystatin C.
Zusammenfassend lassen unsere Ergebnisse vermuten, dass prozessiertes (aktives) Cathepsin B selbst unter physiologischen Bedingungen im sekretorischen Kompartiment von Azinuszellen bereits vorhanden ist. Seine Aktivität wird dort durch Cystatin C inhibiert, wodurch eine vorzeitige, durch CTSB induzierte Trypsinogenaktivierung verhindert wird. Die Ansäuerung der sekretorischen Vesikel, wie bei der Pankreatitis, verringert die CTSB-Hemmung durch Cystatin C, während es gleichzeitig zu einer Cystatin C-Degradation durch Trypsin kommt. Dies ermöglicht eine verlängerte und pH-unempfindliche Protease-Aktivierung über CTSB in der Anfangsphase der Pankreatitis. Cystatin C spielt somit eine wesentliche Rolle für die Regulation der CTSB-Aktivität im sekretorischen Kompartiment von Azinuszellen und stellt damit einen entscheidenden pathophysiologisch relevanten Mechanismus für die akute und chronische Pankreatitis dar.
Abstract
Macroalgae species are fast growing and their polysaccharides are already used as food ingredient due to their properties as hydrocolloids or they have potential high value bioactivity. The degradation of these valuable polysaccharides to access the sugar components has remained mostly unexplored so far. One reason is the high structural complexity of algal polysaccharides, but also the need for suitable enzyme cocktails to obtain oligo‐ and monosaccharides. Among them, there are several rare sugars with high value. Recently, considerable progress was made in the discovery of highly specific carbohydrate‐active enzymes able to decompose complex marine carbohydrates such as carrageenan, laminarin, agar, porphyran and ulvan. This minireview summarizes these achievements and highlights potential applications of the now accessible abundant renewable resource of marine polysaccharides.
Abstract
The known Schiff base compound, (E)1‐benzyl‐3‐((4‐methoxyphenyl)imino)‐5‐methylindolin‐2‐one, was prepared as before by reacting 1‐benzyl‐5‐methylindoline‐2,3‐dione with 4‐methoxyaniline. The product was unambiguously characterized using elemental analysis, 1H and 13C‐NMR spectroscopy, and its new single‐crystal X‐ray structural analysis. Molecular orbital calculations were conducted in order to investigate the structures and relative stabilities of the (E) and (Z) isomers of 1‐benzyl‐3‐([4 methoxyphenyl]‐imino)‐5‐methylindolin‐2‐one. Specific attention was paid to the (E) isomer. The available crystallographic experimental data for the latter ensured also validation of the model structures computationally derived at the theoretical B3LYP/6‐31G(d,p) level.
Social arthropods such as termites, ants, and bees are among others the most successful animal groups on earth. However, social arthropods face an elevated risk of infections due to the dense colony structure, which facilitates pathogen transmission. An interesting hypothesis is that social arthropods are protected by chemical compounds produced by the arthropods themselves, microbial symbionts, or plants they associate with. Stegodyphus dumicola is an African social spider species, inhabiting communal silk nests. Because of the complex three-dimensional structure of the spider nest antimicrobial volatile organic compounds (VOCs) are a promising protection against pathogens, because of their ability to diffuse through air-filled pores. We analyzed the volatilomes of S. dumicola, their nests, and capture webs in three locations in Namibia and assessed their antimicrobial potential. Volatilomes were collected using polydimethylsiloxane (PDMS) tubes and analyzed using GC/Q-TOF. We showed the presence of 199 VOCs and tentatively identified 53 VOCs. More than 40% of the tentatively identified VOCs are known for their antimicrobial activity. Here, six VOCs were confirmed by analyzing pure compounds namely acetophenone, 1,3-benzothiazole, 1-decanal, 2-decanone, 1-tetradecene, and docosane and for five of these compounds the antimicrobial activity were proven. The nest and web volatilomes had many VOCs in common, whereas the spider volatilomes were more differentiated. Clear differences were identified between the volatilomes from the different sampling sites which is likely justified by differences in the microbiomes of the spiders and nests, the plants, and the different climatic conditions. The results indicate the potential relevance of the volatilomes for the ecological success of S. dumicola.
Scholz et al. developed an electrochemical assay to study the impact of reactive species on self-assembled monolayer (SAM). The aim of this thesis is to use this electrochemical assay with gold supported lipid bilayers instead of SAM to study the effect of reactive species on model membranes that mimic oxidative damage to the biological cell membrane. Here, three questions will be addressed: I) how specific substances such as lipophilic and hydrophilic antioxidants protect a membrane from oxidative damage, II) what are the lipid oxidation products after oxidative damage of the model membrane, and III) whether oxidative damage of the model membranes causes pore formation on lipid bilayer. Electrochemistry was first used to measure the oxidative damage over the entire lipid membrane. Then, mass spectroscopy was used to characterize how lipids as the molecular building blocks of the membrane, change when exposed to reactive species. Imaging the membrane with AFM showed how oxidative damage in the model membrane alters lipid self-assembly within the supported lipid bilayer in nanometer scale. In addition, cold physical plasma (CPP) was used to produce the biological relevant reactive species. This fundamental research demonstrates the great potential of supported lipid bilayers as model membranes and cold physical plasma as a source for the production of biologically relevant reactive species to study the effect of oxidative stress on cell membranes.
The target specificity of thioredoxin family proteins is determined by electrostatic compatibility
(2021)
The thioredoxin (Trx) family of proteins comprises many key enzymes in redox signaling, that catalyzes specific reversible redox reactions, e.g. dithiol-disulfide exchange reactions, (de-)glutathionylation, trans-nitrosylation, or peroxide reduction. With the analysis of a large number of proteins, as well as a certain redox couple in [article 1] and [article 4], we demonstrated that electrostatic complementarity is the major distinguishing feature that controls the specific interactions of Trxs with their target proteins. The primary aim of this work was to determine the importance of this specific interaction and the prediction, modulation, and engineering of functional redox interactions of Trx family proteins. To understand the role of electrostatic complementarity for the mammalian Trx1-TrxR complex, we generated more than 20 hTrx1 mutants and systematically engineered the electrostatic potential within and outside the contact area with TrxR [article 1]. The effects of these specific alterations distributed all over the protein surface were analyzed by enzyme kinetics, differential scanning fluorimetry (DSF), circular dichroism (CD) spectroscopy, and MD simulations. Trx family proteins have a broad and very distinct substrate specificity, which is a prerequisite for redox switching. In [article 4], we comprehensively compared the classification of various redoxins from all kingdoms of life based on their similarity in amino acid sequence, tertiary structure, and electrostatic properties. These similarities were then correlated to the existence of common interaction partners. Our analyses confirmed that the primary and tertiary structure similarities do not correlate to the target specificity of the proteins as thiol-disulfide oxidoreductases. However, we demonstrated that the electrostatic properties of the protein from both Trx or Grx subfamilies is the major determinant for their target specificity.
Although structurally very similar, CxxC/S-type or class I Grxs act as oxidoreductases and CGFS-type or class II Grxs act as FeS cluster transferases. In [article 3], we re-investigated the structural differences between the two main classes of Grxs to solve the mystery of the missing FeS transferase activity of the CxxC/S-type and the lack of oxidoreductase activity of the CGFS-type Grxs. The presence of a distinct loop structure adjacent to the active site is the major determinant of the Grx function. We confirmed that the function of Grxs can be switched from oxidoreductase to FeS cluster transferase by construction of a CxxC/S-type Grx with a CGFS-type Grx loop and vice versa. Results of several in vitro and in vivo assays together with the detailed structural analyses indicate that not a radically different substrate specificity accounts for the lack of activity, but rather slightly different modes of GSH binding, which is an essential nucleophile required in redox and iron homeostasis.
Various processes within the cell depend on GSH, including redox reactions, reversible posttranslational modifications, and iron metabolim. GSH is not only important in the export of FeS precursors from mitochondria, but it is also an essential cofactor for cluster binding in iron sulfur Grxs. In [article 2], we discussed the role of GSH and iron sulfur Grxs in iron metabolism, the physiological role of CGFS-type Grx interactions with BolA- like proteins, and the cluster transfer between Grxs and recipient proteins. The first well characterized physiological function of a Grx-BolA hetero complex is presented with the Grx3/4-Fra2-mediated regulation of iron homeostasis in yeast.
In synopsis, the results presented and discussed in these articles and the manuscript support the concept of electrostatic properties as the main determinant in substrate specificity towards functional predictions in Trx family proteins. The mathematical model presented here showed significantly accuracy and precision in function prediction. We are aware that our findings are focused on Trx family proteins as a particular family of proteins, but by using a machine learning strategy this mathematical model is being trained with numerous different protein models for better efficacy and accuracy, that may lead to new insights also in the specific interactions of other protein families. The new concept for the substrate specificity determinant doesn’t eliminate previously described aspects for molecular recognition, instead it reveals a deeper understanding of the protein-protein interaction. The 3D structural elements of a protein play a significant role in the specificity and function. We have been able to activate an inactive protein by replacing defined structural elements. Elimination of the loop structure from CGFS-type Grx5 transformed it from an FeS transferase into an oxidoreductase and the activity was further increased by modification of the active site. We believe that the present findings may be useful to investigate proteins in great detail regarding their function based on structure and electrostatic properties. Understanding the nature of the specific interactions may enable us to specifically modify the signal transduction pathways.
Abstract
White spot disease (WSD) is one of the most devastating viral infections of crustaceans caused by the white spot syndrome virus (WSSV). A conserved sequence WSSV131 in the DNA genome of WSSV was found to fold into a polymorphic G‐quadruplex structure. Supported by two mutant sequences with single G→T substitutions in the third G4 tract of WSSV131, circular dichroism and NMR spectroscopic analyses demonstrate folding of the wild‐type sequence into a three‐tetrad parallel topology comprising three propeller loops with a major 1 : 3 : 1 and a minor 1 : 2 : 2 loop length arrangement. A thermodynamic analysis of quadruplex formation by differential scanning calorimetry (DSC) indicates a thermodynamically more stable 1 : 3 : 1 loop isomer. DSC also revealed the formation of additional highly stable multimeric species with populations depending on potassium ion concentration.
Abstract
In the RNA world, the exchange of sequence patches between two RNAs is an intriguing evolutionary concept, allowing generation of new RNA molecules with novel functionality. Based on the hairpin ribozyme (HPR) with its unique cleavage‐ligation properties, we here demonstrate RNA supported RNA recombination as a possible scenario for the emergence of larger RNA molecules with more complex functionality. A HPR variant designed for the purpose of recombination is capable of cleaving two different RNA molecules, one being a hammerhead ribozyme (HHR) and the other an aptamer (A), and to subsequently recombine and ligate the resulting fragments to a hammerhead ribozyme that is allosterically controlled (HHA) by a cognate ligand. Two such recombination processes involving aptamers for either theophylline or flavine mononucleotide (FMN) are demonstrated with yields of functional recombination product of up to 34 %.
Die Pankreatitis ist eine relativ häufige gastrointestinale Erkrankung deren Pathomechanismus bisher nicht vollständig geklärt wurde. Besonders die Rolle des Immunsystems scheint einen wichtigen Einfluss auf den Verlauf dieser Erkrankung zu haben. Gut charakterisiert ist bereits die initiale lokale Immunantwort. Zerstörte Azinuszellen setzten DAMPs (engl. damage-associated molecular pattern) frei, die wiederum eine Infiltration von Zellen des angeborenen Immunsystems in das Pankreasgewebe induzieren und aktivieren. Zu diesen Zellen gehören Makrophagen und Neutrophile. T-Zellen, welche zum adaptiven Immunsystem gehören, wandern nicht in das Pankreas ein, sie werden jedoch systemisch aktiviert. Vor allem Th2-Zellen (T-Helferzellen Typ2) und Tregs (regulatorische T-Zellen) werden im Verlauf einer Pankreatitis induziert. In dieser Arbeit konnte gezeigt werden, dass Tregs während einer Pankreatitis nicht nur aktiviert werden, sondern ebenfalls eine höhere suppressive Kapazität besitzen.
Die genaue Rolle dieser antiinflammatorischen Immunantwort und im speziellen der Einfluss von Tregs sollte in dieser Arbeit mit Hilfe von DEREG Mäusen (engl. depletion of regulatory T cells) genauer charakterisiert werden. Durch gezielte Depletion von Tregs mittels DT (Diphtheria Toxin) kann die Auswirkung der Abwesenheit von Tregs im Pankreatitis-Mausmodell untersucht werden. Im akuten Modell kommt es zu einem systemischen Anstieg der T-Effektor-Immunantwort. Die Depletion von Tregs hat zudem eine Auswirkung auf den Schweregrad der Erkrankung. Unter Abwesenheit von Tregs sinkt im akuten Pankreatitis-Modell der pankreatische Schaden. Als eine mögliche Ursache konnte die Dysbalance der Treg/Th17 regulierten intestinalen Immunantwort identifiziert werden, welche zu einer Zerstörung der Darmbarriere führt und eine Translokation kommensaler Mikroorganismen ins nekrotische Pankreasgewebe initiiert.
Im chronischen Pankreatitis-Modell konnte gezeigt werden, dass die T-Zelldifferenzierung einen wichtigen Einfluss auf die Makrophagenpolarisation hat und dadurch den Verlauf der Chronifizierung der Pankreatitis mitbestimmt. Eine Depletion von Tregs in der chronischen Pankreatitis führt zu einer ungebremsten Th2-Antwort. Über die freigesetzten Zytokine, wie z.B. IL4, wird die Makrophagenpolarisation in Richtung der antiinflammatorischen Makrophagen verschoben. Diese Makrophagen induzieren über IL10 und TGFβ die Aktivierung ruhender PSCs (pankreatische Sternzelle) und regulieren somit Regenerationsprozesse. Kommt es zu einer Dysregulation dieser Makrophagenpolarisation, kann dieser Regenerationsprozess unkontrolliert erfolgen. Als Folge dessen kommt es nicht nur zu einer gesteigerten Aktivierung von PSCs, sondern auch zu einer exzessiven Kollagenproduktion, welche zu einer pathologische Fibrose führt. Die Ergebnisse dieser Arbeit zeigen deutlich, dass Tregs einen entscheidenden Einfluss auf die Gewebeumstrukturierung des Pankreas haben. Eine Depletion von Tregs im chronischen Pankreatitis-Modell induziert über die Aktivierung antiinflammatorischer Makrophagen eine Expression von PSCs. Diese unkontrollierte Induktion führt zu einer gesteigerten Kollagenproduktion und Bildung von fibrotischem Pankreasgewebe unter gleichzeitigem Verlust von Azinuszellen. Diese exzessive Gewebeumstrukturierung resultiert in einem Funktionsverlust des exokrinen Gewebes. Mäuse deren Tregs depletiert wurden verloren im chronischen Pankreatitis-Modell bereits nach 14 Tagen signifikant an Gewicht.
Weitere wichtige Faktoren, die im Regenerationsprozess eine Rolle spielen, sind Wachstumsfaktoren. Genexpressionsanalysen und histologische Färbungen verdeutlichen, dass Tregs die Induktion von Wachstumsfaktoren mitbestimmen.
Zusammengefasst bedeutet dies, dass Tregs im akuten Pankreatitis-Modell die T-Effektor-Immunantwort supprimieren und dadurch den Verlauf der Pankreatitis verschlechtern. Im chronischen Pankreatitis-Modell sorgen Tregs dahingegen für eine Balance der Makrophagenpolarisation, und regulieren den Remodeling-Prozess, indem sie z.B. die Bildung fibrotischem Gewebes limitieren.
ITN—VIROINF: Understanding (Harmful) Virus-Host Interactions by Linking Virology and Bioinformatics
(2021)
Analysis of bioactive lipids from different infection models during bacterial and viral infections
(2021)
Bioactive lipids or lipid mediators influence numerous processes like the reproduction, the bone turnover, the pain perception, the cardiovascular function and the immune system. Eicosanoids and oxylipins are parts of the immunomodulatory lipid mediators, which can be synthesized from polyunsaturated fatty acids (PUFAs) by enzymatic and non-enzymatic reactions. Typical members of eicosanoids are prostaglandins and leukotrienes. The properties of bioactive lipids include the activation of inflammatory reactions as well as the support of resolution. Like hormones, they act locally restricted and in low concentrations. Further bioactive lipids exist i.e. intermediates of the sphingolipid class. The biosynthesis of some of these compounds like the prostaglandins can be influenced by different drugs whereas for other groups of lipid selective inhibitors are still missing. Their impact on inflammatory processes and against chronic diseases has already been analyzed, while studies in context with infection are largely limited. Infection of the upper respiratory tract caused by viral and bacterial pathogens constitute a huge burden for the human healthcare. The main pathogens are the Influenza A virus (IAV), Staphylococcus aureus (S. aureus), Streptococcus pneumoniae (S. pneumoniae) and Streptococcus pyogenes (S. pyogenes). Besides mono-infection with one of these pathogens, frequently occurring bacto-viral co-infections exist, which negatively influence the etiopathology. The main task of the immune system is the detection and the elimination of pathogens, which can essentially be affected by lipid mediators. Their instability due to oxidizability, the existence of regioisomers and the low abundance of eicosanoids and other oxylipins are the main problems for their analytical measurement.
The mayor objective of this dissertation was the establishment of a suitable analytical method for selected lipid mediators and the detection of infection-related changes. The separation and detection was performed by using high-performance liquid chromatography (HPLC) coupled with triple quad mass spectrometry. This combination is called tandem mass spectrometry (MS/MS). The MS parameters were optimized for approximately 30 lipid mediators by use of chemical standards and the detection was achieved by dynamic multiple reaction monitoring (MRM). Furthermore, the spatial resolution of selected sphingolipids was analyzed in tissue samples using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MS-Imaging). Concerning the HPLC-MS/MS detection, an MS method was established and optimized with standard compounds. Another crucial part of the establishment was the extraction of bioactive lipids from the different sampling materials. Whereas well tested protocols exist for the extraction and detection of lipid mediators, such protocols for MALDI-MS-Imaging are still limited due to the novelty of this measurement. Ultimately, robust and reproducible protocols for both techniques that were used for the analysis of a broad array of samples from infection experiments were established for both techniques. The analyses of infected cell culture, mice and pigs revealed infection-related perturbations of host lipid mediator levels. Depending on the scientific issue, the sample types cell pellets, lungs, spleens, livers, blood plasmas, pawns including bones or bronchoalveolar lavages were analyzed. For MALDI-MS-Imaging, the spatial distribution of sphingolipids in lung and spleen was detected.
The present dissertation includes four coherent research scopes, in which the pathogen impact on host-derived lipid mediators was detected with the above mentioned analytical methods. The infection models epithelial cells (article II), mouse (article III and IV) and pig (article I) – the latter as the most human like model - showed different aspects of the host-pathogen interaction. The analysis of samples from IAV infection for all three hosts revealed a couple of similarities for some oxylipins that were also described in human infections. Additionally, cell culture and mouse samples from mono-infections as well as co-infections with the pathogens S. aureus and S. pneumoniae were measured. In particular for the bacterial mono- and co-infections, these are the first published results with aspects of infection related changes of lipid mediators. The additional spatial resolution of the sphingolipid intermediates sphingosine 1-phosphate and ceramide 1-phosphate revealed important new insights into their tissue distribution and changes during co-infection.
Article I describes the IAV-specific oxylipin changes in the pig (german landrace) as infection model. Therefore, the sample types lung, spleen, blood plasma, and bronchoalveolar lavage from infected animals at different time points after infection were analyzed and compared with samples from uninfected pigs. Mainly in the lung and the spleen, increased amounts of certain lipid mediators were observed. These changes coincide well with already described alterations in humans and mice. Furthermore, the analysis of different sample material provided an overview about appropriate sample types. Surprisingly, many perturbations were detected in the spleen, which itself was uninfected. Based on the local reaction of lipid mediators, most studies concentrate on sample material with close contact to side of infection. Therefore, this dissertation reveals new insights into a form of systemic immune response. Besides the use of animals with a complex immune system for infection experiments, human bronchial epithelial cells (16HBE) were mono- and co-infected with the pathogens S. aureus, S. pneumoniae and IAV as described in article II. Such cells are the initial barrier for and first contact site with pathogens and thus the comprehension of this host-pathogen interaction is of essential importance. Most changes were detected during pneumococcal infection. Furthermore, the analyzed infections with bacterial pathogens differed from IAV infection by an increased synthesis of 5-hydroxyeicosatetraenoic acid (HETE). For further infections with the above mentioned pathogens, the mouse was used as an infection model. Besides infections affecting the respiratory tract, also the impact of an S. pyogenes infection in different mice strains was analyzed and described in article III. Infection-related changes in prostaglandins, which are involved in bone turnover in swollen pawns as well as enhanced amounts of sepsis- and arthritis-associated lipid mediators were detected, in case arthritis had been induced prior to infection. Furthermore, increased amounts of 20-HETE could be observed for such severe infections. An enhanced biosynthesis of 20-HETE was further confirmed in a high-pathogenic S. aureus LUG2012 infection in article IV for all examined sample types. In this last article of this dissertation, bacterial and viral infections in mice were analyzed similar to those described in article II. Mainly IAV-specific lipid mediator alterations were detected, which are in accordance with the findings of the infected pigs. The additional MALDI-MS-Imaging measurements revealed so far unknown accumulation of ceramide 1-phosphate in lung and spleen as well as enrichment in the red pulp of the spleen.
In summary, this dissertation provides substantial lipid mediator profiles for infections in three different model systems with selected bacterial and viral pathogens. The obtained data constitute a suitable basis for continuative research projects, in which the influence of single bioactive lipids on the course of infection could be examined in more detail.
Herein, we report the synthesis of a series of push–pull imines by considering cyclic diamino substituent at the C‐centre and fluoroaryl substituent at the N‐centre. This has been achieved by a selective aromatic nucleophilic substitution of different fluoroarenes by N‐H‐substituted N‐heterocyclic imines (NHIs) at ambient conditions without any additional reagent. Solid‐state molecular structure analysis reveals the elongation of the central C–N bond of the imine functionality, which is consistent with the push–pull nature of these imines. The push–pull nature of these imines is further validated by computational studies.
Entdeckung und Design promiskuitiver Acyltransferase‐Aktivität in Carboxylesterasen der Familie VIII
(2021)
Abstract
Promiscuous acyltransferase activity is the ability of certain hydrolases to preferentially catalyze acyl transfer over hydrolysis, even in bulk water. However, poor enantioselectivity, low transfer efficiency, significant product hydrolysis, and limited substrate scope represent considerable drawbacks for their application. By activity‐based screening of several hydrolases, we identified the family VIII carboxylesterase, EstCE1, as an unprecedentedly efficient acyltransferase. EstCE1 catalyzes the irreversible amidation and carbamoylation of amines in water, which enabled the synthesis of the drug moclobemide from methyl 4‐chlorobenzoate and 4‐(2‐aminoethyl)morpholine (ca. 20 % conversion). We solved the crystal structure of EstCE1 and detailed structure–function analysis revealed a three‐amino acid motif important for promiscuous acyltransferase activity. Introducing this motif into an esterase without acetyltransferase activity transformed a “hydrolase” into an “acyltransferase”.
Abstract
The 10–23 DNAzyme is an artificially developed Mg2+‐dependent catalytic oligonucleotide that can cleave an RNA substrate in a sequence‐specific fashion. In this study, new split 10–23 DNAzymes made of two nonfunctional fragments, one of which carries a boronic acid group at its 5′ end, while the other has a ribonucleotide at its 3′ end, were designed. Herein it is demonstrated that the addition of Mg2+ ions leads to assembly of the fragments, which in turn induces the formation of a new boronate internucleoside linkage that restores the DNAzyme activity. A systematic evaluation identified the best‐performing system. The results highlight key features for efficient control of DNAzyme activity through the formation of boronate linkages.
On the aqueous phase chemistry of atmospheric-pressure plasma jets for biomedical applications
(2021)
Cold atmospheric-pressure plasmas are candidate biomedical tools proposed for various applications, such as biological decontamination, cancer regression, and promotion of wound healing. Plasmas, which are in the fourth state of matter, can be generated using inert gases (e.g., argon, helium, ambient air) and different source concepts. Together with the applied parameters, the source design defines the chemical-physical characteristics of the resulting plasma, leading in turn to variable biochemical effects on biological matter. The medical effectiveness of cold plasmas has been proven in vitro and in vivo, also in clinical trials for wound healing in patients using two certified plasmas sources, the kINPen MED and the PlasmaDerm. However, molecular mechanisms leading to those effects are unclear. In the same way, it must be studied if the modulation of plasma properties could improve the specificity of biological effects. These findings are needed to define the concept of plasma dose to be optimized in targeting peculiar pathologic conditions. The present thesis consisting of five peer-reviewed publications has investigated these aspects of plasma research.
In the gaseous phase of cold plasmas, various components with biological activity are produced, such as radiation (e.g., vacuum UV, UV) and reactive species (e.g., •O, 1O2, •OH, •NO, •NO2, O3). As most gaseous species are short-lived, liquid compartments surrounding cells and molecular structures could mediate their transformation and/or the production of other aqueous species. For this reason, plasma-induced aqueous chemistry has been mainly investigated in this thesis. The reaction pathways of reactive oxygen and nitrogen species in liquid were analyzed by monitoring the oxidative modifications induced on tyrosine and cysteine, which are biological structures essential in cellular protein functioning. Liquid chromatography and mass spectrometry-based strategies have been elaborated to elucidate structural changes and characterize the oxidative pattern occurring on the tracers after treatment with plasmas.
As a first result, it could be shown that the oxidative pattern induced on tyrosine or cysteine variated qualitatively and quantitatively with the applied conditions, reflecting the action of differently produced/deposited species in liquid. Biologically relevant structures were identified and in part quantified (e.g., cystine, sulfonic acid, sulfinic acid, S-sulfonate, S-nitrosocysteine, nitrotyrosine, nitrosotyrosine). By using isotopically labeled oxygen or nitrogen in the gas plasma, or labeled oxygen in the target liquid, the incorporation of gaseous or aqueous species in the tracer’s structures was monitored via mass spectrometry. With this strategy, the reaction mechanisms involving gaseous oxygen and nitrogen species at the liquid interface were clarified, as well as the de novo production of reactive species in liquid. Short-lived gaseous oxygen species such as atomic and singlet oxygen (•O, 1O2), predominantly formed in conditions with oxygen in the plasma gas, were able to modify the cysteine structures in highly oxidized derivatives, such as cysteine sulfonic acid. Due to their half-life, however, their activity occurred mainly at the interface. Vacuum UV radiation and •O also led to the formation in liquid of hydroxyl radicals (•OH) and hydrogen peroxide (H2O2), due to water photolysis and homolysis. Water-derived species were responsible for the formation of reversible modifications, such as cysteine S-sulfonate, cystine, and cystine sulfoxides. Nitrosative modifications (e.g., S-nitrosocysteine, nitrosotyrosine, nitrotyrosine) could be observed only in conditions with both nitrogen and oxygen in the plasma gas, and further optimization occurred in presence of water molecules in the gas. In this case, the formation and action of peroxynitrite (ONOO-) in generating nitrotyrosine was proven by using a scavenger molecule for ONOO-.
Finally, the cysteine product pattern was applied as a tool to characterize and compare the overall chemistry generated in liquid by different plasma sources and applied parameters. These findings aim to support and contribute to the definition of plasma dose for plasma medicine, through the standardization, control, tuning, and optimization of plasma parameters and plasma liquid chemistry. These results may be applied in the future to improve the specificity and selectivity of the biological effects generated by the described atmospheric-pressure plasma jets.
Blood platelets are primary major players in the coagulation cascade, that act upon damage in blood vessels at the subendothelial surface. During this process, platelets change their shape, release granules and aggregate by cross-linking of integrin αIIbβ3 via fibrinogen. The heterodimeric transmembrane receptor integrin αIIbβ3 is highly expressed on platelets and its regulation is bidirectional. Inside-out signaling leads to increased affinity for ligands due to dramatic rearrangements in the integrin conformation changing from an inactive bent conformation to an extended, high-affinity conformation. The swing-out motion of the integrin head domain enables binding of ligands, e.g. fibrinogen, resulting in outside-in signaling guiding kinase activation, shape change, platelet aggregation and spreading, subsequently.
Agonists (e.g. thrombin) and other triggers (e.g. shear stress) promote the activity of platelets, making the study of specific proteins delicate. Therefore, this PhD thesis describes a biomimetic system used to study αIIbβ3 membrane receptors. Integrin αIIbβ3 was successfully reconstituted into liposomes and characterized by biophysical and molecular biological methods (e.g. dynamic light scattering, transmission electron microscopy, circular dichroism spectroscopy and flow cytometry). The fusion of liposomes to a solid substrate allows the analysis of potential activation triggers and interaction partners concerning their role in integrin αIIbβ3 activation in a lipid bilayer. Among others, quartz-crystal microbalance measurements show that divalent ions and clinically relevant drugs (e.g. unfractionated heparin and quinine), known to be involved in immune thrombocytopenia (ITP), are certainly candidates which induce integrin activation and minor changes in protein secondary structure. In addition, protein corona formation during contact of nanoparticles with blood components, such as fibrinogen, as well as their interaction with artificial platelet model membranes containing integrins were studied. Moreover, lipid environment can be strongly controlled as integrin activation is dependent on the ratio of liquid-ordered and disordered phases within the membrane. Eventually, by exclusion of disturbances of complex external and internal factors, the established system enables the interaction analysis of various substances with receptors under physiological conditions. In contrast, these disturbances are required to understand the complex machinery of cellular processes in vivo. Hence, an expression platform, on the basis of HEK293 cells, was established to study not only the interaction of integrin αIIbβ3 with cytoskeletal networks, but also the impact of mutations on integrin resulting in a disease-like phenotype. Mutations known to induce Glanzmann thrombasthenia (GT) symptoms, were introduced and led to different mechanical properties of integrin-expressing cells, especially during cell adhesion cells. Thereby, generation of biological and medically-relevant processes combined with the biophysical setup contribute to understand disease mechanisms as well as the action of therapeutic agents in diseases such as GT and ITP.
Promiscuous acyltransferases enable transesterification reactions in bulk water by preferentially catalyzing acyl transfer over hydrolysis. Until recently, only a small number of promiscuous acyltransferases have been described in the literature, exhibiting several limitations in terms of acyltransferase efficiency and applicability. This work focuses on the discovery of novel promiscuous acyltransferases and the engineering of promiscuous acyltransferases via rational design. Several promiscuous acyltransferases in the bacterial hormone-sensitive lipase family and family VIII carboxylesterases have been identified, demonstrating that promiscuous acyltransferase activity is not a rare phenomenon. Moreover, the efficiency and applicability of the enzymes could be improved via protein engineering in terms of acyltransferase activity, enantioselectivity, and substrate scope.
The aims of this thesis were the identification and development of whole-cell biocatalysts for the regio- and stereoselective hydroxylation of steroids, including hormones and bile acids by P450 monooxygenases. Steroids and their derivatives are applied as therapeutic agents. The chemical synthesis of such compounds depends on multi-step procedures, in a stereo- and regiospecific manner involving the protection and deprotection of functional groups and toxic reagents and intermediates. In this thesis, different P450 monooxygenases were investigated as ‘bio-based’ alternatives to chemical catalysts for the late-stage functionalization of steroids and bile acids and engineered by directed evolution procedures towards desired transformation activities. In Article I, the 16α-hydroxylation activity of the bovine CYP17A1 was enhanced by protein engineering to improve the transformation of progesterone into 16α-hydroxyprogesterone in Saccharomyces cerevisiae. Article II follows the same line of research and targets the selective synthesis of bile acid derivatives in Escherichia coli (E. coli) whole-cells. The P450 monooxygenase CYP107D1 (OleP) from Streptomyces antibioticus (S. antibioticus) was identified, which selectively hydroxylates bile acids like lithocholic acid (LCA) and deoxycholic acid (DCA) at the 6β-position, yielding murideoxycholic acid (MDCA), a gallstone solubilizing agent, and 3α-,6β-,12α-trihydroxy-5β-cholan-24-oic acid, respectively. The utilization of OleP as catalyst resulted in shorter synthesis routes for both compounds and additional in a higher yield for MDCA. Building on the results of Article II and the protein engineering approach from Article I, Article III deals with the switch of regioselectivity of the identified CYP107D1 from 6β- to 7β-hydroxylation to form the therapeutic agent ursodeoxycholic acid (UDCA) from LCA by direct hydroxylation. Following a rational protein engineering strategy, a variant with nearly perfect selectivity for UDCA formation was found. Until today, UDCA is either isolated from bile of catheterised farmed bears or produced semisynthetically through low-yielding multistep reactions starting from cholic acid (CA). Article III presents the first reported enzyme for the direct 7β-hydroxylation of LCA to UDCA.
Free radicals are known to induce significant structural and functional modifications to the cell membrane and its components. Biophysical quantification of such changes using single molecule studies highlight the role of these individual biomolecules. In this PhD work, we focus on nitric oxide radical and try to understand how they influence interaction of different biomolecules with lipid membranes by using biomimetic systems. In specific we try to answer how cell membrane permeability and bilayer thickness would be influenced by the nitric oxide radical with different phospholipids compositions (i.e. on planar supported lipid bilayers). Later we tested, interaction of transmembrane protein integrin αiibβ3 incorporated into the bilayer (i.e. nanodiscs) with nitric oxide. Finally, how to overcome the negative effects encountered by the phospholipids and proteins using biopolymer coated gold nanoparticles as delivery system. The study involved use of atomic force microscopy and quartz-crystal microbalance with dissipation as primary investigation tools complemented with other relevant biophysical and biochemical techniques.
This thesis deals with the process considerations and optimizations of a whole-cell enzyme cascade reaction for the synthesis of ɛ-caprolactone. The enzyme cascade synthesis of ɛ-caprolactone has been conceptualized and verified using a dehydrogenase and a monooxygenase. The advantage of this enzyme combination is the closed-loop co-factor regeneration. Dehydrogenase and monooxygenase expressed in discrete whole cells were applied in defined ratio to conceptualize the cascade reaction. This necessitates the use of separate co-factor regeneration system due to impermeability of the E. coli cell wall to the co-factor. Article I deal with the design and optimization of dehydrogenase and monooxygenase co-expression in a same E. coli cell. In Article II, the cascade reaction was upscaled and a fed-batch process was realized. Following which, the important reaction metrices were analyzed and optimized. Article III extends the two-enzyme cascade with a lipase. The use of lipase helps to overcome the product inhibition of monooxygenase by ɛ-caprolactone.
Unter promiskuitiver Acyltransferase-Aktivität versteht man die Eigenschaft bestimmter Hydrolasen, in wässriger Lösung bevorzugt Acyltransfer statt Hydrolyse zu katalysieren. Bis vor Kurzem waren nur wenige promiskuitive Acyltransferasen literaturbekannt. Dies führte zu der allgemeinen Annahme, dass diese Aktivität ein seltenes Phänomen in Hydrolasen ist. Diese Arbeit zeigt jedoch, dass promiskuitive Acyltransferase-Aktivität in der Familie der bakteriellen hormonsensitiven Lipasen und Carboxylesterasen der Familie VIII weit verbreitet ist. Detaillierte Struktur-Funktions-Analysen ermöglichen die sequenzbasierte Vorhersage und Optimierung der Acyltransferase-Aktivität in beiden Enzymfamilien. Insbesondere die Carboxylesterasen der Familie VIII überschreiten die Grenzen des bisher für möglich Gehaltenen, indem sie gute Enantioselektivität bei der kinetischen Racematspaltung sekundärer Alkohole zeigen und darüber hinaus die irreversible Bildung von Amiden und Carbamaten in Wasser katalysieren können. Die biokatalytische Acylierung von Zuckern in Wasser galt lange Zeit als unerreichtes Ziel der Biokatalyse. In dieser Arbeit wurde jedoch gezeigt, dass natürlich vorkommende und modifizierte Carboxylesterasen der Familie VIII die regioselektive Acetylierung von Glucose, Maltose und Maltotriose in Wasser mit hoher Effizienz katalysieren können.
Die akute Pankreatitis ist eine der häufigsten nicht malignen gastrointestinalen Erkrankungen, die zu Krankenhausaufenthalten führt. Sie ist als Selbstverdau des Pankreas durch seine eigenen Proteasen wie z.B. Trypsin, Elastase und Chymotrypsin definiert. Als Ursprung der Erkrankung wird die frühzeitige intrazelluläre Aktivierung dieser Verdauungsenzyme angesehen. Dies führt zum Zelltod der Azinuszellen und zur Schädigung des Gewebes.
Während der akuten Pankreatitis kommt es in 20% der Fälle zu einem schweren Verlauf der Erkrankung, der mit Organversagen in der Lunge und den Nieren assoziiert ist. Es ist bekannt, dass es zu einer Entzündungsreaktion kommt, bei der große Mengen an Zytokinen ausgeschüttet werden. Leukozyten infiltrieren das Pankreas und verstärken den Gewebeschaden. Es kommt zur Freisetzung von DAMPs, die das angeborene und adaptive Immunsystem aktivieren. Bislang ist nicht gut untersucht, wie das Immunsystem den schweren Verlauf der akuten Pankreatitis beeinflusst und es gibt wenig Theorien über den Organschaden in der Lunge und den Nieren.
In dieser Arbeit lag der Fokus auf dem Organschaden in Lunge und Niere und die Wirkung von Interleukin 33 (IL33) auf die Zellen des angeborenen Immunsystems und deren Einwanderung in verschiedene Organe während der schweren akuten Pankreatitis im Mausmodell. Die schwere akute Pankreatitis wurde mittels Gangligatur und einmaliger Gabe von Caerulein an Tag 2 nach Gangligatur induziert. An Tag 3 nach Induktion wurden die Mäuse getötet und die Organe wurden für weitere Analysen entnommen.
Am dritten Tag nach Induktion der Pankreatitis kam es zu einem Organschaden in der Lunge und den Nieren. In der Lunge fand sich eine Verdickung der Alveolarsepten und eine Verdichtung des Gewebes sowie eine Infiltration von Leukozyten und ein Ödem. In der Niere waren ebenfalls strukturelle Veränderungen zu finden und eine Infiltration von Leukozyten war zu beobachten. In durchflusszytometrischen Analysen der Lunge konnte beobachtet werden, dass CD11b+CD62L+ Monozyten während der akuten Pankreatitis signifikant anstiegen. Mittels RT-DC wurde gezeigt, dass diese Monozyten an Tag 3 signifikant an Größe zugenommen hatten. Mit einer CD11b Färbungen von Lungen und Nieren konnte die Infiltration durch Monozyten bestätigt werden. Unter einer Blockade von Monozyten durch systemische Gabe von anti-CCR2-Antikörpern verringerte sich die Schädigung in Lunge und Niere während der Pankreatitis signifikant.
Diese Daten legen nahe, dass der Organschaden in der schweren akuten Pankreatitis durch infiltrierende Monozyten verursacht wird, die über CD62L (L-Selektin) an die Gefäßwände binden und über ihre Größe Gefäße verstopfen, was in den Kapillaren zur Ischämie führt.
In vitro sezernierten Makrophagen, die mit CCK stimulierten Azinuszellen co-inkubiert wurden, IL33. Im Mausmodell wurde IL33 mittels sST2 blockiert, was die Schädigung des Pankreas in der Pankreatitis reduzierte. In IL33-depletierten Tieren fand sich im Vergleich zum Wildtyp ein geringerer Lungenschaden aber eine unveränderte Nierenschädigung. Somit scheint IL33 eine Rolle bei der Monozyten-vermittelten Organschädigung in der Pankreatitis zu spielen, die sich auf Grund von kompensatorischen Regulationsmechanismen im globalen IL33 Knock-out weniger gut belegen lässt als nach IL33 Inhibition. Die Hemmung von IL33 zur Behandlung der akuten Pankreatitis stellt somit ein vielversprechendes Therapieprinzip dar.
S-adenosyl-L-methionine- (SAM) dependent methyltransferases (MTs) catalyse methylation of halide ions and the C, O, N, S, Se, and As atoms of biomolecules ranging from biopolymers to small molecules. They display different chemo-, regio- and stereoselectivity according to their specific functions. This thesis focuses on the engineering of O-methyltransferases (OMTs) and halide methyltransferases (HMTs) through rational design and directed evolution to study their structure-function relationship and to explore their catalytic promiscuity. The influence of substrate binding residues on the substrate scope and regioselectivity of a plant OMT against various phenolic substrates (Article I) and flavonoids (Article II) has been investigated. Article III describes the directed evolution of an HMT for the biocatalytic synthesis of diverse SAM analogues. With the evolved HMT, regioselective alkylation of phenolic compounds and flavonoids, as well as the SAM analogue regeneration, were achieved through an HMT-MT cascade reaction.
Article I Specific residues expand the substrate scope and enhance the regioselectivity of a plant O-methyltransferase.
It was reported in literature that an isoeugenol 4-OMT (IeOMT) can be engineered to a caffeic acid 3-OMT (CaOMT) by replacing three consecutive residues. In this article, we investigated the effect of these residues on substrate preference and regioselectivity of IeOMT. The triple mutant T133M/A134N/T135Q and the respective single mutants were constructed and tested against a series of phenolic compounds. The variant T133M had a universal effect to improve enzymatic activities against all tested substrates while the mutant A134N had enhanced regioselectivity. The triple mutant T133M/A134N/T135Q benefits from these two mutations, which not only expanded the substrate scope, but also enhanced the regioselectivity of IeOMT. On the basis of this work, regiospecific methylated phenolics can be produced in high purity by different IeOMT variants.
Article II Influence of substrate binding residues on the substrate scope and regioselectivity of a plant O-methyltransferase against flavonoids
Flavonoid OMTs (FOMTs), isoflavonoid OMTs (IOMTs) and phenylpropanoid OMTs (POMTs) display different substrate preferences. Sequence comparison showed that the substrate binding residues at positions 322 and 326 are different between these OMT groups and might be critical for the substrate discrimination. Residues at positions 322 and 326 in IeOMT (a POMT) were mutated to the commonly presented residues in FOMT and IOMT. The introduced mutants, in cooperation with the variant T133M, have improved or brought novel activities and regioselectivity against the tested flavonoids eriodictyol, naringenin, luteolin, quercetin, and also the isoflavonoid genistein compared to the wild-type IeOMT. On the basis of this work, methylated flavonoids that are rare in nature were produced in high purity.
Article III Directed evolution of a halide methyltransferase enables biocatalytic synthesis of diverse SAM analogs
Biocatalytic alkylations to obtain chemo‐, regio‐ and stereoselectively alkylated compounds can be achieved by MTs with the supply of SAM analogues. It was recently discovered that SAM can be directly synthesized from S adenosyl-L homocysteine (SAH) and methyl iodide, catalysed by an HMT. To explore the promiscuity of HMT in the synthesis of SAM analogues, we performed directed evolution of the Arabidopsis thaliana HMT based on a sensitive, colorimetric iodide assay. The identified variant V140T displayed activities against ethyl‐, propyl‐, and allyl iodides to produce the corresponding SAM analogues. With this HMT variant, regioselective ethylation of luteolin and allylation of 3,4‐dihydroxybenzaldehyde, as well as the SAM analogue regeneration, were achieved through this HMT-MT one-pot cascade reaction.
Electrochemical characterisation of the redox behaviour of quinoide components in membrane models
(2020)
The leading idea of this thesis is to study the effects of (i) membrane composition and (ii) membrane environment (aqueous phases) on the redox properties of membrane-confined redox active compounds. For solutions, it is known since long, how strong solvents affect the redox properties of dissolved redox active species. However, for membranes this question has not yet been addressed, although it can be supposed that such effects may be important to understand the role of membrane-confined redox active compounds in biological systems. To interrogate this problem, a monolayer model was chosen. It consists of a lipid monolayer with embedded menaquinones on mercury electrodes. Since ion transfer across membranes is also a crucial question, in the first part of this project, 2,2-diphenyl-1-picrylhydrazyl (DPPH) was studied as a new redox probe for transferring anions and cation between an organic and an aqueous phase. The important findings of this thesis are: (i) accessing the ion pair equilibrium constant of anions and cations with DPPH redox probe as a model study using the three-phase electrochemistry, (ii) the redox potentials of menaquinone-4, -7, and -9 in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayers and the acidity constants of menaquinones (MK’s) in membranes monolayer model, and (iii) the effects of membrane composition and the aqueous environment on the thermodynamics and kinetics of MK’s in membrane models.
The synthesis of several bioactive compounds and active pharmaceutical ingredients relies on the development of general and efficient methods to prepare optically pure amines. Transaminases are industrially relevant enzymes and are useful for synthesizing a large number of compounds that contain a chiral amine functionality. Although the immense potential associated to the use of these biocatalysts, the equilibrium position is often unfavorable for amine synthesis. The use of an excess of amine donor, compared to the ketone substrate, combined with selective removal of the formed product, can help in overcoming this limitation. This work mainly focused on broadening the application of membrane-based in situ product recovery (ISPR) techniques for the transaminase-catalyzed synthesis of chiral amines. The
overall work was designed around the implementation of amine donors, possessing considerably larger molecular ‘size’ compared to commonly used amine donors. To clearly
distinguish these molecules from traditional donor amines, we designate them as High Molecular Weigh amine donors. With a molecular weight between 400 and 1500 g/mol, in contrast to traditional donor amines, HMW amine donors enable a size-based separation between amine donor and amine product molecules. HMW amines, provided in excess for thermodynamic equilibrium shifting can thus be simply retained by a size-exclusion mechanism by commercial membranes, while the smaller product amines are permeated. Therefore, a selective recovery of the desired chiral amine product is possible. The implementation of ISPR techniques using HMW amine donors can theoretically lead to (i) equilibrium shifting, (ii) alleviation of product inhibition, and (iii) a highly pure product stream.
The feasibility of using HMW amine donors in aqueous, organic solvent and solvent-free media for the transaminase-catalyzed synthesis of 1-methyl-3-phenylpropylamine (MPPA) was proven in this thesis. The latter two approaches were investigated with the aim to achieve higher product concentrations. Along with that, we demonstrated two membrane-assisted ISPR proof of concepts. Specifically, nanofiltration was coupled with the enzymatic reaction performed in aqueous media (Article I), while liquid-liquid (L-L) extraction in a contactor was applied for transamination in organic solvent media (Article II). As an alternative to membrane-based strategies we also designed a spinning reactor concept for the integrated chiral amine synthesis (in organic solvent) and recovery (Article III).
G-quadruplexes (G4s) have been in the focus of research in the last decades for their regulatory roles in vivo and for their use in nano- and biotechnology. However, an understanding of the various factors that drive a particular quadruplex fold remains limited, challenging rational therapeutic targeting and design of these tetrahelical structures. In this regard, insights from modified G-quadruplexes may help to deepen our knowledge of G-quadruplex structure. In this dissertation, sugar-modified guanosine analogs are exploited for their altered conformational preferences regarding both glycosidic bond angle and sugar pucker by their incorporation into different syn positions of the G-core of a model G-quadruplex. Induced structural perturbations as characterized by NMR spectroscopy range from a local change in tetrad polarity to a complete refolding into an unusual structure with a V-shaped loop, a unique G4 structural element in the focus of this work. Detailed conformational analysis of the introduced G analogs and high-resolution structures of the modified quadruplexes reveal a complex interplay of glycosidic torsion angle, sugar pucker preferences and local interactions, which may all play a leading role in driving G4 folding.
Abstract
Methylation of free hydroxyl groups is an important modification for flavonoids. It not only greatly increases absorption and oral bioavailability of flavonoids, but also brings new biological activities. Flavonoid methylation is usually achieved by a specific group of plant O‐methyltransferases (OMTs) which typically exhibit high substrate specificity. Here we investigated the effect of several residues in the binding pocket of the Clarkia breweri isoeugenol OMT on the substrate scope and regioselectivity against flavonoids. The mutation T133M, identified as reported in our previous publication, increased the activity of the enzyme against several flavonoids, namely eriodictyol, naringenin, luteolin, quercetin and even the isoflavonoid genistein, while a reduced set of amino acids at positions 322 and 326 affected both, the activity and the regioselectivity of the methyltranferase. On the basis of this work, methylated flavonoids that are rare in nature were produced in high purity.
Abstract
Certain hydrolases preferentially catalyze acyl transfer over hydrolysis in an aqueous environment. However, the molecular and structural reasons for this phenomenon are still unclear. Herein, we provide evidence that acyltransferase activity in esterases highly correlates with the hydrophobicity of the substrate‐binding pocket. A hydrophobicity scoring system developed in this work allows accurate prediction of promiscuous acyltransferase activity solely from the amino acid sequence of the cap domain. This concept was experimentally verified by systematic investigation of several homologous esterases, leading to the discovery of five novel promiscuous acyltransferases. We also developed a simple yet versatile colorimetric assay for rapid characterization of novel acyltransferases. This study demonstrates that promiscuous acyltransferase activity is not as rare as previously thought and provides access to a vast number of novel acyltransferases with diverse substrate specificity and potential applications.
Abstract
Environmentally‐friendly processes for the manufacturing of valuable industrial compounds like ω‐hydroxy fatty acids (ω‐OHFAs) are highly desirable. Herein, we present such an approach by establishing a two‐step enzymatic cascade reaction for the production of 2,15,16‐trihydroxy hexadecanoic acid (THA). Starting with the easily accessible natural compound ustilagic acid (UA) that is secreted by the corn smut fungus Ustilago maydis, the recombinantly expressed esterase BS2 from Bacillus subtilis and the commercial β‐glucosidase from almonds were applied yielding 86 % product. Both hydrolases do not require expensive cofactors, making the process economically attractive. Additionally, no harmful solvents are required, so that the product THA can be labelled natural to be used in food and cosmetic products.
In modern-day organic synthesis, transitional metal catalysis has become an essential tool-kit to access the biologically significant complex organic scaffolds. The activation profile of these sophisticated catalytic systems in cross-coupling chemistry and ring-closing processes has been well appreciated and frequently employed by the scientific community.
The present thesis is describing the results of interdisciplinary research involving medicinal chemistry and transitional metal homogeneous catalysis. A molybdenum mediated process was employed to access 32 unprecedented heterocyclic fused poly sulfur ring containing pentathiepins in moderate to good yields as a part of medicinal chemistry. Biologically significant, such as quinoxaline, pyrazine, pyridine, nicotinamide, quinoline, imdazo-pyrazine, pyrrolo-pyrazine, purine, and pyridine sulfonamide scaffolds were functionalized with pentathiepin unit via multi-step organic synthesis. Essentially, the Sonogashira cross-coupling and(Et4N)2[MoO(S4)2] mediated ring-closing steps were commonly employed in all pentathiepin syntheses. The analytically pure samples were characterized by 1H, 13C, 19F-NMR, FTIR, ESI-MS, CHNS, and X-ray single-crystal diffraction analysis. Notably, all pentathiepins exhibited an ABX3 multiplet pattern between δ: 4.2-4.5 ppm with the integration of 2H for the ethoxy functional group's methylene protons substituted on the five-membered ring of pentathiepin, which was later considered as a fingerprint for pentathiepin formation. The mechanistic investigations via control experiments suggest that the tetra sulfur ring Mo(IV) precursor (Et4N)2[MoO(S4)2] is vital along with elemental sulfur for the pentathiepin formation, and the Mo(IV) complex regenerates in the reaction. Furthermore, For the first time, the GPx1 enzyme inhibitor properties of novel fused heterocyclic pentathiepins were established, where these probes exhibited 9-12 folds higher potency than mercaptosuccinic acid. Notably, <1 µM concentration of quinoxaline, pyrazine, and quinoline fused pentathiepins were potent enough to inhibit 50% of GPx1 enzyme activity. Additionally, cytotoxicity, antimicrobial and antifungal studies were conducted for all pentathiepins. In anticancer investigations, the IC50 concentrations for all pentathiepins were ranging between 0.22 to 4.7 µM.
The second half of the thesis introduces a novel water-soluble Pd/PTABS as a potent catalyst for C-X (X = N, O, and S) cross-coupling chloroheteroarenes and halonucleosides. The novel, mild and efficient Pd/PTABS catalytic system was successfully employed at low catalytic loadings (1 mol%) for the amination (C−N), etherification (C−O), and thioetherification (C−S) of chloroheteroarenes at ambient to moderate temperatures. The Pd/PTABS catalyst is well-tolerating various heterocyclic scaffolds, and under the optimized catalytic conditions, various secondary amines, electron-rich or electron-poor phenols, thiophenols, and alkylthiols, were efficiently employed as nucleophilic coupling partners. Notably, the catalyst offered tremendous regio and chemoselectivity with excellent temperature control. Besides, novel sulfones and sulfoximines were prepared from the thioethers obtained via Pd/PTABS. The catalyst was employed efficiently for synthesizing biologically significant known drugs or drug candidates such as alogliptin (anti-diabetic agent), XRK 469 (antitumor agent), and Imuran-Azathioprine (immunosuppressive) in competitive yields. Preliminary DFT investigations were performed, and based on the DFT analysis, the electropositive character of the phosphorous atom in quaternary ammonium salts of PTABS supports the heteroatom directed C−Cl activation hypothesis.
The aim of our research is a stereoselective synthesis development of 4-aminocyclohexanol by the application of a keto reductase (KRED) and an amine transaminase (ATA). 4-Aminocyclohexanol is a valuable precursor for active pharmaceutical ingredients, for example, lomibuvir (a HCV protease inhibitor), ambroxol (a secretolytic agent) and other bioactive molecules. Today, the trans-4-aminocyclohexanol is accessed via Ni-catalyzed synthetic procedure giving moderate yields. In our project we perform cis- and trans-4-aminocyclohexanol synthesis from 1,4-cyclohexanedione (a bio-based precursor) by an one-pot approach combining sequentially a KRED and an ATA as catalysts. For this, we envisaged two multistep enzymatic procedures. The route A would involve 4-hydroxycyclohexanone formation from 1,4-cyclohexanedione via a KRED-catalyzed monoreduction and a further transamination mediated by an ATA towards 4-aminocyclohexanol. The route B would consist of switching the steps of the previous sequential approach, that is, a monoamination of the diketone to yield 4-aminocyclohexanone, and the subsequent reduction of the remaining carbonyl group. Only route A turned out to be feasible, and we performed 4-aminocyclohexanol synthesis at the preparative scale in the sequential and tandem modes. Depending on the ATA, both isomers can be obtained.
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Abstract
A N‐heterocyclic olefin (NHO), a terminal alkene selectively activates aromatic C−F bonds without the need of any additional catalyst. As a result, a straightforward methodology was developed for the formation of different fluoroaryl‐substituted alkenes in which the central carbon–carbon double bond is in a twisted geometry.
Abstract
This work presents a stepwise reversible two‐electron transfer induced hydrogen shift leading to the conversion of a bis‐pyrrolinium cation to an E‐diaminoalkene and vice versa. Remarkably, the forward and the reverse reaction, which are both reversible, follow two completely different reaction pathways. Establishing such unprecedented property in this type of processes was possible by developing a novel synthetic route towards the starting dication. All intermediates involved in both the forward and the backward reactions were comprehensively characterized by a combination of spectroscopic, crystallographic, electrochemical, spectroelectrochemical, and theoretical methods. The presented synthetic route opens up new possibilities for the generation of multi‐pyrrolinium cation scaffold‐based organic redox systems, which constitute decidedly sought‐after molecules in contemporary chemistry.
Abstract
Over the last years, there has been an enormous increase in the knowledge on koi herpesvirus (KHV), koi herpesvirus disease (KHVD), pathogenesis and virus variants. Different KHV lineages have clearly been identified, possible genomic changes during replication in different cell cultures at different temperatures but also in several hosts have been identified, a persistent stage of infection has been specified and it has been shown that infection with KHV is not host specific at all, but KHVD is. Additionally, it has been shown that it is possible to combat KHVD by immunization with inactivated and attenuated live vaccines using different delivery systems but also to benefit from alternative treatments with e.g. exopolysaccharids obtained from Arthrospira platensis.
Molecular dynamics simulations to the bidirectional adhesion signaling pathway of integrin αVβ3
(2020)
Abstract
The bidirectional force transmission process of integrin through the cell membrane is still not well understood. Several possible mechanisms have been discussed in literature on the basis of experimental data, and in this study, we investigate these mechanisms by free and steered molecular dynamics simulations. For the first time, constant velocity pulling on the complete integrin molecule inside a dipalmitoyl‐phosphatidylcholine membrane is conducted. From the results, the most likely mechanism for inside‐out and outside‐in signaling is the switchblade model with further separation of the transmembrane helices.
The hirudin‐like factor 1 (HLF1) of Hirudo medicinalis belongs to a new class of leech‐derived factors. In previous investigations, HLF1 did not exhibit anticoagulatory activities. Here, we describe the analysis of natural and synthetic variants of HLF1 and HLF‐Hyb, a yet uncharacterized member of the HLF family. Modifications within the N terminus of HLF1 have a strong impact on its activity. Some variants of HLF1 exhibit thrombin‐inhibiting activity comparable to hirudins, whereas others have reduced or no activity. The analyses of HLF‐Hyb variants revealed a strong impact of the central globular domain on activity. Our results indicate a comparable mode of action of hirudins and thrombin‐inhibiting HLF variants. Finally, we propose and discuss criteria for classifying hirudins and HLFs.
An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation
(2020)
Abstract
Halide assays are important for the study of enzymatic dehalogenation, a topic of great industrial and scientific importance. Here we describe the development of a very sensitive halide assay that can detect less than a picomole of bromide ions, making it very useful for quantifying enzymatic dehalogenation products. Halides are oxidised under mild conditions using the vanadium‐dependent chloroperoxidase from Curvularia inaequalis, forming hypohalous acids that are detected using aminophenyl fluorescein. The assay is up to three orders of magnitude more sensitive than currently available alternatives, with detection limits of 20 nM for bromide and 1 μM for chloride and iodide. We demonstrate that the assay can be used to determine specific activities of dehalogenases and validate this by comparison to a well‐established GC‐MS method. This new assay will facilitate the identification and characterisation of novel dehalogenases and may also be of interest to those studying other halide‐producing enzymes.
Abstract
A DNA G‐quadruplex adopting a (3+1) hybrid structure was modified in two adjacent syn positions of the antiparallel strand with anti‐favoring 2′‐deoxy‐2′‐fluoro‐riboguanosine (FrG) analogues. The two substitutions promoted a structural rearrangement to a topology with the 5′‐terminal G residue located in the central tetrad and the two modified residues linked by a V‐shaped zero‐nucleotide loop. Strikingly, whereas a sugar pucker in the preferred north domain is found for both modified nucleotides, the FrG analogue preceding the V‐loop is forced to adopt the unfavored syn conformation in the new quadruplex fold. Apparently, a preferred C3′‐endo sugar pucker within the V‐loop architecture outweighs the propensity of the FrG analogue to adopt an anti glycosidic conformation. Refolding into a V‐loop topology is likewise observed for a sequence modified at corresponding positions with two riboguanosine substitutions. In contrast, 2′‐F‐arabinoguanosine analogues with their favored south‐east sugar conformation do not support formation of the V‐loop topology. Examination of known G‐quadruplexes with a V‐shaped loop highlights the critical role of the sugar conformation for this distinct structural motif.
Abstract
A device for the transaminase‐catalysed synthesis combined with continuous recovery of chiral amines was designed. The system enabled the separation of the reaction components in three liquid phases: a reaction phase, an organic solvent phase (where the poorly water soluble ketone substrate was supplied), and an aqueous extraction phase for continuous product recovery. The transaminase‐mediated asymmetric synthesis of (S)‐1‐methyl‐3‐phenylpropylamine was employed as model reaction. Factors influencing the performance of the system, such as reactor geometry, working volumes and operating parameters, were investigated. Specifically, reaction yield and product recovery were enhanced by i) reducing the thickness of the reaction phase, while continuously stirring and ii) reducing the volume of the extraction phase. Under the optimal condition tested, 85 % of the product formed was extracted and a product concentration value of 9 g/L was reached. However, co‐extraction of the unreacted amine donor (17 %) was observed. Advantages and drawbacks of this process compared to existing technologies, as well as possible optimization strategies are discussed.
Abstract
Erucic (22:1, cisΔ13) and gondoic acids (20:1, cisΔ11) are building blocks obtained from renewable sources for the oleochemical industry. Different biocatalytic strategies for the enrichment of these compounds with high recovery yields were developed in our group. Geotrichum candidum lipases (GCL) strongly discriminate against fatty acids longer than 18 carbon atoms. Thus, GCL‐I and ‐II were investigated using hydrolysis or ethanolysis reactions with Crambe and Camelina oils. Hydrolysis was also studied using fatty acid ethyl esters (FAEE) derived from the corresponding oil. Both isoforms were highly selective; however, interesting differences were observed. Although it has been reported that GCL‐I displays a higher preference toward 18 cisΔ9, which is present in the studied oils at high levels, GCL‐II showed higher enrichment values during hydrolysis independent of the substrate used. Hence, enrichments of 87% (Crambe oil) and 82% (Crambe FAEE) for erucic acid and 50% (Camelina oil) and 45% (Camelina FAEE) for gondoic acid, with recovery values between 89% and 99%, were achieved. On the contrary, the best enzyme for ethanolysis was GCL‐I (82% and 41% for erucic and gondoic acid, respectively). In this case, although GCL‐II also displayed good enrichment and recovery levels (77% and 28%, respectively), they were lower compared to the former reactions. In both ethanolysis reactions, the FAEE fraction contained between 92% and 97% of 18 unsaturated fatty acids.
Inflammatory Joint Disease Is a Risk Factor for Streptococcal Sepsis and Septic Arthritis in Mice
(2020)
Septic arthritis is a medical emergency associated with high morbidity and mortality, yet hardly any novel advances exist for its clinical management. Despite septic arthritis being a global health burden, experimental data uncovering its etiopathogenesis remain scarce. In particular, any interplay between septic arthritis and preceding joint diseases are unknown as is the contribution of the synovial membrane to the onset of inflammation. Using C57BL/6 mice as a model to study sepsis, we discovered that Group A Streptococcus (GAS) – an important pathogen causing septic arthritis - was able to invade the articular microenvironment. Bacterial invasion resulted in the infiltration of immune cells and detrimental inflammation. In vitro infected fibroblast-like synoviocytes induced the expression of chemokines (Ccl2, Cxcl2), inflammatory cytokines (Tnf, Il6), and integrin ligands (ICAM-1, VCAM-1). Apart from orchestrating immune cell attraction and retention, synoviocytes also upregulated mediators impacting on bone remodeling (Rankl) and cartilage integrity (Mmp13). Using collagen-induced arthritis in DBA/1 × B10.Q F1 mice, we could show that an inflammatory joint disease exacerbated subsequent septic arthritis which was associated with an excessive release of cytokines and eicosanoids. Importantly, the severity of joint inflammation controlled the extent of bone erosions during septic arthritis. In order to ameliorate septic arthritis, our results suggest that targeting synoviocytes might be a promising approach when treating patients with inflammatory joint disease for sepsis.
Abstract
The efficient multifunctionalization by one‐pot or cascade catalytic systems has developed as an important research field, but is often challenging due to incompatibilities or cross‐reactivities of the catalysts leading to side product formation. Herein we report the stereoselective preparation of cis‐ and trans‐4‐aminocyclohexanol from the potentially bio‐based precursor 1,4‐cyclohexanedione. We identified regio‐ and stereoselective enzymes catalyzing reduction and transamination of the diketone, which can be performed in a one‐pot sequential or cascade mode. For this, we identified regioselective keto reductases for the selective mono reduction of the diketone to give 4‐hydroxycyclohexanone. The system is modular and by choosing stereocomplementary amine transaminases, both cis‐ and trans‐4‐aminocyclohexanol were synthesized with good to excellent diastereomeric ratios. Furthermore, we identified an amine transaminase that produces cis‐1,4‐cyclohexanediamine with diastereomeric ratios >98 : 2. These examples highlight that the high selectivity of enzymes enable short and stereoselective cascade multifunctionalizations to generate high‐value building blocks from renewable starting materials.
Introduction
The definition of Green Chemistry was first formulated at the beginning of the 1990s – 30 years ago and states as follows: “design of chemical products and processes to reduce or eliminate the use and generation of hazardous substances” (Poliakoff et al. 2002). Biocatalysis is one of the examples of “green” chemistry as it is relying on natural or modified enzymes. Today, biocatalysis is a standard technology for the production of chemicals (Straathof et al. 2002).
In this PhD thesis, the implications of biocatalysis using different class of enzymes are discussed: two cytochrome P450 monoxygenases, two kinases and one lyase are shown as tools for the production of bioactive compounds.
The P450 enzymes have a central role in the oxidative metabolism of a wide variety of compounds including the synthesis of endogenous substrates such as steroids and fatty acids. Moreover, P450s catalyze the hydroxylation of non-activated carbon atoms in a regio- and stereospecific fashion avoiding use of protecting groups and several, time-consuming chemical steps.
Here, the recombinant expression and biocatalytic characterization of bacterial CYP107D1 for the regio- and stereoselective hydroxylation of two steroid compounds is reported. Since the natural electron transfer partners of these P450s are unknown, PdX and PdR from P. putida were employed to supply CYP107D1 with the necessary electrons for catalysis. This three-component system was used in bioconversions of two bile acids: LCA and DCA. P450 CYP107D1 exhibits high regio- and stereoselectivity for the tested steroids, giving 6β-hydroxylated products. The properties of the CYP107D1 make this multifaceted P450 monooxygenase an attractive enzyme for the production of novel drug metabolites. Moreover, the crystal structure of the enzyme is known, which provides the basis for developing a protein-engineering strategy aimed at catalytic properties of the CYP107D1
The second enzyme described in the thesis is the self-sufficient cytochrome P450 monooxygenase from Fusarium graminarium (FG067). From the overall structure, it resembles the well investigated CYP102 from Bacillus megaterium (CYP BM3) and the P450 from Fusarium oxysporum (CYPfoxy). In this study, two different strategies to recombinantly produce the fungal P450 monooxygenase P450-FG067, namely (a) producing in E. coli and (b) producing in P. pastoris were investigated. The P450 FG_067 from Fusarium graminarium was successfully overexpressed in P. pastoris. The enzyme was functionally active, converted fatty acid substrates of carbon chain length C10-16 with regiospecificity of the hydroxylating position ω -1, ω - 2 and ω-3, with the highest affinity for capric acid. The hydroxylation at different positions of the fatty acid chain is needed for different chemical industries. For example, ω-HFAs can be used as starting materials for the synthesis of polymers, with high resistance to heat or chemicals (Xiao et al. 2018). Therefore, the application of recombinant enzyme such as self-sufficient P450 FG_067 for a commercial production of HFAs is in high industrial demand.
In this thesis, two kinases were used for the producton of phosphorylated metabolites. Kinases catalyzing N-phosphorylation, which are of synthetic interest because of tedious chemical procedures in selective chemical N-phosphorylations. A highly active and stabile arginine kinase, obtained by cloning and expressing the argK gene from Limulus polyphemus in E. coli, was used in the one-step synthesis of Nω-phospho-L-arginine using the phosphoenolpyruvate/pyruvate kinase system for ATP regeneration. Applying arginine kinase in biocatalysis opens up new opportunities for the selective biocatalytic N-phosphorylation of interesting low-molecular-weight compounds and metabolites.
Another kinase investigated in this thesis was shikimate kinase. The highly active and stable shikimate kinase AroL was achieved by synthesizing the codon-optimized aroL gene and expressing it in high yield in E. coli. Next, shikimate kinase was used in an one-step synthesis of shikimate-3-phosphate using the phosphoenolpyruvate/pyruvate kinase system for ATP regeneration. Development of the described biocatalytic preparation of shikimate-3-phosphate is a superior route incomparison to a tedious multi-step and low yield classical synthesis of this compound. The biocatalytic phosphorylation is of great interest for a commercial production of metabolites and metabolite-like structures.
The last investigeted enzyme in this PhD thesis was argininosuccinate lyase from Saccharomyces cerevisiae. The argininosuccinate lyase was cloned and overexpressed in E. coli as a highly active and stable biocatalyst. A simple and straightforward biocatalytic asymmetric Michael addition reaction has been established for the synthesis of the key metabolite N-(([(4S)-4-amino-4-carboxybutyl]amino)imino methyl)-L-aspartic acid, commonly referred to as L-argininosuccinate. This one-step addition reaction was developed by running part of the urea cycle in reverse. The use of this argininosuccinate lyase and reaction monitoring by NMR enabled the development of a biocatalytic asymmetric Michael addition reaction as a novel green chemistry route with high molecular economy for the synthesis of this important metabolite at gram scale.
Recent advances in the field of scientific research have helped to understand the structure and functional activities of enzymes, which has in turn led to an increase in their stability, activity and substrate specificity. Nowadays, biocatalysis provide more sustainable, efficient, and less polluting methods for the production of fine chemicals and advanced pharmaceutical intermediates. The biocatalysts used in this thesis are introduced as a technology for the efficient synthesis of biologically active compounds, which is greener, reduces pollution and costs compared to chemical synthesis. In summary, the pharmaceutical industry should use the advantage of the progress of biochemistry to obtain biocatalysts in the production of fine chemicals on an industrial scale, improving the quality of end products and saving costs.
Proteostasis is critical for cells to maintain the balance between protein synthesis, quality control, and degradation. This is particularly important for myeloid cells of the central nervous system as their immunological function relies on proper intracellular protein turnover by the ubiquitin-proteasome system. Accordingly, disruption of proteasome activity due to, e.g., loss-of-function mutations within genes encoding proteasome subunits, results in systemic autoinflammation. On the molecular level, pharmacological inhibition of proteasome results in endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR) as well as an induction of type I interferons (IFN). Nevertheless, our understanding as to whether and to which extent UPR signaling regulates type I IFN response is limited. To address this issue, we have tested the effects of proteasome dysfunction upon treatment with proteasome inhibitors in primary murine microglia and microglia-like cell line BV-2. Our data show that proteasome impairment by bortezomib is a stimulus that activates all three intracellular ER-stress transducers activation transcription factor 6, protein kinase R-like endoplasmic reticulum kinase and inositol-requiring protein 1 alpha (IRE1α), causing a full activation of the UPR. We further demonstrate that impaired proteasome activity in microglia cells triggers an induction of IFNβ1 in an IRE1-dependent manner. An inhibition of the IRE1 endoribonuclease activity significantly attenuates TANK-binding kinase 1-mediated activation of type I IFN. Moreover, interfering with TANK-binding kinase 1 activity also compromised the expression of C/EBP homologous protein 10, thereby emphasizing a multilayered interplay between UPR and type IFN response pathway. Interestingly, the induced protein kinase R-like endoplasmic reticulum kinase-activation transcription factor 4-C/EBP homologous protein 10 and IRE1-X-box-binding protein 1 axes caused a significant upregulation of proinflammatory cytokine interleukin 6 expression that exacerbates STAT1/STAT3 signaling in cells with dysfunctional proteasomes. Altogether, these findings indicate that proteasome impairment disrupts ER homeostasis and triggers a complex interchange between ER-stress sensors and type I IFN signaling, thus inducing in myeloid cells a state of chronic inflammation.
Purpose: The cyclin-dependent kinase (Cdk) inhibitor p27Kip1 may be involved in regulating re-entry of residual hepatocytes into the cell cycle upon loss of liver tissue by partial hepatectomy (PH). As yet, changes in Kip1 expression during the initial period following PH are not well-characterized. We investigated immediate changes in Kip1 mRNA and protein levels as well as changes in Kip1 phosphorylation in liver tissue within the relevant time window between surgery and the onset of DNA synthesis at 10–12 h.
Methods: We used real-time PCR, quantitative Western blotting, and immune histochemistry on tissue samples of adult rats obtained during or between 2 and 10 h after surgical removal of two thirds of the liver to analyze Kip1 mRNA or protein levels, respectively, or to quantify nuclear expression of Kip1.
Results: Kip1 mRNA was down-regulated within 4 h after PH by 60% and remained unchanged thereafter up to 10 h. With a lag phase of 2–3 h, Kip1-protein was down-regulated to a level of 40% of the control. The level of Thr187-phosphorylated Kip1 started to increase at 4 h and reached a maximum level at 8–10 h after PH. Kip1 immunoreactivity was observed in 30% of the hepatocytes before PH. Within 6–8 h after PH, more than half of the hepatocytes lost nuclear Kip1 signals. Kip1-specific micro-RNAs (miRNA221, miRNA222) were not changed upon PH.
Conclusions: A portion of hepatocytes in adult rats constitutively express Kip1 and down-regulate Kip1 immediately upon PH. This response involves transcriptional processes (loss of Kip1 mRNA) as well as accelerated degradation of existing protein (increase in pThr187-phosphorylation mediating polyubiquitinylation and proteasomal degradation of Kip1). Kip1 down-regulation occurs precisely within the intervall between surgery and onset of DNA synthesis which supports the hypothesis that it mediates activation of G0/0S-phase Cdk/cyclin-complexes and re-entry of hepatocytes into the cell cycle.
Das klarzellige Nierenzellkarzinom (ccRCC) ist eine von vielen Krebserkrankungen. Viele Patienten weisen eine Mutation im Von-Hippel-Lindau-Gen (VHL) auf und/ oder zeigen eine Überexpression des Enzyms Nicotinamid-N-Metyltransferase (NNMT).
Es wurden insgesamt fünf etablierte Zelllinien verwendet, die embryonale Nierenzelllinie HEK-293 und vier ccRCC-Zelllinien (Caki-1, Caki-2, 769-P, 786-O), welche sich in ihrer Expression der Proteine NNMT und VHL unterscheiden.
Zudem wurde eine stabile Zelllinie aus den Caki-2 Zellen generiert, die durch ein Doxycyclin induzierbares Tet-On-System NNMT vermehrt exprimiert (C2NNMTs).
Es wurden sowohl molekularbiologische als auch biochemische Methoden zur Analyse angewendet.
Die Zelllinien wurden für Transfektionsstudien zur Überexpression oder zum Knockdown von NNMT genutzt, um die Einflussnahme auf die Enzyme Nikotinamid-phosphoribosyltransferase (NAMPT), Sirtuin 1 (SIRT1), Methioninadenosyltransferase-2 β-Untereinheit (MAT2B) und Aldehydoxidase (AOX1) zu analysieren.
Da SAM (S-Adenosylmethionin) der Methyldonor von NNMT ist, wurde auch der Einfluss der Methioninkonzentration betrachtet. Viele der bisherigen publizierten Versuche wurden bei 100 µM Methionin durchgeführt, was jedoch nicht der humanen Serumkonzentration entspricht, welche bei 20 µM Methionin liegt.
Umfangreiche massenspektrometrische Analysen führten zur Identifizierung weiterer Proteine, welche durch die NNMT-Modulation beeinflusst wurden. Die Identifikation einer Vielzahl veränderter Targets verdeutlichte den Einfluss auf den Energiemetabolismus bis hin zur Apoptose. Es zeigten sich unterschiedliche Regulationen von Glykolyse-, Respirations-, Citratzyklus-, Pentosephosphatweg- und Lipidsyntheseproteinen. Insgesamt ergaben sich individuelle, zellspezifische Regulierungen, welche auf die Sirtuine zurückzuführen sind.
Weiterhin wurden Untersuchungen zur erhöhten Expression von NNMT unter Einfluss von Nikotinamid (NAM) sowie Interleukin-6 (IL-6) durchgeführt. Die Analysen zeigten, dass zwischen der Pseudohypoxie und der Erhöhung der NNMT-Expression ein Zusammenhang besteht, denn IL-6 phosphoryliert ERK (engl. Extracellular-signal Regulated Kinases) und STAT3 (engl. Signal transducer and activator of transcription 3), welche beide benötigt werden, um die Transkription des NNMT-Gens zu beeinflussen und die NNMT-Proteinexpression zu fördern.
Die Ergebnisse dieser Untersuchungen sollen dazu dienen, die biochemischen Zusammenhänge einer veränderten Expression von NNMT besser zu verstehen und damit neue diagnostische Ansätze zu ermöglichen.
Polykristallines Gold wurde bereits seit dem Ende des 19. Jahrhunderts elektrochemisch charakterisiert und seit Anfang des 20. Jahrhunderts regelmäßig als Arbeitselektrode in der elektrochemischen Analytik genutzt. Fälschlicherweise und trotz erster gegenteiliger Indizien, dominierte die Annahme, dass mechanisches Polieren die einzelnen Einkristallflächen des polykristallinen Materials freilegen würde, und dass deren statistisch gewichtetes elektrochemisches Verhalten reproduzierbar abgebildet werden könne. Mit dem Aufkommen neuer und verbesserter Verfahren zur Erzeugung hochwertiger Einkristallflächen parallel zur Entwicklung und Verbreitung leistungsstarker Techniken zur Oberflächenanalyse, konzentrierte sich die Goldforschung ab der Mitte des 20. Jahrhunderts auf die Charakterisierung der Einkristallflächen, ohne jedoch die neugewonnenen Erkenntnisse für die Interpretation des polykristallinen Materials zu nutzen. Gegenstand dieser Arbeit war daher die Kombination elektrochemischer Methoden (lineare und zyklische Voltammetrie) mit modernen Oberflächenanalysetechniken (Röntgendiffraktion, elektrochemische Unterpotentialabscheidung von Blei-Ionen) und bildgebenden Verfahren (AFM, STM, REM) zur Charakterisierung verschieden vorbehandelter polykristalliner Goldelektroden. Zudem sollte das elektrochemische Verhalten dieser Elektroden basierend auf dem bisherigen Wissen über das Verhalten der Einkristallflächen interpretiert werden. Der Großteil der erzielten Ergebnisse wurden in den drei Publikationen veröffentlicht, die den Hauptteil dieser Dissertation bilden. Zunächst konnte eine temporäre Aktivierung mittels mechanischer oder elektrochemischer Bearbeitung sowie eine Inaktivierung durch chemisches Ätzen in sauerstoffgesättigter Kaliumcyanidlösung, bezüglich der Sauerstoffreduktion als Referenzreaktion nachgewiesen werden, wobei Aktivierung und Inaktivierung relativ sind und im Zusammenhang mit der Anzahl sogenannter aktiver Zentren auf der Elektrodenoberfläche stehen (Publikation 1). Darüber hinaus erwiesen sich kontinuierliche Oxidations- und Reduktionszyklen an polierten polykristallinen Goldelektroden in schwefelsaurer Lösung als eine neue, Zusatzstoff freie Methode für die Goldnanopartikelsynthese, da diese wohldefinierte und immobilisierte Goldkristallite auf den Elektrodenoberflächen erzeugt (Publikation 2). Die sequenzielle Kombination aus Argon-Ionenstrahlätzen und thermischem Ausheizen hat sich hingegen als effiziente Methode zur Erzeugung sauberer und glatter Elektrodenoberflächen mit hoher atomarer Ordnung erwiesen (Publikation 3). Zugleich konnte gezeigt werden, dass polykristallines Gold ein eigenständiges Material ist, dessen Eigenschaften und Verhaltensweisen nicht ausschließlich auf das statistisch gewichtete elektrochemische Verhalten der einzelnen Einkristallflächen zurückzuführen sind, sondern auch von anderen energetischen Aspekten, wie beispielsweise der Koordination der Oberflächenatome im Kristallgitter, bedingt werden (Publikation 2 und 3).
In contrast to its terrestrial counterpart, the metabolic degradation of marine polysaccharides is underexplored. This work aimed to functionally characterize ulvan- and xylan-degrading enzymes from marine Bacteroidetes in order to clarify the metabolic degradation pathway. For the provision of a broad polysaccharide substrate spectrum, ulvan from several different algal sources was extracted to be used in further characterization experiments. The structural differences of these ulvans could be demonstrated by enzymatic degradation with ulvan-active enzymes. In order to clarify the synergistic catalytic effects of polysaccharide sulfatases with GHs in the degradation process of ulvan, several putative sulfatases from F. agariphila were produced recombinantly in E. coli. For that, a coexpression with an FGE encoding gene was required. It could be demonstrated that several glycoside hydrolases are inhibited, if their
substrate is sulfated at the cleavage position and that a previous desulfation using one of the sulfatases enabled the further degradation. Some of the sulfatases showed an endolytic or exolytic cleavage behavior like reported for several GHs. With the combined catalytic activities, it was possible to successfully elucidate the complex ulvan degradation mechanism for the first time, which enables the use of ulvan as a biotechnological source for the production of fine chemicals and pharmaceuticals. This degradation mechanism was shown to be complemented by an alternative pathway that helps with the degradation of uronic acid-containing oligosaccharides. Here, the synergistic effects of a multimodular enzyme containing a sulfatase and rhamnosidase domain were demonstrated. Furthermore, the first dehydratase participating in the degradation of oligosaccharides was revealed. The functional characterization of putative xylan-targeting PULs from two Flavobacteriia revealed the existence of marine endolytic and exolytic xylanases. The enzymes of these PULs were produced recombinantly in E. coli and were used in biocatalysis reactions on xylan from beechwood, xylan from P. palmata or commercial xylooligosaccharide standards. Further side chain-active GHs were found to exclusively be active on either standards or xylan. The great variation of genetic equipment was demonstrated by comparing the enzyme activities of these PUL structures assuming different ecological adaptations of these organisms especially, because these PULs do not code for any putative sulfatases, which is uncommon for PULs targeting xylan. A different degradation behavior of the investigated enzymes suggested a preferred conversion of β-1,4-linked xylan, potentially present in some microalgae. The acquired insight of the metabolic ulvan and xylan utilization greatly expands the scientific knowledge about the ecologic interplays in marine environments concerning the polysaccharide utilization. It indicates the necessity of backup mechanisms for metabolic processes in order to get access to complex marine carbon sources in nature. Several small degradation cascades complement each other to break down substrate compounds to monomeric level for the use of structurally diverse polysaccharides. This expands the insights into the metabolic processes in the degradation of marine polysaccharides, which are an important part of the understanding of the ecological interactions in aquatic habitats and the ocean’s carbon cycle.
The characterization of ulvan- and xylan-active enzymes and the clarification of their substrate scopes allow to use these enzymes in future production of carbohydrate-derived chemical products for many industrial applications, making it possible to use algal waste for recycling to high value materials with even beneficial effect for the environment.
In 2010, the identification of 17 novel (R)-ATAs represented a breakthrough for the biocatalytic asymmetric synthesis of chiral amines, because only one (R)-ATA was described before. These novel ATAs were identified in a bioinformatic approach by studying the substrate acceptance of BCATs and DATAs to deduce the unknown substrate coordination of (R)-ATAs. Article I describes an alternative approach for the identification of (R)-ATA activity by reengineering the substrate- recognition site of α-AATs. While the engineering of the eBCAT led to the formation of an initial (R)-amine acceptance only, the (R)-ATA activity was successfully introduced in the DATA scaffold. These results demonstrate the transformation of an α-AAT in a moderately active (R)-ATA for the first time and highlight the evolutionary relationship between α-AATs and ATAs. Despite the availability of different ATAs nowadays, their substrate spectrum is limited due to the natural composition of their active sites. Several protein-engineering studies showed the widening of the substrate spectrum and the acceptance of bulky substrates by screening large mutant libraries to identify beneficial variants. In Article II, we developed an in silico engineering approach for amine transaminases to improve the conversion of bulky substrates and to reduce the number of variants to be tested in the laboratory. The resulting double-mutants of the (S)-ATA from C. violaceum displayed a >200-fold improved activity towards the bulky benchmark substrate. These variants expand the available biocatalytic toolbox for the synthesis of bulky amines, and the developed framework paves the way for rational protein-engineering protocols.
By studying unconventional transaminase substrates, we explored the potential of the available in- house transaminase toolbox in Articles III, IV, V, and VI. In Article III, we showed the transamination of a β-keto ester, leading to the synthesis of β-phenylalanine. The described cascade in Article IV enables the synthesis of amino carbohydrates. In addition, Article V describes an enzymatic cascade for the synthesis of amino fatty acids, which was extended in Article VI to obtain fatty amines.
The findings of this thesis clearly contribute to the understanding of the substrate scope and specificity of amine transaminases and expand the application of this versatile biocatalyst beyond classical ketone substrates.
Analyse der metabolischen Anpassung von Streptococcus pneumoniae an antimikrobielle Umwelteinflüsse
(2019)
Das Gram-positive Bakterium Streptococcus pneumoniae ist ein humanspezifisches Pathogen des oberen Respirationstraktes. Der opportunistische Krankheitserreger kann jedoch mehrere Organe befallen und tiefer in den Körper vordringen, was zu lokalen Entzündungen wie Sinusitis und Otitis media oder zu lebensbedrohlichen Infektionen wie Pneumonie, Meningitis oder Sepsis führen kann. Für das Bakterium S. pneumoniae wurden bisher kaum Metabolom-Daten erhoben. Daher war das Ziel dieser Dissertation eine umfassende Charakterisierung des Metaboloms von S. pneumoniae. In dieser Dissertation wurden als analytische Methoden die Gaschromatografie (GC) und Flüssigkeitschromatografie (LC) jeweils gekoppelt mit Massenspektrometrie (MS) sowie die Kernspinresonanzspektroskopie (NMR) verwendet, um die Metaboliten zu analysieren. Es sind mehrere Analysetechniken erforderlich, um den Großteil des Metaboloms mit seinen chemisch verschiedenen Metaboliten zu erfassen. Artikel I fasst die Literatur zu Untersuchungen des Metabolismus von S. pneumoniae in den letzten Jahren zusammen. Um eine Momentaufnahme des biologischen Systems zum jeweiligen Zeitpunkt zu erhalten, ist neben dem reproduzierbaren Wachstum während der Kultivierung auch die exakte Probenahme zu beachten. Aus diesem Grund wurde in dieser Dissertation ein Probenahmeprotokoll für das Endometabolom von S. pneumoniae etabliert (Artikel II). Mithilfe des optimierten Protokolls wurde eine umfassende Metabolomanalyse in einem chemisch definierten Medium durchgeführt (Artikel II). Um S. pneumoniae in einer Umgebung ähnlich der im Wirt zu untersuchen, wurde in einem modifizierten Zellkulturmedium kultiviert. Intermediate zentraler Stoffwechselwege von S. pneumoniae wurden analysiert. Das intrazelluläre Stoffwechselprofil wies auf einen hohen glykolytischen Flux hin und bot Einblicke in den Peptidoglykan-Stoffwechsel. Darüber hinaus widerspiegelten die Ergebnisse die biochemische Abhängigkeit von S. pneumoniae von aus dem Wirt stammenden Nährstoffen. Ein umfassendes Verständnis der Stoffwechselwege von Pathogenen ist wichtig, um Erkenntnisse über die Anpassungsstrategien während einer Infektion zu gewinnen und so neue Angriffspunkte für Wirkstoffe zu identifizieren.
Die zunehmende Verbreitung von resistenten S. pneumoniae-Stämmen zwingt zur Suche nach neuen antibiotisch wirksamen Substanzen. Im Zuge dessen wurde in Artikel III die metabolische Reaktion von S. pneumoniae während des Wachstums unter dem Einfluss antibakterieller Substanzen mit dem Ziel der Identifizierung metabolischer Anpassungsprozesse untersucht. Dabei wurden Antibiotika mit unterschiedlichen Wirkmechanismen verwendet, wie die Beeinflussung der Zellwandbiosynthese (Cefotaxim, Teixobactin-Arg10), der Proteinbiosynthese (Azithromycin) sowie Nukleotidsynthese (Moxifloxacin). Es konnten keine Wirkmechanismus-spezifischen Marker-Metaboliten identifiziert werden. Jedes Antibiotikum verursachte weitreichende Veränderungen im gesamten Metabolom von S. pneumoniae. Die Nukleotid- und Zellwandsynthese waren am stärksten betroffen. Besonders vielversprechend sind Antibiotika mit zwei Wirkorten wie Teixobactin-Arg10 und Kombinationen aus zwei Antibiotika. In dieser Dissertation wurde das erste Mal das synthetisch hergestellte Teixobactin-Arg10 mittels einer der modernen OMICS-Techniken untersucht. Die vorliegende umfassende Metabolom-Studie bietet wertvolle Erkenntnisse für Forscher, die an der Identifizierung neuer antibakterieller Substanzen arbeiten.
Insgesamt tragen die Ergebnisse der Dissertation zu einem besseren Verständnis der bakteriellen Physiologie bei.
Genetic Regulation of Liver Metabolites and Transcripts Linking to Biochemical-Clinical Parameters
(2019)
Given the central metabolic role of the liver, hepatic metabolites and transcripts reflect the organismal physiological state. Biochemical-clinical plasma biomarkers, hepatic metabolites, transcripts, and single nucleotide polymorphism (SNP) genotypes of some 300 pigs were integrated by weighted correlation networks and genome-wide association analyses. Network-based approaches of transcriptomic and metabolomics data revealed linked of transcripts and metabolites of the pentose phosphate pathway (PPP). This finding was evidenced by using a NADP/NADPH assay and HDAC4 and G6PD transcript quantification with the latter coding for first limiting enzyme of this pathway and by RNAi knockdown experiments of HDAC4. Other transcripts including ARG2 and SLC22A7 showed link to amino acids and biomarkers. The amino acid metabolites were linked with transcripts of immune or acute phase response signaling, whereas the carbohydrate metabolites were highly enrich in cholesterol biosynthesis transcripts. Genome-wide association analyses revealed 180 metabolic quantitative trait loci (mQTL) (p < 10-4). Trans-4-hydroxy-L-proline (p = 6 × 10-9), being strongly correlated with plasma creatinine (CREA), showed strongest association with SNPs on chromosome 6 that had pleiotropic effects on PRODH2 expression as revealed by multivariate analysis. Consideration of shared marker association with biomarkers, metabolites, and transcripts revealed 144 SNPs associated with 44 metabolites and 69 transcripts that are correlated with each other, representing 176 mQTL and expression quantitative trait loci (eQTL). This is the first work to report genetic variants associated with liver metabolite and transcript levels as well as blood biochemical-clinical parameters in a healthy porcine model. The identified associations provide links between variation at the genome, transcriptome, and metabolome level molecules with clinically relevant phenotypes. This approach has the potential to detect novel biomarkers displaying individual variation and promoting predictive biology in medicine and animal breeding.
β-Phenylalanine Ester Synthesis from Stable β-Keto Ester Substrate Using Engineered ω-Transaminases
(2018)
Aufgrund der extremen Instabilität des Molybdän Cofaktors (MoCo) ist eine genauere Untersuchung der aktiven Zentren der lebenswichtigen MoCo-abhängigen Enzyme allein durch biochemische Methoden fast unmöglich. Hierfür liefert eine chemische Modellierung des Cofaktors die einzige Möglichkeit einen tieferen Einblick in seine Struktur und Funktion.
Die vorliegende Dissertation ermöglicht einen weitaus tieferen Einblick in Struktur-Funktionsbeziehung des Molybdän-Cofaktors hinsichtlich des zentralen Metalls und des Molybdopterin-Liganden. Zunächst wurde die Rolle des Molybdänzentrums in den Modellverbindungen detailliert analysiert. Hierfür wurde in den synthetisierten Modellen Molybdän mit Rhenium, ausgetauscht. Die erhaltenen Komplexe wurden zuerst umfangreichend durch verschiedene Methoden Kristallstrukturanalyse, IR-, Raman-, NMR-, 2D-NMR-Spektroskopie, temperaturabhängige Elektrochemie und quantenchemischen Berechnungen analysiert und auf Analogien und Unterschiede verglichen. Dabei wurde auf der Suche eines MoCo-Modells, das die richtige Balance zwischen katalytischer Aktivität und Stabilität besitzt, untersucht, ob Rhenium eine potenzielle Alternative zu Molybdän darstellen kann.
Um einen tieferen Einblick in die Chemie des Pterin-Strukturabschnitts von MoCo zu erschaffen, beschäftigt sich diese Arbeit mit der Feinabstimmung von Chinoxalin- und Pterin-Dithiolen-Liganden sowie mit der Entwicklung deren Molybdän-Komplexen. Dazu konnten neuartige Chinoxalin- und Pterin-Dithiolen-Liganden synthetisiert werden, die als Modell-Liganden für die Erforschung der Biosynthese des MoCos fungieren können. Hierin wird die Synthese und die vollständige Charakterisierung eines neuartigen Oxo-Bis(pterin)dithiolen-Molybdän-Komplexes beschrieben. Durch 2D-NMR Spektroskopie konnte die Struktur des erhaltenen Komplexes in Lösung detailliert analysiert werden. Schließlich wurden im Rahmen der vorliegenden Arbeit erstmals durchgeführte Untersuchungen zur Bindung von chemisch synthetisierten MoCo-Modellen mit dem Apoenzym der Trimethylamin-N-Oxid-Reduktase unternommen. Dabei konnte die essenzielle Rolle des Pterin-Gerüstes für die richtige Platzierung des Cofaktors in der Bindungstasche des Apoenzyms etwas näher aufgeklärt werden. Zukünftig könnten noch strukturell genauere MoCo-Modelle den Weg für die Synthese einer semi-artifiziellen Sulfitoxidase, die als eine Behandlungsmöglichkeit der Molybdän-Cofaktor-Defizienz (MoCoD) und der isolierten Sulfitoxidase-Defizienz (iSOD) eingesetzt werden, eröffnen.
Synthesen modifizierter Nukleoside zur Aufklärung der Struktur und Funktion von RNA-Molekülen
(2019)
Im Fokus dieser Arbeit lagen die Synthesen verschiedener Nukleosidderivate zur Aufklärung der Struktur und Funktion von RNA-Molekülen. Es wurden erfolgreich zwei Adenosinderivate synthetisiert und die für die post-synthetische Markierung benötigte Aminofunktion entweder mit Hilfe der Sonogashira-Kupplung an der Position C2 oder der Heck-Reaktion an der Position C8 eingebaut. Um auch Zugang zu modifizierten Cytidinen zu erhalten, wurde eine Synthesestrategie für ein aktiviertes Uridinderivat entworfen, um dieses nach der chemischen Synthese mittels Phosphoramiditverfahren, während der Reinigung, in das dazugehörige Cytidinderivat umzuwandeln. Hierzu wurden die funktionellen Gruppen erfolgreich für die chemische Oligonukleotidsynthese geschützt, die Modifikation an der Position C5 mit Hilfe der Sonogashira-Kupplung eingebaut und die Position C4 mit Hilfe von TIPS-Cl (2,4,6-Triisopropylbenzolsulfonylchlorid) aktiviert. In Vorversuchen konnte die erfolgreiche Umwandlung in das Cytidinderivat experimentell bestätigt werden. Im zweiten Teil der Arbeit wurde der Einfluss ausgewählter basenmodifizierter Nukleoside auf den Charakter einer doppelsträngigen RNA untersucht. Dazu wurden die Schmelzkurven und Schmelzpunkte modifizierter und unmodifizierter Oligonukleotide gemessen und ausgewertet. Die erhaltenen Daten lassen darauf schließen, dass der Einbau von basenmodifizierten Nukleosiden zur Senkung des Schmelzpunktes führt, jedoch nicht zur Veränderung des doppelsträngigen Charakters. Eine anschließende Markierung eines modifizierten Oligonukleotids mit dem Farbstoff ATTO 680 scheint nur einen marginalen Einfluss auf den Schmelzpunkt, im Vergleich zu den Schmelzpunkten der modifizierten Oligonukleotide, zu haben. Für die Untersuchung der Funktion und Struktur von größeren RNA-Molekülen, wie zum Beispiel ROSE-Elementen, wurde eine Strategie zu deren Herstellung mit Hilfe der T4 RNA Ligase I entwickelt und ex-perimentell bestätigt. Dazu wurde das ROSE-Element in drei Segmente geteilt, diese chemisch synthetisiert, gereinigt und mit Hilfe der T4 RNA Ligase I zum vollständigen Element ligiert. Dabei konnte das ROSE-Element erfolgreich vom 5´-Terminus aufgebaut werden. Es steht nun eine Methode zur Verfügung, um auch modifizierte Oligonukleotide zu einem ROSE-Element zu ligieren und dieses auf seine Funktion und Struktur hin zu untersuchen. Eine RNA 4-way-junction wurde durch Hybridisierung generiert und für strukturelle Untersuchungen verfügbar gemacht.
Über 40% der derzeit verwendeten Arzneimittel beinhalten Amine als Wirkstoff. Vor allem die Chiralität dieser Moleküle stellt eine immer größere Bedeutung dar. Chirale Moleküle unterscheiden sich in der räumlichen Anordnung der Atome um das chirale Zentrum. Nicht selten besitzen Naturstoffe ein solches chirales Zentrum und sind asymmetrisch aufgebaut. In diesem Zusammenhang ist es nicht verwunderlich, dass die in der Medizin eingesetzten Wirkstoffe einen unterschiedlichen Wirkungsgrad je nach chiraler Konfiguration aufweisen.
Ziel dieser Arbeit war es neue Methoden zur stereoselektiven Synthese chiraler Amine zu untersuchen. Im Gegensatz zu herkömmlichen chemischen Synthesen, die beispielsweise auf Übergangsmetalle als Katalysatoren setzen, stellen Enzyme als Katalysatoren eine interessente Alternative dar. Stereo-, Regio- und Chemoselektivität ist Enzymen oft von Natur aus gegeben. Im Mittelpunkt der enzymatischen asymmetrischen Synthese optisch aktiver Amine standen bisher Amintransaminasen (ATA), die eine Aminogruppe von einem Amin (Aminodonor) auf ein Keton (Aminoakzeptor) transferieren. Diese Enzyme sind jedoch auf die Synthese primärer Amine beschränkt, sekundäre und tertiäre Amine sind nicht zugänglich. Eine Alternative hierzu stellen Iminreduktasen (IREDs) dar. Dabei handelt es sich um NADPH-abhängige Enzyme, die eine Reduktion von Iminsubstraten zu optisch aktiven Aminen katalysieren. Vor allem die IRED-katalysierte reduktive Aminierung steigerte das Interesse dieser Enzymklasse. In einer reduktiven Aminierung wird nicht das Imin selbst als Substrat eingesetzt, sondern eine prochirales Keton. Dieses formt mit einem Aminsubstrat (Nukleophil) ein Imin und wird anschließend reduziert. Durch diesen Reaktionsweg sind IREDs nicht nur auf zyklische Substrate beschränkt, auch instabile azyklische Imine werden zugänglich.
Die reduktive Aminierung mittels Iminreduktase wurde erstmalig im Jahr 2014 beschrieben und war zu Beginn dieser Arbeit nur als "Proof of Concept" gezeigt worden. Im Rahmen dieser Promotionsarbeit konnte gezeigt werden, dass diese Enzyme die Möglichkeit bieten, optisch aktive Amine mit hohen Umsätzen und Enantiomeren- bzw. Diastereomerenüberschüssen zu synthetisieren.
Charakterisierung der Expression und Funktion metabolischer Enzyme im humanen intestinalen Gewebe
(2019)
Bei der Arzneimittelentwicklung liegt der Fokus nicht nur auf der Wirksamkeit und Sicherheit einer pharmakologisch aktiven Substanz, sondern auch auf einer möglichst einfachen, idealerweise oralen Applikation. Um die benötigten Wirkstoffkonzentrationen im Zielorgan zu erreichen, wird die einzunehmende Dosis eines Medikaments in Abhängigkeit der präsystemischen Elimination ermittelt. Inzwischen ist bekannt, dass nicht ausschließlich der hepatische, sondern auch der intestinale Stoffwechsel die orale Bioverfügbarkeit eines Medikaments wesentlich beeinflussen kann. Arzneistoffe, die während der Darmpassage einer starken Metabolisierung unterliegen, sind zudem prädestiniert für unerwünschte Interaktionen mit anderen Substanzen, welche die entsprechenden Stoffwechselenzyme hemmen oder induzieren. Für die Abschätzung pharmakokinetischer Parameter eines neuen Wirkstoffs sind daher Kenntnisse zur Expression sowie Funktion klinisch relevanter intestinaler Stoffwechselenzyme von Bedeutung.
Bisher publizierte Daten basieren größtenteils auf der Genexpression, obwohl aufgrund posttranskriptionaler Prozesse nicht zwingend Aussagen zur resultierenden Proteinmenge getroffen werden können. Die verfügbaren Daten zum intestinalen Proteingehalt wurden mittels immunologischer Methoden erhoben, die erhebliche Limitationen in Bezug auf Spezifität, Reproduzierbarkeit und Robustheit aufweisen. Diese Aspekte finden bei den inzwischen etablierten LC-MS/MS-basierten Targeted-Proteomics-Methoden Berücksichtigung. Dazu werden die Proteine einer Messprobe enzymatisch gespalten, um entstehende proteospezifische Peptide zur Quantifizierung der Proteine von Interesse zu nutzen.
Ein Ziel der vorliegenden Arbeit bestand in der Entwicklung und Validierung einer entsprechenden Methode zur gleichzeitigen Bestimmung von CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, UGT1A1, UGT1A3, UGT2B7 sowie UGT2B15 in biologischen Matrices, welche die aktuell gültigen Leitlinien in Bezug auf Selektivität, Linearität, Richtigkeit, Präzision und Stabilität erfüllt. Bereits bei der ersten Anwendung der Methode zur Quantifizierung der Enzyme in kommerziell erhältlichen und selbst isolierten Mikrosomen zeigte sich, welchen erheblichen Einfluss die Probenvorbereitung auf die ermittelten Proteingehalte hat.
Diese Erkenntnis wurde im Rahmen eines internationalen Projektes bestätigt, bei dem humane Leberproben desselben Ursprungs in diversen Laboren mit den dort etablierten Methoden prozessiert worden sind. Bezogen auf die eingesetzte Gewebemenge ergaben sich bei der Messung der Mikrosomen 6 - 30-fach geringere Enzymgehalte als bei der Analyse des nicht-fraktionierten Gewebes, da die subzelluläre Aufspaltung einer Probe mit erheblichen Proteinverlusten einhergeht. Folglich wurden alle weiteren Untersuchungen zur absoluten Enzymquantifizierung unter Verwendung von filterbasierten Zentrifugaleinheiten (filter aided sample preparation; FASP) mit Gesamtgewebelysatproben durchgeführt. Sowohl die optimierte Probenaufarbeitung als auch die validierte Targeted-Proteomics-Methode fanden bei der Untersuchung der Darmsegmente von 9 Spendern Anwendung, wobei jeweils Gewebe aus dem Duodenum, oberen und unteren Jejunum, Ileum sowie Colon zur Verfügung stand. Von den 13 untersuchten Enzymen wurden in allen Dünndarmabschnitten nur CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, UGT1A1, UGT1A3 und UGT2B7 nachgewiesen, deren Gehalt im Jejunum am höchsten war. Im Colon wurde auf Proteinebene keines der Metabolisierungsenzyme detektiert. Die entsprechenden Genexpressionsdaten dieser 8 Enzyme korrelieren signifikant mit den ermittelten Proteinwerten. Korrespondierend zur fehlenden Nachweisbarkeit der übrigen 5 Enzyme auf Proteinebene waren die Gene CYP2B6, CYP2C8, CYP2E1 sowie UGT2B15 nur sehr geringfügig und CYP1A2 gar nicht exprimiert.
Zur Charakterisierung der metabolischen Aktivität der intestinalen Enzyme wurde eine weitere LC-MS/MS-basierte Methode entwickelt und validiert. Als Modellsubstrate fungierten Diclofenac (CYP2C9), Omeprazol (CYP2C19), Dextromethorphan (CYP2D6), Midazolam (CYP3A), Ezetimib (UGT1A) und Naloxon (UGT2B7). Die begrenzte Verfügbarkeit des intestinalen Gewebes sowie dessen sehr geringer mikrosomaler Proteingehalt stellten besondere Anforderungen an die Sensitivität der Methode. Ihre Eignung zur Charakterisierung der intestinalen Metabolisierungsaktivität wurde bei der Anwendung auf ein jejunales Mikrosomen-Gemisch gezeigt.
Die im Rahmen dieser Arbeit generierten Daten zur Expression klinisch bedeutsamer Metabolisierungsenzyme entlang des humanen Darms tragen zu einem besseren Verständnis des intestinalen First-Pass-Metabolismus bei. Diese Kenntnisse können sowohl bei der Entwicklung neuer Arzneistoffe als auch für die Erstellung von Physiologie-basierten pharmakokinetischen Modellen (PBPK-Modellen) nützlich sein, um die orale Bioverfügbarkeit sowie das Interaktionspotential pharmakologisch aktiver Substanzen abzuschätzen.
Understanding the fundamental mechanisms in the extracellular matrix of cells (ECM) is crucial for the development of drugs and biomaterials. Therefore, an atomistic model of the extracellular matrix is a cost-efficient way to observe influences of drugs, test the effect of mutations or misfolds in proteins or study the properties of fibril or network-forming peptides.
With this thesis, a refined molecular model of an adhesion complex is proposed that contains collagen, fibronectin and the cell receptor integrin. During the building of the model, major new insights are given for each of these proteins and a powerful protein-folding algorithm is
developed.
Molybdenum dependent enzymes are involved in essential metabolic transformations in bacteria, plants, and human beings. The extreme instability of the molybdenum cofactor (Moco) prevents its use as an effective treatment for patients with a Moco deficiency. Therefore, the design, develop and execute the artificial molybdenum cofactor models are essential.
In the present thesis, the asymmetric molybdopterin (mpt) model precursors with oxygen functionality and various electronic structures and their Moco model complexes mimicking the natural cofactor have been synthesized and comprehensively investigated through multi-nuclear NMR, MS, IR, resonance Raman, X-ray crystallography, UV-Vis, and electrochemical methods. Notably, the asymmetrically substituted dithiolenes in this thesis are confirmed through a significant push-pull effect, which is tuning its electronic structure. The redox behavior of Moco model complexes was investigated by temperature-dependent cyclic voltammetry. Electronic and vibrational spectral studies were investigated in detail to understand substituents effect on the electronic structure of model complexes and to elucidate roles of mpt in catalysis. Since the model complexes can be considered as structural models for the Moco dependent oxidoreductases, catalytic oxygen atom transfer (OAT) reactions in DMSO/PPh3 were investigated.
The main focus of the present thesis was achieved through the development of various synthetic routes that address phosphonate bearing dithiolene ligands, inspiring the natural mpt. Simultaneously the Minisci protocol was applied for the synthesis of new pterin ketophosphonates, taking into consideration the essential aspects of the natural molybdopterin, including the phosphate anchor group. Even though some aspects of this protocol require further optimizations, but the mentioned synthetic route has exceptional potential and flexibility.
The term diabetes mellitus comprises a group of metabolic diseases all distinguished by their main characteristic hyperglycaemia. With a steadily increasing prevalence diabetes displays an enormous burden for patients and health systems and is therefore of special interest for research. The development of the two main types of diabetes, type 1 and type 2, is closely linked to the formation of reactive species, especially hydrogen peroxide, inside different compartments of pancreatic beta cells. However, these cells are especially vulnerable towards oxidative stress mediated by hydrogen peroxide due to a low expression of antioxidative enzymes.
The main aims of the present thesis were to analyse the intracellular generation and to enable the site-specific detection of hydrogen peroxide to evaluate its role in the delicate equilibrium between redox signalling and oxidative stress under certain pathophysiological conditions, and moreover to monitor its movement through compartments and subcellular membranes of insulin-producing cells. Additionally, a new methodology for an artificial site-specific generation of hydrogen peroxide inside living cells was developed.
In acinar cells, cellular organelles like zymogene granule, mitochondria, endoplasmic reticulum and lysosome functions in coordinate way in order to synthesize and secrets large amounts of digestive enzyme. Dysfunction of this organelle, results into enzyme activation within acinar cell; ultimately, acute pancreatitis. While previous studies reported that mitochondrial function is disrupt but mechanism of clearance of these mitochondria remains unknown during pancreatitis. Here we reported that PINK1 and Parkin mediated pathway is activated during pancreatitis and clears dysfunctional mitochondria in-vivo. PINK1 or Parkin deficient acinar cell had energy crisis, decreased ATP production and altered acinar cell fate in-vitro. Inhibiting clearance of dysfunctional mitochondria aggravates experimental pancreatitis severity and delays regeneration/recovery of exocrine tissue after disease via PARIS-PGC-1α pathway. While an attempt to explore therapeutic target of PARIS-PGC-1α pathway by treatment of SRT1720 rescued experimental pancreatitis. Together, PINK1 and Parkin, restricts exocrine pancreatic damage in pancreatitis and accelerates tissue recovery after disease.
Using validated analytical tools and optimized sampling procedures, it was possible to detect a vast number of metabolites from the extracellular space but also from the cytosol of B. subtilis. The results indicate that the complement of the analytical methods was suitable in the monitoring of the metabolome since it allowed a great coverage of physicochemical diverse metabolites. However, a wide number of unknown metabolites/features were also detected. Although broad databases exist that can help in the annotation of metabolites, further investigation is needed in their identification. In unpredictable changing conditions, bacterial cells possess appropriate adaptation strategies for a successful bacterial growth. These rely on sensing mechanisms that globally adjust gene expression via transcription and feedback regulations. The metabolic sensing mechanisms have emerged as key roles in the nutritional information and regulation of cell cycle processes. In this work, a new quality of information regarding the metabolism and adaptation to the absence of key signal mechanisms in B. subtilis was provided. Investigations of cells lacking Pyk uncovered alterations in the import of glucose and pyruvate from the nutritional media. These results gives insights to the pyruvate homeostasis mechanism but also brought new questions concerning the regulation of the CCR. Pyruvate wasn't susceptible to the glucose dependent CCR in Δpyk. The earlier in ux of pyruvate in these cells is in accordance to the newly discovered pyruvate transport mechanism. Also, it was speculated that the lower consumption of external glucose could be a consequence of the impairment of the PTS system in the mutant cells due to the accumulation of glycolytic metabolite FBP. In future studies, insights of the PTS system mechanism should be done in these conditions, that could comprise the determination of HPr phosphorylation and the HPrK activity. This study also arose new questions that should be address, that include the higher secretion of acetoin and 2,3-butanediol, and the lower accumulation of shikimate 3-phosphate by the mutant cells. In an untargeted metabolomic analysis, a vast number of altered features were suggested to be fatty acids metabolites, precursors of phospholipids and LTA. Complementary approaches should be done for the confirmation of these metabolites and the inspection of possible alterations in the membrane structure. In the study of LTA mutants, the accumulation of PG precursors provided a hint of altered cell wall assembly. Although by uorescence microscopy no clear changes were detected, the metabolic results emphasized the previous assumption of the affected hydrolytic activity occurring in the PG. For comprehensive knowledge of the cell wall it would be important to detect and identify more metabolites of the LTA anchor using optimized cromatographic method. These results could be complemented with other omics data sets studies which would help in the elucidation of these key regulatory systems mechanisms.
Oils and fats from natural origin are sustainable sources for a broad range of economically relevant products in food, feed, fuel, oleochemical, and cosmetic industries. Thereby, a huge variety of lipids or lipid-derived products exist which distinguish themselves by their unique physical properties making them suitable for their individual applications. To obtain such functional lipids in an environmentally friendly manner, enzymes can be employed. In that context, lipases have been proven to be valuable biocatalysts in lipid modification, which are broadly applied in industry. Even though they have been implemented successfully in the dairy, baking, and detergent industries, there is an increasing demand for the expansion of their utilization. New technologies like protein engineering and the implementation of process development are employed in solving this task. Within the enzymes in lipid modification, lipases are the most applied catalysts and in this thesis their utilization was expanded successfully to the implementation of novel separation processes and the production of improved drug delivery matrices.
Central to this thesis are so-called G-quadruplex (G4) nucleic acids. These unusual structures have recently moved into the scientific limelight - mostly due to their prevalence in the human genome. Incidentally, the vast majority of G4-prone sequences is found in telomeric regions and in the promoter sequences of a large number of cancer-related genes.
Furthermore, recent studies suggest a wide applicability of these structures as therapeutic and functional agents, though the technology is still in its infancy with only a few oligonucleotides in clinical trials. Notably, G-quadruplexes are highly polymorphous, exhibiting different topologies and conformations based on sequence, solution condition and molecularity. Therefore, rational design of such structures with specific, topology-encoded functions demands a comprehensive understanding of the underlying folding parameters.
As the folding process is the result of a whole orchestra of parameters with synergistic effects, the herein proposed approach to understand the G4 structural arrangement concentrates on native G4-forming sequences with well-defined topologies. Perturbations of these structures by rational nucleotide substitutions allow for the observation of discrete effects on the folding pathway and on the resulting overall topology.
The method chosen for primary investigation in the following studies on G4 architectures was Nuclear Magnetic Resonance (NMR) as it is the most powerful tool for structure elucidation in liquids. Unique to this technique, it permits the observation of discrete species in mixtures by distinct perturbations at the atomic level as well as valuable insights into the molecular dynamics.
The included publications study the effects of site-specific bromine substitutions on native quadruplex scaffolds, thereby successfully inducing new structures. These expand the G4 structural landscape but also enhance our understanding of the driving forces in G4 folding.
The synthesis of pterin-dithiolene ligands was achieved by employing the radical nucleophilic substitution, i.e. the so-called “Minisci- Reaction”1. This protocol was used for the first time by Professor W. Pfleiderer on pterin substrates2 and proved a powerful method for the preparation of 6 acyl-pterins in course of this work. Subsequent construction of the dithiolene ring facilitates the synthesis of pterin-dithiolene ligands with completely unprotected pterin moieti.
The molybdenum cofactor is probably one of the most relevant discoveries in the recent history of pterin chemistry and biochemistry. Many efforts have been made for the preparation of compounds able to mimic the features of the Moco ligand system called "Molybdopterin". In fact, the study of MPT models enables a deeper understanding of the “mechanism of function” of this cofactor and most importantly, lays the foundation for a potential treatment for the Moco related diseases MoCOD and iSOD.
Vor dem Hintergrund des noch wenig erforschten RNA-Ladungstransfers, lag der Fokus der Arbeit auf die Etablierung eines Ladungstranfers innerhalb einer funktionellen RNA. Als Modellsystem diente dazu das HPAR2, ein FMN-abhängiges Aptazym, dessen strukturdynamische Funktionsweise noch nicht komplett verstanden ist. Dabei galt es zum einen innerhalb der funktionellen Aptamerdomäne einen Ladungstransport zu etablieren. Zum anderen musste eine geeignete Position innerhalb der Aptamerstruktur für die Einführung eines nukleophilen Linkers identifiziert und verifiziert werden, um postsynthetisch die Verknüpfung mit dem FMN zu ermöglichen. Zusätzlich wurde durch die Synthese verschiedener nukleosidischer Sonden die Anwendung spektroskopischer Methoden zur Untersuchung dynamische RNA-Funktionen ermöglicht. Dabei gelang es eine neue Strategie zur Einführung einer Spin-Sonde in eine RNA zu entwickeln. Des Weiteren gelang die Darstellung einer nukleosidischen PHIP-Sonde, die eine außergewöhnlich hohe Signalverstärkung zeigte. Um die Funktionskontrolle des Modellsystems über einen intramolekularen Elektronentransport zu ermöglichen, musste zunächst die Synthese eines dementsprechend Linker-modifizierten Adenosins erfolgen. Der Einbau dieses Linker-modifizierten Adenosins durch chemische Festphasensynthese lieferte zwei RNAs, die durch Hybridisierung mit entsprechenden Gegensträngen das FMN-Aptamer und das FMN-abhängige Modellsystem HPAR2 bilden. Der zweite Teil dieser Arbeit, der Vorbereitung eines Elektronentransfer-sensitiven Aptazyms, setzte die Bereitstellung eines nukleosidischen Elektronendonors voraus. Dafür erfolgte die Synthese und Charakterisierung zweier Pyren-modifizierte Uridinderivate. Die Charakterisierung beider Elektronendonoren durch optische Spektroskopie (Fluoreszenz und UV/Vis) resultierte in vielversprechenden Hinweisen, dass die Erzeugung eines Überschusselektrons nach Anregung mit Licht einer bestimmten Wellenlänge gelang. Der erfolgreiche Einbau des substituierten Pyren-Nukleosidderivates in fünf verschiedene Duplex- und sechs verschiedene Aptamerstrukturen und deren spektroskopische Charakterisierung erlaubte die Untersuchung des RNA-Ladungstransports. Der Nachweis eines Ladungstransfers gelang für beide Systeme über zwei unterschiedliche Methoden. Einerseits konnte der Ladungstransfer über Fluoreszenzspektroskopie nachgewiesen werden und andererseits gelang der Nachweis über die Degradierung des eingebauten Akzeptors. Diese Ergebnisse stellen den ersten Ladungstransfers durch eine nicht Watson-Crick gepaarte Nukleinsäurestruktur dar. Zudem ist dies die erste Demonstration eines Sequenz-abhängigen Ladungstransportes innerhalb einer RNA.
Die akute Pankreatitis ist durch eine vorzeitige intraazinäre Proteasen-Aktivierung gekennzeichnet, wobei diese im Verlauf der Erkrankung durch eine zunehmende Immunantwort mit in das Pankreas infiltrierenden Immunzellen ergänzt wird. Eine besondere Bedeutung hat die intrazelluläre Aktivierung der Serinprotease Trypsinogen, die in Abhängigkeit der lysosomalen Hydrolase Cathepsin B (CTSB) verläuft.
Wir konnten zeigen, dass verschiedene lysosomale Proteine (Cathepsin D (CTSD), Cathepsin C (CTSC)) nach pathologischem Stimulus in das sekretorische Kompartiment (Zymogengranula) umverteilt werden. Cathepsin D ist in der Lage, das Schlüsselenzym Cathepsin B zu aktivieren, indem es das Pro-Enzym zu aktivem Enzym spaltet. Der Ort dieser proteolytischen Aktivierung sind die sekretorischen Vesikel. Eine pharmakologisch induzierte Permeabilisierung der Lysosomen mit nachfolgendem Ausbleiben der Umverteilung der Enzyme in das sekretorische Kompartiment zeigte, dass die vorzeitige Zymogen-Aktivierung in der Frühphase der Pankreatitis erhalten geblieben ist und unabhängig vom Lysosom verläuft. Eine CTSB-Abhängigkeit bleibt jedoch bestehen. Ein Fehlen von CTSD in den Azinuszellen führt zu einem nur transient milderen Verlauf der akuten Pankreatitis, wie anhand von CTSDf/f/p48Cre/+ Mäusen demonstiert werden konnte, die einen Pankreas-spezifischen CTSD Knockout besitzen. Ein anhaltend milderer Verlauf der Pankreatitis fand sich in CTSD-/- Mäusen, der auf eine verminderte Sekretion pro-inflammatorischer Zytokine in Immunzellen zurückzuführen ist. Auch bei Defizienz von CTSC war der Schweregrad der akuten Pankreatitis milder, wie in CTSC-/- Mäusen experimentell demonstiert werden konnte. Ursächlich hierfür ist vor allem ein reduziertes Einwandern neutrophiler Granulozyten in das Pankreas und in die extrapankreatischen Organe (Lunge), die auf eine geringere Aktivität der Serinprotease Neutrophilen Elastase und verminderte Spaltung des Zell-Kontakt Moleküls E-Cadherin beruhen. Umgekehrt beeinflusste das Fehlen von CTSC in den Azinuszellen nicht die vorzeitige Proteasen-Aktivierung.
Unsere Arbeit unterstreicht die Bedeutung lysosomaler Enzyme in der akuten Pankreatitis und zeigt, dass diese Enzyme maßgeblichen Einfluss auf die Funktion von Immunzellen haben, die den Verlauf der Erkrankung wesentlich mitbestimmen. Unsere Arbeit zeigt außerdem, dass der primäre Ort der intrazellulären und vorzeitigen Proteasen-Aktivierung alleinig im sekretorischen Kompartiment stattfindet und nicht von einer Fusion mit dem lysosomalen Kompartiment abhängig ist.
Die Hälfte der globalen Primarproduktion wird in den Ozeanen realisiert und dabei wird ein großer Anteil des fixierten CO2 genutzt, um Algenpolysaccharide zu synthetisieren. Diese Kohlenhydrate dienen als wichtige Kohlenstoff- und Energiequelle für marine Nahrungsnetze, wobei sie von kohlenhydrataktiven Enzymen zu monomeren Zuckern umgesetzt werden. Da bisher wenig über den enzymatischen Abbau von Algenpolysacchariden in den Ozeanen bekannt ist, war es das Ziel dieser Arbeit, zu einem tieferen Verständnis dieser Prozesse beizutragen.
O-Methylierungen stellen stabile Modifikationen an Zuckern in marinen und terrestrischen Polysacchariden dar. Es wurde in Artikel I gezeigt, dass Cytochrom P450 Monooxygenasen eine wichtige Funktion in enzymatischen Abbausystemen aus marinen Bakterien für Agar haben, wobei diese Enzyme die oxidative Demethylierung von 6-O-Methyl-D-galaktose, einem Monomer aus Rotalgenpolysacchariden, katalysieren. Diese Ergebnisse zeigen, dass es sich bei der P450-Subfamilie CYP236A um die zweite beschriebene Gruppe von kohlenhydrataktiven Monooxygenasen handelt. Die charakterisierten P450s sind hochspezifisch für 6-O-Methyl-D-galaktose und akzeptieren keine typischen P450-Substrate. Um die molekularen Faktoren für den spezifischen Umsatz dieses polaren Substrates aufzuklären, wurde Proteinkristallografie genutzt (Artikel II). Die Kristallstruktur der P450 Monooxygenase aus Z. galactanivorans mit gebundenem Substratmolekül zeigt, dass sowohl Wasserstoffbrückenbindungen als auch hydrophobe Interaktionen an der Substraterkennung beteiligt sind, was zusätzlich durch ITC sowie Mutationsstudien bestätigt wurde.
Schnellwachsende Grünalgen der Gattung Ulva führen weltweit zu gefährlichen Algenblüten. Ein Hauptbestandteil der gebildeten Biomasse stellt das anionische Polysaccharid Ulvan dar. Bisher war der enzymatische Ulvanabbau kaum verstanden, was die sinnvolle Nutzung von Ulva-Biomasse erschwerte. Die detaillierte biochemische Charakterisierung einer Ulvanlyase auf F. agariphila wird in Artikel III gezeigt. Dieses Enzym katalysiert den ersten Schritt im Ulvanabbau und die biochemischen Parameter stimmen mit den Umweltbedingungen in Küstenbereichen des gemäßigten Ozeans überein, dem Habitat, aus dem dieses Bakterium isoliert wurde. Alle nachfolgenden Schritte im kompletten enzymatischen Ulvanabbau wurden aufgeklärt und sind in Artikel IV zum ersten Mal beschrieben. Insgesamt 13 Enzyme aus den Klassen der Polysaccharidlyasen, Glykosidhydrolasen sowie Sulfatasen agieren in einer komplexen Kaskade zusammen, um schlussendlich monomere Zucker aus Ulvan bereitzustellen.
Die gezeigten Identifizierungen und Charakterisierungen von neuen kohlenhydrataktiven Enzymen tragen nicht nur zu einem besseren Verständnis der Vorgänge im marinen Kohlenstoffkreislauf bei, sondern bilden zudem die Grundlage für zukünftige biotechnologische Prozesse. Eine effiziente enzymatische Depolymerisation der Algenpolysaccharide ist nötig, um Bioraffineriekonzepte basierend auf Algenkohlenhydraten zu realisieren. Dabei können über mikrobielle Fermentation Biokraftstoffe der zweiten Generation oder andere nützliche Produkte hergestellt werden.
β-chirale Amine, wie zum Beispiel Pregabalin und Baclofen, sind Verbindungen von großem Interesse insbesondere für die pharmazeutische Industrie. Biokatalytische Herstellungsverfahren, vor allem Aminierungsreaktionen, sind bisher nur geringfügig untersucht worden und werden nach aktuellem Wissenstand bis auf die Synthese von Niraparib noch nicht in großtechnischem Maßstab eingesetzt. Wünschenswert ist die Etablierung einer Synthese, welche (S)-Pregabalin bzw. (R)-Baclofen in hohen Ausbeuten liefert, da diese beiden Enantiomere jeweils die höhere biologische Wirksamkeit aufweisen.
Ziel dieser Arbeit war die Synthese von Pregabalin und Baclofen als Modellverbindungen für β-chirale Amine mit Hilfe einer selektiven Amintransaminase oder Amindehydrogenase.
Zunächst wurde erfolgreich mit Hilfe der Gaschromatographie bzw. HPLC jeweils eine chirale Analytik für die beiden Reaktionsprodukte sowie die Baclofen-Derivate etabliert, die stabil reproduzierbar und auch zur Quantifizierung geeignet war. Auch für 3-(4-Chlorphenyl)-4-oxo-buttersäure-t-butylester konnte eine GC-Methode entwickelt werden, die Aufschluss über die Konzentration und den Enantiomerenüberschuss gab.
Die vier zur Verfügung gestellten Amindehydrogenasen konnten erfolgreich exprimiert und mittels IMAC-Methode gereinigt werden. Trotz geringer Aktivitäten in einem photometrischen NADH-Assay konnte jedoch keine Produktbildung nachgewiesen werden. Eine Kollektion von ca. 150 Amintransaminasen wurde bezüglich der Desaminierung von Pregabalin und Baclofen mittels Dünnschichtchromatographie untersucht. In Richtung der Aminierung wurde ein photometrischer Acetophenon-Assay verwendet. Dabei wurden für Pregabalin sechs und für Baclofen 17 potenzielle Kandidaten ermittelt. Besonders vielversprechend war die Variante 3FCR 59W 87L 231A 382M 429A (3FCR_5M), welche 3-(4-Chlorphenyl)-4-oxo-buttersäure-t-butylester als Substrat akzeptierte. Nach der Ermittlung eines geeigneten Aminodonors und Optimierung der Reaktionsbedingungen konnten Umsätze bis zu 90% bei 99%ee (R) mit IMAC-gereinigter 3FCR_5M erzielt werden.
Um Kosten für ein späteres großtechnisches Verfahren einzusparen, sollte die Reaktion ebenfalls für den Einsatz von Zellextrakt optimiert werden. Dabei wurde beobachtet, dass geringere Enantiomerenüberschüsse erzielt wurden als mit dem gereinigten Enzym und der Substratverbrauch höher als die Produktbildung war. Als mögliche Ursachen wurden der Umsatz des Substrats durch ein E. coli eigenes Enzym, beispielsweise eine Aldehydreduktase oder Aldehyddehydrogenase, sowie eine Beeinflussung der Enantioselektivität durch die veränderte chemische Umgebung oder den selektiven Entzug des gewünschten Substrat-Enantiomers durch eine selektive Nebenreaktion hypothetisiert. Dieses Phänomen konnte durch eine vorgeschaltete Reinigung mittels fraktionierender Ammoniumsulfat-Fällung jedoch erfolgreich umgangen werden. Mit dieser Methode konnten vergleichbar hohe Umsätze und Enantiomerenüberschüsse wie mit dem IMAC-gereinigten Enzym erreicht werden.
Bei ersten Vorversuchen zum Up-Scaling der Reaktion wurde festgestellt, dass eine höhere Substratkonzentration nicht einen proportional höheren Umsatz zur Folge hatte, jedoch konnte der Umsatz durch eine versetzte Zugabe der Enzymlösung gesteigert werden, sodass ein Prozess mit diesem Biokatalysator in seiner aktuellen Form eine kontinuierliche Zugabe erfordern würde. Praktikabel wäre einer Verminderung der Substrat-Inhibierung und Erhöhung der Enzymstabilität durch weiteres Protein-Engineering. Auch zur Produktion von 3FCR_5M im größeren Maßstab wurden Experimente vorgenommen. Dabei konnte gezeigt werden, dass eine vielversprechende Expression im Bioreaktor bei einer kontinuierlichen Temperatur von 30°C und einer Expressionsdauer von sieben Stunden. Nach einigen Optimierungsschritten konnte im Bioreaktor die zwanzigfache volumetrische Aktivität im Vergleich zur Expression im Schüttelkolben erzeugt werden.
Zusammenfassend ist zu sagen, dass in der vorliegenden Arbeit, trotz weiterem Optimierungsbedarf, eine sehr gute Grundlage für die Transaminase-vermittelte Synthese von (R)-Baclofen geschaffen wurde. In zukünftigen Arbeiten sollte die Optimierung der Reaktion in großem Maßstab im Fokus stehen.
Amine transaminases are versatile biocatalysts for the production of pharmaceutically and agrochemically relevant chiral amines. They represent an environmentally benign alternative to waste intensive transition metal catalysed synthesis strategies, especially because of their high stereoselectivity and robustness. Therefore, they have been frequently used in the (chemo)enzymatic synthesis of amines and/or became attractive targets for enzyme engineering especially in the last decade, mainly in order to enlarge their substrate scope. Certainly, one of the most notable examples of amine transaminase engineering is the
manufacturing of the anti-diabetic drug Sitagliptin in large scale after several rounds of protein engineering. Thereby, the target amine was produced in asymmetric synthesis mode which is the most convenient and favored route to a target chiral amine, starting from the corresponding ketone. The choice of the amine donor is highly relevant for reaction design in terms of economical and thermodynamic considerations. For instance, the use of alanine as the natural amine donor is one of the most common strategies for the amination of target ketones but needs the involvement of auxiliary enzymes to shift the reaction equilibrium towards product formation. In fact, isopropylamine is probably one of the most favored donor molecules since it is cheap and achiral but it is supposed to be accepted only by a limited number of amine transaminases.
This thesis focusses on the optimization and application of amine transaminases for asymmetric synthesis reactions en route to novel target chiral amines using isopropylamine as the preferred amine donor.
The present work is a cumulative dissertation that covers the research work of the author at the Department of Analytical and Physical Chemistry of Chelyabinsk State University. It contains a short description of the study and a set of attached publications in peer-reviewed journals and conference proceedings.
The phase and chemical equilibria in binary systems Me – Si
(where Me is the 4th-period transition metal) as well as Mo – Si, Mn – Ge and Fe – Ge at low temperatures were considered. The solid solubility of silicon in vanadium, chromium, manganese, iron, nickel, cobalt and copper and that of germanium in manganese and iron was estimated.
The phase equilibria in Me – Si – O, Mo – Si – O, Mn – Ge – O and Fe – Ge – O ternary systems at standard conditions were considered from a thermodynamic viewpoint. The atmospheric corrosion of transition metals silicides and manganese and iron germanides was discussed.
The chemical and electrochemical equilibria in Me – Si – H2O, Mo – Si – H2O, Mn – Ge – H2O and Fe – Ge – H2O systems were considered from a thermodynamic viewpoint. Pourbaix diagrams for some 4th-period transition metals and molybdenum, as well as for silicon, were revised. The potential – pH diagrams for Me – Si – H2O, Mo – Si – H2O, Mn – Ge – H2O and Fe – Ge – H2O systems were plotted in the first time. The corrosion-electrochemical behaviour of transition metals silicides and manganese and iron germanides in aqueous media was discussed.
The potential – pH diagrams for some siliceous brasses and bronzes (which are multicomponent alloys containing both transition metals and silicon) were plotted, and the corrosion of these alloys in aqueous media was discussed.
Method of estimation of corrosion-electrochemical behaviour of multicomponent alloys, which takes into account both thermodynamic and kinetic data and is based on mutual construction of equilibrium and polarisation potential – pH diagrams, was described. Its usage was illustrated in the example of the structural steel 20KT.
Unter Verwendung von rekombinanten Schweineleberesterasen wurden zwei Chemoenzymatische Prozesse sukkzessive etabliert, optmiert und im Maßstab vergößert. Es wurden zwei chirale Synthesebausteine beispielhaft hergestellt und charakterisiert.
Die Arbeit gibt einen Einblick in die Prozessoptimierung von chemoenzymatischen Syntheserouten unter ökonomischen Aspekten.
In an aerobic environment the occurrence of reactive oxygen species (ROS) is a common phenomenon. The diverse roles of ROS in cellular function and in diseases make them a target of interest in many research areas. Substances capable of directly or indirectly reducing the (harmful) effects of ROS are referred to as “antioxidants”. However, the term is applied miscellaneously in the chemical and the biological context to describe different attributes of a substance. In this work the potential of an electrochemical assay to detect different ROS in-vitro was explored. The method was optimized to investigate the radical scavenging activities (antioxidant potential) of trolox and different plant compounds (ascorbic acid, caffeic acid, epigallocatechin gallate, ferulic acid, kaempferol, quercetin, rutin, and Gynostemma pentaphyllum extract) in-vitro. The obtained data was compared to established antioxidant in-vitro assays. Further, the impact of the plant substances on cellular parameters was evaluated with the electrochemical assay and established cell assays.
The optimization of the electrochemical assay allowed the reproducible detection of ROS. The sensor electrode proved differently sensitive towards individual ROS species. The highest sensitivity was recorded for hydroxyl radicals while superoxide and hydrogen peroxide had little impact on the sensor. Extracellular ROS concentrations could be detected from cell lines releasing elevated ROS into the extracellular space. The antioxidant activity of the investigated plant substances could be demonstrated with all in-vitro assays applied. However, the absolute as well as the relative activity of the individual substances varied depending on the experimental parameters of the assays (pH, radical species, phase, detection method).
The plant compounds modified redox related intracellular parameters in different cell lines. However, a direct correlation between intracellular and extracellular effects of the plant compounds could not be established.
The work demonstrates the feasibility to use the electrochemical assay to sense ROS as well as to evaluate the radical scavenging activity of molecules. The in-vitro antioxidant activities demonstrated for the individual plant substances are not reliable to predict the cellular effects of the molecules.