Refine
Year of publication
Document Type
- Doctoral Thesis (154)
- Article (73)
- Conference Proceeding (17)
Has Fulltext
- yes (244)
Is part of the Bibliography
- no (244)
Keywords
- - (83)
- Plasma (24)
- Plasmaphysik (24)
- Plasmadiagnostik (14)
- Stellarator (12)
- Komplexes Plasma (7)
- Polyelektrolyt (7)
- Kernfusion (6)
- Wendelstein 7-X (6)
- dusty plasma (6)
- Atmosphärendruckplasma (5)
- Cluster (5)
- Hochfrequenzplasma (5)
- Massenspektrometrie (5)
- barrier discharge (5)
- Adsorption (4)
- Barrierenentladung (4)
- Diffusion (4)
- Divertor (4)
- Fusionsplasma (4)
- Ionenfalle (4)
- Magnetron (4)
- Metallcluster (4)
- Modellierung (4)
- Niedertemperaturplasma (4)
- Plasma-Wand-Wechselwirkung (4)
- Plasmachemie (4)
- Plasmadynamik (4)
- Simulation (4)
- Spektroskopie (4)
- Turbulenz (4)
- magnetron sputtering (4)
- plasma (4)
- stellarator (4)
- surface charge (4)
- 52.70.Ds (3)
- Absorptionsspektroskopie (3)
- Clusterion (3)
- Dissertation (3)
- Ellipsometrie (3)
- Emissionsspektroskopie (3)
- FT-IR-Spektroskopie (3)
- Festkörperphysik (3)
- Fusion (3)
- Gasentladung (3)
- Glimmentladung (3)
- Laser (3)
- Laserinduzierte Fluoreszenz (3)
- Laserspektroskopie (3)
- Leuchtstofflampe (3)
- Penning trap (3)
- Penningfalle (3)
- Physik (3)
- Plasmamedizin (3)
- Plasmarandschicht (3)
- Polyanion (3)
- Polymere (3)
- Quantenoptik (3)
- Selbstorganisation (3)
- Tokamak (3)
- laser spectroscopy (3)
- mass separation (3)
- negative ions (3)
- oxygen (3)
- plasma diagnostics (3)
- turbulence (3)
- 3D (2)
- Abstimmbarer Laser (2)
- Alfvén-Welle (2)
- Aluminium (2)
- Anion (2)
- Atmosphärendruck (2)
- Beschichten (2)
- Beschichtung (2)
- Brennfleck (2)
- Cardiolipin (2)
- Clusterphysik (2)
- Computerphysik (2)
- Driftwelle (2)
- Dynamik (2)
- Emission (2)
- FTIR spectroscopy (2)
- Festkörper (2)
- Floquet (2)
- Flugzeitmassenspektrometrie (2)
- Flugzeitspektrometrie (2)
- Fragmentation (2)
- Fullerene (2)
- Fusionsreaktor (2)
- Graphen (2)
- Heißes Plasma (2)
- Helium (2)
- HiPIMS (2)
- Impurities (2)
- Infrarotspektroskopie (2)
- Instabilität (2)
- Kaltes Plasma (2)
- Kathode (2)
- Kernphysik (2)
- Lipide (2)
- Low Temperature Plasma (2)
- MR-ToF MS (2)
- MR-ToF device (2)
- Magnetfeld (2)
- Magnetische Rekonnexion (2)
- Magnetohydrodynamik (2)
- Monoschicht (2)
- Monte-Carlo-Simulation (2)
- Multi-reflection time-of-flight mass spectrometry (2)
- Nanopartikel (2)
- Neutronenbeugung (2)
- Optisches Messgerät (2)
- Optomechanik (2)
- Oxidation (2)
- Plasma Physics (2)
- Plasma physics (2)
- RNS (2)
- ROS (2)
- Rasterkraftmikroskopie (2)
- Reflektometrie (2)
- Rekonstruktion (2)
- Röntgenreflektometrie (2)
- Sauerstoff (2)
- Sekundärelektronen (2)
- Stereoskopie (2)
- Stickstoff (2)
- Theoretische Physik (2)
- W7-AS (2)
- W7-X (2)
- Weiche Materie (2)
- X-ray diffraction (2)
- Xenon (2)
- atmospheric pressure (2)
- atomic clusters (2)
- cold physical plasma (2)
- complex plasma (2)
- dusty plasmas (2)
- electrode (2)
- electron–hole plasma (2)
- erosion (2)
- gap voltage (2)
- guided streamer (2)
- inductively coupled plasma (2)
- ion mass spectrometry (2)
- ionosphere (2)
- laser photodetachment (2)
- laser-induced fluorescence (2)
- low temperature plasma (2)
- magnetic fields (2)
- mapping (2)
- memory effect (2)
- microwave interferometry (2)
- mode transition (2)
- multi-reflection time-of-flight mass spectrometry (2)
- numerical simulation (2)
- plasma chemistry (2)
- plasma medicine (2)
- polyanion (2)
- polyelectrolyte multilayer (2)
- polyelectrolytes (2)
- pre-ionization (2)
- reconstruction (2)
- solar EUV (2)
- stereoscopy (2)
- surface charges (2)
- tokamak (2)
- topologische Isolatoren (2)
- 4D flow MRI (1)
- 52.27.Lw (1)
- 52.50.Dg (1)
- 52.65.-y (1)
- 52.75.Hn (1)
- 52.80.Hc (1)
- 7755384-6 (1)
- 89.75.Fb (1)
- AFM (1)
- AFM-Kraft-Abstandskurven (1)
- AOM (1)
- ARPES (1)
- ASDEX (1)
- ASDEX Upgrade (1)
- Ab-initio-Rechnung (1)
- Abregung (1)
- Absorption Spectroscopy (1)
- Aktivität <Konzentration> (1)
- Alfven (1)
- Alfvén Waves (1)
- Algorithm (1)
- Algorithmen (1)
- Algorithmus (1)
- Aluminium Cluster (1)
- Aluminium cluster (1)
- Aminogruppe (1)
- Aminogruppen (1)
- Anode (1)
- Antikoagulans (1)
- Antrieb (1)
- Argon metastables (1)
- Artificial nerual networks (1)
- Astrophysik (1)
- Atmospheric pressure plasma (1)
- Atmosphärendruckentladung (1)
- Atomabsorptionsspektroskopie (1)
- Atomemissionsspektroskopie (1)
- Atomgewicht (1)
- Atomspektrum (1)
- Auftrittsgröße (1)
- BAM (1)
- Barium (1)
- Bayes'sche Datenanalyse (1)
- Bayes-Verfahren (1)
- Bayesian Data Analysis (1)
- Beam (1)
- Biasing (1)
- Binäres Gemisch (1)
- Biomembran (1)
- Biomolecules (1)
- Blei (1)
- Bogenentladung (1)
- Boltzmann equation (1)
- Bootstrap current (1)
- Bose-Einstein Kondensation (1)
- Bose-Einstein condensation (1)
- Bose-Einstein-Kondensation (1)
- Brennstoffzelle (1)
- Brewster angle microscopy (1)
- Bündelbildung (1)
- Bürstenpolymere (1)
- CD Spektroskopie (1)
- Cadmium (1)
- Cavity Enhanced Absorption Spectroscopy (1)
- Cavity Ring-Down Spectroscopy (1)
- Cavity-Enhanced-Absorptionsspektroskopie (1)
- Cavity-Ring-Down-Spektroskopie (1)
- Cluster beam (1)
- Cluster charge (1)
- Cluster flow (1)
- Cluster formation (1)
- Coil Optimization (1)
- Collisions (1)
- Colloidal Probe Technique (1)
- Complex plasma (1)
- Computersimulation (1)
- Connection length (1)
- Correlation Analysis (1)
- DBD (1)
- DIT (1)
- DNA (1)
- De-Excitation (1)
- Dense Plasmas (1)
- Density (1)
- Destabilisierung (1)
- Detachment (1)
- Diagnostik (1)
- Diamant (1)
- Dichte Plasmen (1)
- Dichtematrix (1)
- Dielectric Barrier Discharge (1)
- Dielektrische Entladung (1)
- Digital ion trap (1)
- Diodenlaser mit externem Resonator (1)
- Dirac-cone physics (1)
- Direct Force Measurement (1)
- Dispersionsrelation (1)
- Dissipation (1)
- Doppler cooling (1)
- Drift-Diffusions-Modell (1)
- Driftwellen (1)
- Duennschichten (1)
- Durchbruch (1)
- Dusty Plasma (1)
- Dusty plasma (1)
- Dämpfung (1)
- Dünne Filme (1)
- Dünne Schicht (1)
- Dünne Schichten (1)
- Dünnes Plasma (1)
- ECDL (1)
- ECRH (1)
- EEDF (1)
- EEVF (1)
- EPR (1)
- Edelgas (1)
- Effluent (1)
- Einmodenlaser (1)
- Eisen-Polypyrrol (1)
- Elastizität (1)
- Electric Propulsion (1)
- Elektrische Polarisation (1)
- Elektrischer Strom / Messung (1)
- Elektrode (1)
- Elektron (1)
- Elektronegative Plasmen / negative Ionen (1)
- Elektronenbad (1)
- Elektronendichte (1)
- Elektronenemission (1)
- Elektronenkinetik (1)
- Elektronenparamagnetische Resonanz (1)
- Elektronenstreuung (1)
- Emission Spectroscopy (1)
- Emissionsentwicklung (1)
- Emitter (1)
- Empfindlichkeit (1)
- Energiereiches Teilchen (1)
- Erosion (1)
- Escape factor (1)
- Ethylenglykol (1)
- ExB-Drift (1)
- ExB-drift (1)
- Expansion (1)
- Exziton (1)
- FCT-Verfahren (1)
- FT-ICR-Spektroskopie (1)
- FTIR (1)
- FTIR-Spektrometrie (1)
- Far (1)
- Fast Particles (1)
- FeSe (1)
- Feldlinienverschmelzung (1)
- Fernerkundung (1)
- Finite Systeme (1)
- Fluid-Modellierung (1)
- Fluktuationen (1)
- Fluoreszenz (1)
- Fluorkohlenstoffhaltigen Plasmen (1)
- Fluorocarbon Plasmas (1)
- Flüssigkeiten (1)
- Fusion , Plasma , Plasmaphysik (1)
- Fusion plasma (1)
- Fusion plasmas (1)
- GID (1)
- GPU computing (1)
- GaAs sputtering (1)
- Gallium (1)
- Gallium-Oxide (1)
- Galliumoxid (1)
- Gas Cell (1)
- Gasaufzehrung (1)
- Gaselektronik (1)
- Gasphasenabscheidung (1)
- Gastemperatur (1)
- Gaszelle (1)
- Glimmentladungsspektroskopie (1)
- Graphene (1)
- Green-Funktion (1)
- Group (1)
- Guided Streamer (1)
- Gyro-kinetic Theory (1)
- Gyrokinetik (1)
- Hamburg / Deutsches Elektronen-Synchrotron (1)
- Heat flux (1)
- Heat load (1)
- Heat-flux (1)
- Heparin (1)
- Heterostrukturen (1)
- High-Temperature (1)
- Hoch Performanz (1)
- Hochfrequenzentladung (1)
- Hochfrequenzplasma / Plasmadynamik / Interferometrie / Photodetachment / Sauerstoff Plasma (1)
- Hot plasma (1)
- Hy (1)
- Hybrid-Verfahren (1)
- Hybridisierungstheorie (1)
- Hydrogen peroxide (1)
- Hydroperoxyl (1)
- IR-TDLAS (1)
- ISOLDE/CERN (1)
- ISOLTRAP (1)
- Impulsübertragung (1)
- Infrarot (1)
- Infrarotabsorption (1)
- Innere Energie (1)
- Instrumentation for FEL (1)
- Instrumentation for radioactive beams (fragmentation devices, fragment and isotope, separators incl. ISOL, isobar separators, ion and atom traps, weak-beam diagnostics, radioactive-beam ion sources) (1)
- Intermittenz (1)
- Interpenetrierendes polymeres Netzwerk (1)
- Ion Thruster (1)
- Ion thrusters (1)
- Ion traps (1)
- Ionenbeschuss (1)
- Ionendichte (1)
- Ionenfallen (1)
- Ionenimplantation (1)
- Ionenstrahlfalle (1)
- Ionentriebwerk (1)
- Ionthruster (1)
- Isothermal Titration Calorimetry (1)
- Jet (1)
- Kalorimetrie (1)
- Katalysator (1)
- Kernmassenmessungen (1)
- Kernstruktur (1)
- Kinetic Transport Theory (1)
- Kinetic simulation (1)
- Kinetische Gastheorie (1)
- Kinetische Theorie (1)
- Kinetische Transporttheorie (1)
- Kobalt-Polypyrrol (1)
- Kondo effect (1)
- Konformation (1)
- Kontaktmodell (1)
- Kontraktion (1)
- Kontrolle (1)
- Korrespondenzprinzip (1)
- Kraftmikroskopie (1)
- Kreuzkorrelationsspektroskopie (1)
- Kupfer-Release (1)
- Kupfer-T (1)
- Kupferoxid <Kupfer(I)oxid> (1)
- Kupferoxid <Kupfer(II)-oxid> (1)
- Künstliche Intelligenz (1)
- LE/LC phase transition (1)
- Laboratory experiment (1)
- Laborexperiment (1)
- Ladungsdichtewelle (1)
- Ladungstransfer (1)
- Lamellare Phase (1)
- Langmuir Monolayers (1)
- Langmuir probe (1)
- Langmuir probe diagnostics (1)
- Langmuir-Blodgett and Schaefer techniques (1)
- Langmuir-Sonde (1)
- Laser spectroscopy (1)
- Laser-Cluster-Wechselwirkung (1)
- Laser-cluster interaction (1)
- Laser-induced fluoresence (LIF) (1)
- Laserdiod (1)
- Laserdurchstimmung (1)
- Laserheizung (1)
- Laterale Selbststrukturierung, Polyelektrolyt, Multischicht (1)
- Least-squares method (1)
- Leuchtwerbung (1)
- Lichtstreuung (1)
- Linienprofilfunktion (1)
- Lokale-Feld-Näherung (1)
- Lokale-Mittlere-Energie-Näherung (1)
- Low temperature plasma (1)
- Luftleuchten (1)
- L–H transition (1)
- MG-63 (1)
- MG-63 Zellen (1)
- MG-63 cells (1)
- MIR-Spektroskopie (1)
- Machine learning (1)
- Madden-Julian Oscillation (1)
- Magnetfelddiagnostik (1)
- Magnetic Confinement (1)
- Magnetic edge properties (1)
- Magnetic field diagnostics (1)
- Magnetic fields (1)
- Magnetic reconnection (1)
- Magnetische Rekonnektion (1)
- Magnetischer Einschluss (1)
- Magnetischer Sensor (1)
- Magnetismus (1)
- Magnetized (1)
- Magnetron sputtering (1)
- Mass Specrtometry (1)
- Mass spectrometers (1)
- Mass spectrometry (1)
- Massenspektroskopie (1)
- Master-Gleichung (1)
- Mathematische Modellierung (1)
- Matrix (1)
- Mechanik (1)
- Mehrfach negativ geladene (1)
- Mehrschichtsystem (1)
- Metall-Isolator-Phasenumwandlung (1)
- Metall-Polymer Verbindungen (1)
- Metalle (1)
- Microwave interferometry / Electron density / Laserphotodetachment (1)
- Mid-IR absorption spectroscopy (1)
- Mie-Theorie (1)
- Mikrofluidik , Mechanik , Zelle , Holographie , Hologramm , Deformation , Biomedizin , Bluttransfusion , Cytometrie , Viskoelastizität (1)
- Mikroplasma (1)
- Mikrowelleninterferometer (1)
- Mikrowellenplasma (1)
- Mineral (1)
- Model Membranes (1)
- Modell (1)
- Modellbildung (1)
- Moden (1)
- Modendynamik (1)
- Modenübergang (1)
- Molecular Kinetics (1)
- Molekulardynamik (1)
- Molekülkinetik (1)
- Multireflexionsflugzeitmassenspektrometrie (1)
- Multischicht (1)
- Multiterm (1)
- N incorporation (1)
- NBI (1)
- NEXT (1)
- NIR-Spektroskopie (1)
- Nachstellungsszenarien (1)
- Nachtluftleuchten (1)
- Nanocluster (1)
- Nanokompositschichten (1)
- Nanoparticles (1)
- Nanoplasmamodell (1)
- Negative ion (1)
- Neoclassical transport (1)
- Neutral Beam Injection (1)
- Neutralisation (1)
- Neutralization (1)
- Neutrino (1)
- Neutronenreflektometrie (1)
- Neutronenschalenabschluss (1)
- Neutronenstern (1)
- Nichtgleichgewicht (1)
- Nichtisothermisches Plasma (1)
- Nichtlineare Dynamik (1)
- Niederdruckentladung (1)
- Niederdruckplasma (1)
- Niedertemperatur-Plasma (1)
- Nuclear Physics (1)
- Nuclear fusion (1)
- Nukleosynthese (1)
- OLR-based MJO Index (1)
- OMI (1)
- Oberfläche (1)
- Oberflächenkräfte (1)
- Oberflächenladung (1)
- Oberflächenladungen (1)
- Oberflächenmodifizierung (1)
- Oberflächenstöße (1)
- Operante Konditionierung (1)
- P3M (1)
- PDADMA (1)
- PECVD (1)
- PECVD-Verfahren (1)
- PEI,PDADMA,PSS,surface forces,atomic force microscopy, colloidal probe (1)
- PIC (1)
- PSS (1)
- PVD (1)
- PWV (1)
- Parallelstrom (1)
- Particle flux (1)
- Particle in Cell Simulation (1)
- Particle-in-Cell (1)
- Particle-in-cell (1)
- Paul-Falle (1)
- Penning-Falle (1)
- Permeationsbarriere (1)
- Phase transitions (1)
- Phasenübergänge (1)
- Phaseresolved Diagnostic (1)
- Phospholipide (1)
- Phospholipids (1)
- Photoströme (1)
- Plasma , Plasmaphysik , Laser , Fluoreszenz , Interferometer , Wakefield , CERN , Kielfeld-Beschleuniger , Teilchenbeschleuniger , Laserinduzierte Fluoreszenz (1)
- Plasma , Plasmaphysik , Tokamak , Stellarator , Magnetohydrodynamik , Kinetische Theorie , Simulation , Alfvén-Welle , Energiereiches Teilchen (1)
- Plasma / Turbulenz (1)
- Plasma Chemistry (1)
- Plasma Instability (1)
- Plasma Modeling (1)
- Plasma Surface Interaction (1)
- Plasma diagnostics (1)
- Plasma diagnostics techniques and instrumentation (1)
- Plasma dynamics (1)
- Plasma medicine (1)
- Plasma surface interaction (1)
- Plasma-Flüssigkeits-Wechselwirkung (1)
- Plasma-Immersions-Implantation (1)
- Plasma-Oberflächen-Wechselwirkung (1)
- Plasma-wall interaction (1)
- Plasmainstabilität (1)
- Plasmajet (1)
- Plasmanitrieren (1)
- Plasmaschwingung (1)
- Plasmasimulation (1)
- Plasmasonde (1)
- Plasmaspektroskopie (1)
- Plasmastrom (1)
- Plasmatheorie (1)
- Plasmatransport (1)
- Plasmawelle (1)
- Plasmonik (1)
- Pockels-Effekt (1)
- Pockels-effect (1)
- Polarisation (1)
- Polaron (1)
- Polyanions (1)
- Polydimethylsiloxan (1)
- Polyelektrolytbürste (1)
- Polyethylenglykole (1)
- Polyethylenimin (1)
- Polymer (1)
- Polystyrolsulfonate (1)
- Potenzialhyperfläche (1)
- Power decay (1)
- Proteine (1)
- Präzisionsmassenmessung (1)
- Python (1)
- QCLAS (1)
- Quadrupole mass filter (1)
- Quantendot (1)
- Quantenkaskadenlaser (1)
- Quantenmechanik (1)
- Quantenphasenübergang (1)
- Quantenpunkt (1)
- Quantentheorie (1)
- Quantum Cascade Laser (1)
- Quecksilber (1)
- RF Plasma (1)
- RF mass Spectrometry (1)
- RF-Entladung (1)
- ROS, cell and mitochondria mechanics (1)
- Radial axis shift (1)
- Radialverteilung (1)
- Radikal (1)
- Radiofrequenz (1)
- Radionuklide (1)
- Rasterkraftmikroskop (1)
- Reaktionsdynamik (1)
- Reaktive Sauerstoffspezies (1)
- Reaktives Sputtern (1)
- Reflektometer (1)
- Reinforcement learning (1)
- Relativistische Quantenmechanik (1)
- Relaxationskinetik (1)
- Renormalization (1)
- Robust (1)
- Rohstoffgewinnung (1)
- Rotational transform (1)
- Rydberg excitons (1)
- Röntgen-Photoelektronens (1)
- Röntgenbeugung (1)
- Röntgendiffraktion (1)
- Röntgenreflektivität (1)
- S/XB coefficient (1)
- Schadstoffabbau (1)
- Schalenabschluss (1)
- Schaumflotation (1)
- Schlieren (1)
- Schnelles Teilchen (1)
- Schnittstelle (1)
- Schutzschicht (1)
- Schwerelosigkeit (1)
- Scrape-off layer width (1)
- Scraper (1)
- Secondary Electrons (1)
- Seebeck effect (1)
- Self-absorption (1)
- Self-patterning, polyelectrolyte, multilayers (1)
- Sheath transmission coefficient (1)
- Silber (1)
- Simulationsexperiment (1)
- Spectroscopy (1)
- Spin Trap (1)
- Spin Trapping (1)
- Spintronik (1)
- Spot (1)
- Sputterdeposition (1)
- Sputtering (1)
- Sputtern (1)
- Stark gekoppelte Systeme (1)
- Startverhalten (1)
- Staub (1)
- Staubdichtewelle (1)
- Staubige Plasmen (1)
- Staubiges Plasma (1)
- Stickstoff-Sauerstoff-Gemisch (1)
- Stickstoffgruppe (1)
- Stochstic Programming (1)
- Stoffwandlung (1)
- Stoß (1)
- Streutheorie (1)
- Strikeline (1)
- Strukturbildung (1)
- Sulfide (1)
- Supervised learning (1)
- Surface Collisions (1)
- Symmetrie (1)
- TDLAS (1)
- THz (1)
- TMCL (1)
- TOF (1)
- Teflon (1)
- Temperatur (1)
- Theoretical Physics (1)
- Thermografie (1)
- Thin films (1)
- Thrombozytopenie (1)
- Ti-Cu-N coating (1)
- Time-of-flight mass spectrometry (1)
- Titan Tholins (1)
- Titan-Tholine (1)
- Titanaluminide (1)
- Titanatom (1)
- Titandioxid (1)
- Titanlegierung (1)
- Titannitrid (1)
- Tomographie (1)
- Topologischer Isolator (1)
- Tracer particles (1)
- Tracerpartikel (1)
- Transmission electron microscopy (1)
- Transport (1)
- Transporttheorie (1)
- Turbulente Strömung (1)
- UV-VIS-Spektroskopie (1)
- VUV-Strahlung (1)
- Velocity distribution (1)
- Verdampfung (1)
- Verlustprozess (1)
- Verschränkung (1)
- Verunreinigungstransport (1)
- Vielteilchensystem (1)
- Vielteilchentheorie (1)
- Vorionisation (1)
- WSS (1)
- Wand-Abregung-Wahrscheinlichkeit (1)
- Waves (1)
- Wellen (1)
- Wellenmagnetfeld (1)
- Wellenwechselwirkung (1)
- Wendelstein (1)
- Wendelstein 7-x (1)
- Whistlerwelle (1)
- Widerstand <Elektrotechnik> (1)
- Wolfram (1)
- Wärmeschutz (1)
- X-ray photoelectron spectroscopy (1)
- X-ray reflectivity (1)
- Zeeman and Stark effects (1)
- Zeeman- und Stark-Effekte (1)
- Zeitaufgelöste Diagnostik (1)
- Zelle (1)
- Zellmechanik (1)
- Zitterbewegung (1)
- absorption spectroscopy (1)
- actin cytoskeleton (1)
- actin quantification (1)
- adsorption (1)
- airglow (1)
- akusto-optischer Effekt (1)
- alumina (1)
- amino polymer (1)
- aminogroups (1)
- anomal transport (1)
- anomaler Transport (1)
- anti-adhesive surface (1)
- antimatter plasma (1)
- aortic arch (1)
- appearance size (1)
- atherosclerosis (1)
- atmosphere (1)
- atmospheric pressure discharge (1)
- atmospheric pressure plasma (1)
- atomic force microscopy (1)
- atomic level scheme (1)
- atomic masses of cesium isotopes (1)
- atomic spectra (1)
- barrier corona (BC) (1)
- binary mixture (1)
- bipolar pulse (1)
- borosilicate (1)
- bundle formation (1)
- calcium ion signaling (1)
- cathode (1)
- cathodes (1)
- cavity QED (1)
- cavity ring-down (1)
- cell adhesion (1)
- cell mechanics (1)
- cell membrane (1)
- cell spreading (1)
- cell-material interaction (1)
- charge measurement (1)
- charge-density-wave (1)
- climate (1)
- closed neutron shell (1)
- cobalt-polypyrrole (1)
- cold atmospheric pressure plasmajet (1)
- combination therapy (1)
- complex plasmas (1)
- computer vision (1)
- conductive (1)
- consistent (1)
- contact model (1)
- continuously tuning (1)
- control (1)
- copper nitride (1)
- copper release (1)
- correlation analysis (1)
- coupled phonon-plasmon modes (1)
- cross-correlation spectroscopy (1)
- crystal structure (1)
- cylindrical wave (1)
- data-mining (1)
- density limit (1)
- deposition (1)
- diagnostics (1)
- dice lattice (1)
- dielectric barrier discharge (1)
- dielectric barrier discharge (DBD) (1)
- dielectric response (1)
- dielektrisch behinderte Entladung (1)
- diffusion within multilayers (1)
- dipole magnetic field (1)
- discharge evolution (1)
- discharge mode transition (1)
- divertor (1)
- drift waves (1)
- dust (1)
- dust charge (1)
- dust-density waves (1)
- edelmetallfreie Katalysatoren (1)
- electric field (1)
- electric propulsion (1)
- electrochemistry (1)
- electron bath (1)
- electron cyclotron emission (1)
- electron emission (1)
- electron energy loss spectroscopy (1)
- electron kinetics (1)
- electronegativity (1)
- electronic structure (1)
- electron–positron plasma (1)
- ellipsometry (1)
- energetic ion (1)
- energy-resolved ion mass spectrometry (1)
- entanglement (1)
- entropy (1)
- evaporation (1)
- external cavity diode laser (1)
- fast optical and electrical diagnostics (1)
- fdtd (1)
- finite difference in time domain (1)
- finite systems (1)
- flow dynamics (1)
- fluctuations (1)
- fluid modelling (1)
- fluid simulation (1)
- fluorescence (1)
- fluorescent lamp (1)
- fluorescent lamps (1)
- flüssig (1)
- food quality (1)
- forcing (1)
- froth flotation (1)
- ftir spectroscopy (1)
- full-wave (1)
- gas cell (1)
- gas consumption (1)
- gepulster Betrieb (1)
- glow-like discharge (1)
- glow-to-arc transition (1)
- gyrokinetic (1)
- gyrokinetics (1)
- gyrokinetisch (1)
- heavy actinides (1)
- helicon, fluorescence, accelerator (1)
- helium barrier discharge (1)
- helium–oxygen barrier discharge (1)
- high performance (1)
- high spatial resolution (1)
- hollow cathode discharge (1)
- hot spot (1)
- human osteoblasts (1)
- hybrid method (1)
- hydrogen peroxide (1)
- ignition behavior (1)
- in situ (1)
- in-situ Diagnostik (1)
- inflammatory/immunological response (1)
- infrared spectroscopy (1)
- inhomogeneous plasma (1)
- inhomogenes plasma (1)
- instabilities (1)
- intermittency (1)
- internal energy (1)
- intramuscularly implantation (1)
- intraseasonal variation (1)
- ion accelerator (1)
- ion drag (1)
- ion traps (1)
- ion-beam trap (1)
- ionenwind (1)
- ionosphere modeling (1)
- ipf-fd3d (1)
- iron based superconductors (1)
- iron-polypyrrole (1)
- isotherms (1)
- jet (1)
- kinetic modelling (1)
- konsistent (1)
- lamellar phase (1)
- laser atomic absorption (1)
- laser heating (1)
- laser photodesorption (1)
- layer-by-layer (1)
- leafy greens (1)
- leitfähig (1)
- line profile function (1)
- liquid (1)
- local-field-approximation (1)
- local-mean-energy-approximation (1)
- loss process (1)
- low-temperature plasma (1)
- low-temperature plasma polymerization (1)
- low‐temperature plasma (1)
- magic number (1)
- magische Zahlen (1)
- magnesia (1)
- magnetic characterization methods (1)
- magnetic field (1)
- magnetic materials (1)
- magnetic microscopy (1)
- magneto-hydrodynamic equilibrium (1)
- magneto-optical effects (1)
- magneto-optics (1)
- magnetron sputtering discharge (1)
- mass spectrometer (1)
- mass spectrometry (1)
- mathematical modeling (1)
- medical gas plasma technology (1)
- melamine-formaldehyde (1)
- mercury-free (1)
- metal polymer structures (1)
- metal-insulator transition (1)
- microcontact printing (1)
- microdischarge (1)
- microfluidics, cell mechanics, cells, holography, hologram, deformation, biomedicine, transfusion medicine, cytometry, viscoelasticity (1)
- microgravity research (1)
- microinstabilities (1)
- microinstabilitäten (1)
- microplasma (1)
- microwave-driven discharge (1)
- mimic scenario (1)
- mixed-valence correlations (1)
- mode dynamics (1)
- modeling (1)
- modern experimental methods (1)
- molecular ion formation (1)
- monolayer (1)
- mouse (1)
- multilayer composition (1)
- multilayers (1)
- multiterm (1)
- multiview geometry (1)
- mutlinucleon transfer (1)
- nanoparticles (1)
- nanosecond-pulsed streamer (1)
- nanowire (1)
- negative Ionen (1)
- nematicity (1)
- neoclassic (1)
- neoklassisch (1)
- networks (1)
- neural (1)
- neuron-rich calcium isotopes (1)
- neutral recycling (1)
- neutron reflectometry (1)
- neutron-rich nuclei (1)
- nicht-Hermitizität (1)
- nichtlinear (1)
- nightglow (1)
- nitrogen metastables (1)
- nitrogen-oxygen gas mixtures (1)
- non noble metal catalysts (1)
- non-Hermitian (1)
- non-equilibrium (1)
- non-thermal processing (1)
- nonlinear dynamics (1)
- nuclear mass measurements (1)
- numerische simulation (1)
- offene Quantensysteme (1)
- oncology (1)
- open quantum systems (1)
- optical diagnostics (1)
- optical emission and absorption spectroscopy (1)
- optomechanics (1)
- osteoblasts (1)
- oxidation processes (1)
- pair plasma (1)
- parallel current (1)
- paramagnetic particles (1)
- partial discharge (PD) (1)
- partial mutual information (1)
- particle (1)
- particle tracking (1)
- particle transport (1)
- particle-in-cell (1)
- patterned discharge (1)
- penning trap mass spectrometer ISOLTRAP (1)
- permeation barrier (1)
- permutation (1)
- phase resolved surface charge measurement (1)
- phase separation (1)
- phonon localization (1)
- phonon propagation (1)
- photocurrent (1)
- photodetachment spectroscopy (1)
- phototdissociation (1)
- pinch (1)
- plaque characteristics (1)
- plasma applications (1)
- plasma current (1)
- plasma diagnostic (1)
- plasma dynamics (1)
- plasma in liquids (1)
- plasma jet (1)
- plasma material processing (1)
- plasma modeling (1)
- plasma physics (1)
- plasma science and technology (1)
- plasma sheaths (1)
- plasma theory (1)
- plasma-fluorocarbon-polymer (1)
- plasma-liquid-interaction (1)
- platelet biomechanics (1)
- platelet cytoskeleton (1)
- plume (1)
- pollution control (1)
- polyelectrolyte (1)
- polymer (1)
- positive Säule (1)
- positive column (1)
- positively biased anode (1)
- positron beam (1)
- precision mass measurements (1)
- pulsed laser deposition (1)
- pulsed operation (1)
- pulsed power (1)
- pump-probe spectroscopy (1)
- quantum cascade laser (1)
- quantum corrections (1)
- quantum phase transition (1)
- quasi-two-dimensional systems (1)
- quecksilberfrei (1)
- r-Prozess (1)
- radial distribution (1)
- radiation detection (1)
- radio frequency discharge (1)
- radioactive nuclei (1)
- radionuclides (1)
- reactive oxygen and nitrogen species (1)
- reactive oxygen species (1)
- ready-to-eat produce (1)
- remote (1)
- resonance ionization (1)
- resonant state (1)
- resonanter Zustand (1)
- retrieval (1)
- roadmap (1)
- rule changes (1)
- scanning ion conductance microscopy (1)
- scattering processes (1)
- schnelle optische und elektrische Diagnostik (1)
- scrape-off layer (1)
- secondary electron emission (1)
- secondary electron emission coefficient (1)
- secondary electrons (1)
- seed electrons (1)
- self-assembly (1)
- semi-empirical (1)
- sensitivity (1)
- separatrix (1)
- short-lived nuclides (1)
- similarity laws (1)
- similarity scaling (1)
- simulation (1)
- simulations (1)
- single mode (1)
- soft matter (1)
- solar variability (1)
- solenoid separator (1)
- solid-state physics (1)
- space charge (1)
- species conversion (1)
- spin-polarized current (1)
- spot (1)
- statistical analysis (1)
- strain fields (1)
- strong correlations (1)
- superconductivity (1)
- superoxide anion (1)
- superposed epoch analysis (1)
- supported lipid bilayers (1)
- surface charge sensing (1)
- surface double layer (1)
- surface electrons (1)
- surface forces (1)
- surface physics (1)
- symmetry (1)
- teflon-like (1)
- temperatur (1)
- temperature (1)
- terahertz ellipsometry (1)
- terahertz emission spectroscopy (1)
- terahertz spintronics (1)
- terahertz time‐domain spectroscopy (1)
- terahertz transmission spectroscopy (1)
- theoretical description and modelling (1)
- thermionische Emission (1)
- thermography (1)
- thermosphere (1)
- thin film deposition (1)
- thin films (1)
- thrusters (1)
- time-correlated single photon counting (TC-SPC) (1)
- time-resolved optical emission spectroscopy (1)
- titanium (Ti) alloys (1)
- titanium surface modification (1)
- topological insulator (1)
- topological insulators (1)
- transient spark (1)
- transport (1)
- transport coefficients (1)
- tumor immunology (1)
- tunable diode laser absorption spectroscopy (1)
- tungsten (1)
- two-photon absorption laser-induced fluorescence (1)
- ultra-thin (1)
- ultradünn (1)
- ultrafast spincaloritronics (1)
- ultrafast spintronics (1)
- valleytronics (1)
- vision (1)
- voltage stabilization (1)
- wave interaction (1)
- wave magnetic field (1)
- weather forecasting (1)
- wettability (1)
- wetted area (1)
- whistler wave (1)
- xenon (1)
- zeta potential (1)
- zylindrische Welle (1)
- Überwachtes Lernen (1)
Institute
- Institut für Physik (244) (remove)
Publisher
- IOP Publishing (56)
- MDPI (12)
- Frontiers Media S.A. (4)
- IOP Science (3)
- European Geosciences Union (2)
- John Wiley & Sons, Ltd (2)
- APS (1)
- Elsevier (1)
- IOP (1)
- IOP Scince (1)
Graphene is a strictly two-dimensional honeycomb lattice of carbon atoms whose low-energy charge-carrier dynamics obey the massless pseudospin-1/2 Dirac-Weyl equation (or chiral Weyl equation) where the chiral centers (or valleys) are the corners K and K‘ of the Brillouin zone. The linear spectrum near the Dirac nodal points lends graphene its exotic and ultra-relativistic properties.
However, condensed matter systems can possess fermionic excitations with linear dispersions that have no analog in high-energy physics since the crystal space group - instead of the Poincare group - constrains the energy dispersions. Perhaps the first example in this regard is the T_3 lattice (Dice Gitter), a honeycomb-like lattice with an extra atom placed at the center of each hexagon and coupled to only one of the sublattices. The spectrum features a strictly flat band that crosses the two conical intersections of the Dirac cones at K and K' inherited from graphene. The enlarged pseudospin-1 Dirac-Weyl equation describes the low-energy dynamics. By rescaling the transfer amplitude of the additional atoms in the T_3 lattice with a parameter 0<α<1, the resulting α-T_3 lattice continously interpolates between graphene and the T_3 lattice.
In this work, we explore the behavior of generalized Dirac-Weyl quasiparticles in external magnetic and valley-dependent pseudoelectromagnetic fields induced by out-of-plane strain. First, we studied Dirac-Weyl quasiparticles in external fields confined to circular quantum dots by generalizing the infinite-mass boundary condition to the α-T_3 lattices. We verified the analytically derived valley-anisotropic eigenstates of the quantum dot by numerically solving the tight-binding lattice-model in closed (isolated) and open (contacted) systems.
Second, we considered strain fields in the α-T_3 lattices to modify the low-energy transport properties by an effective pseudo-gauge field with opposite signs at the K and K‘ valley. In particular, we showed that the inhomogeneous pseudomagnetic field generated by Gaussian out-of-plane strain at the center of a four-terminal Hall bar setup acts as a valley filter. Most interestingly, the valley polarization is most dominant when incoming electrons are excited to pseudo-Landau level subbands. These bands are linked to different iso-field orbits encircling the lobes of the pseudomagnetic field. Addittionaly, any intermediate α breaks the inversion symmetry of the α-T_3 lattice and thus splits the pseudo-Landau levels into sublattice-polarized bands.
Third, we equipped the out-of-plane strain with a time-periodic drive to induce a valley-dependent pseudoelectric field perpendicular to the pseudomagnetic field. We assessed the steady-state transport properties and found – besides the static regime for small energies – two α-dependent valley-filtering regimes due to the periodic drive. Firstly, we found an additional valley-polarization plateau at the Floquet-zone boundary between the central and first Floquet copy that also displayed a “flower”-like pattern in the local density of states. Secondly, we detected a series of transmission gaps at the center of every Floquet sideband 2mΩ related to the Floquet coupling of the flat band with the central Floquet copy. Under certain strain parameters, a novel valley-filtering regime appears near the transmission gaps where the incoming K electrons are focused through the bump by the pseudoelectric field, instead of encircling the lobes of the pseudomagnetic field. A stability analysis demonstrated that the polarization regimes are tunable by the driving frequency.
Lastly, we demonstrated that the flat band in the Haldane-dice lattice modified by a uniaxial strain along the zigzag orientation remains singular at all band crossings where the model undergoes a topological phase transition between C=+-2 and C=0. To show this, we computed the compact localized eigenstates and the quantum distance of the Bloch wave function around the band-touching points. We derived the resulting non-contractible loop states and an extended state whose components are tunabe by the system parameters.
The combination of a linear quadrupole ion-filter and linear Paul trap operated with a rectangular guiding field for the filtering and accumulation of ions within the Mass Spectrometry for Single Particle Imaging of Dipole Oriented protein Complexes (MS SPIDOC) prototype [T. Kierspel et al., Anal. Bioanal. Chem., published online] is characterized. Using cationic caesium-iodide clusters, the ion-separation performance, ion accumulation, cooling, and ejection via in-trap pin electrodes is evaluated. Furthermore, proof-of-principle measurements are performed with 64 kDa multiply-charged non-covalent protein complexes of human hemoglobin and 804 kDa non-covalent complex of GroEL, to demonstrate that the module meets the criteria to handle high-mass ions which are the main objective of the MS SPIDOC project. The setup's performance is found to be in line with previous results from ion-trajectory simulations [F. Simke et al., Int. J. Mass Spectrom.473 (2022) 116779].
Ion trajectories have been simulated for an assembly of a linear quadrupole ion-filter and a linear Paul trap with additional pin electrodes for MS SPIDOC, a project in preparation for the study of biomolecules by single-particle imaging with X-ray pulses. The ion-optical components are based on digital RF guiding and trapping fields. In order to carefully handle biomolecules over a wide mass-over-charge range, the module presented consists of separate components for filtering and accumulation/trapping in order to select the ions of interest and to convert the beam from a continuous ion source to ion bunches, respectively, as required for the experiments downstream. The present analysis focuses on the transmission efficiency and mass resolving power of the filter, as well as the buffer-gas-pressure-dependent ion capture and thermalization in the trap for the example of a mass-to-charge ratio equivalent to hemoglobin 15+ ions. The resulting optimized ion bunch delivered by the assembly is characterized.
Ion traps such as Paul traps and MR-ToF (multi-reflection time-of-flight) devices are indispensable tools at radioactive ion beam facilities for the preparation of high-quality radioactive ion beams for subsequent experiments or for precise measurements of the properties of radioactive ions, such as nuclear binding energies or nuclear charge radii.
Within the work of this thesis, Doppler- and sympathetic cooling is implemented in a linear Paul-trap cooler-buncher enabling a reduction of the longitudinal emittance of radioactive ion beams resulting in a significant improvement of the ion beam quality. Moreover, a next-generation MR-ToF device is conceptualized in order to achieve isobaric pure beams with a higher ion intensity than state-of-the-art MR-ToF devices can provide. Once fully constructed and commissioned, it will operate at an unprecedented ion beam energy of 30 keV. Both of these advances are expected to become important for a wide range of experimental programs pursued at low-energy branches of RIB facilities ranging from fundamental symmetry studies, nuclear structure, rare isotope studies with antimatter, searches of physics beyond the standard model to material science and the production of medical isotopes.
The next-generation MR-ToF mass separator is based on MIRACLS’ 30-keV MR-ToF device for highly sensitive and high-resolution collinear laser spectroscopy. By storing the ions in the Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy (MIRACLS), the same ion bunch is probed by a spectroscopic laser for thousands of times compared to a single passage in traditional collinear laser spectroscopy (CLS). Dedicated simulation studies show that the accuracy and resolution will be close to traditional single-passage CLS while the sensitivity is significantly enhanced. Hence, measurements of nuclear properties via fluorescence-based CLS of very rare radionuclides as well as highly sensitive and high-precision measurements of electron affinities via laser-photodetachment-threshold spectroscopy of negatively-charged (radioactive) ions will become possible.
First measurement campaigns employing MIRACLS’ 1.5-keV MR-ToF device confirm the outstanding boost in signal sensitivity and provide confidence in the application of the MIRACLS technique for the measurement of scarcely produced radioactive ions that have been so far beyond the reach of conventional techniques. Furthermore, the electron affinity of 35Cl was measured, which is in perfect agreement with the literature value. These measurements will serve as important benchmarks for modern atomic and nuclear theory, especially in its description of nuclear charge radii.
In summary, the implementation of Doppler and sympathetic cooling at RIB facilities, the conceptualization of a 30-keV MR-ToF apparatus for highly selective and high-flux mass separation as well as for highly sensitive and high-resolution fluorescence-based laser spectroscopy and the expansion of the MIRACLS technique for the study of negatively-charged ions will enable unprecedented new measurement opportunities at RIB facilities.
Polyelektrolyt-Multischichtfilme (PEMs) werden durch schichtweise (eng. Layer by Layer, LbL)
sequentielle Ablagerung von entgegengesetzt geladenen Polyelektrolyten auf einer
geladenen Oberfläche hergestellt. Die LbL Methode kann auf verschiedene Weise zur
Herstellung von PEM eingesetzt werden, z.B. durch Tauchen, Rotation, Sprühen oder
Beschichten mit elektromagnetischen und fluidischen Methoden. In allen Artikeln dieser
Dissertation wurde die Tauchmethode verwendet. Durch zyklische Wiederholung der
Abscheidungsschritte kann die Dicke der PEM leicht gesteuert werden. Die Oberflächen und
Grenzflächen des Films können mit der LbL Technik auch durch die elektrostatische
Wechselwirkung zwischen positiv und negativ geladenen Polyelektrolyten modifiziert werden.
Auf diese Weise lassen sich einige Eigenschaften des Films optimieren, beispielsweise
Oberflächenadhäsion und Biokompatibilität, z. B. in der Gewebezüchtung oder es kann
eine Monoschicht als Barriere an der Grenzfläche des Films adsorbiert werden, um die
Diffusion von Molekülen im Film zu begrenzen z.B. bei Aufnahme oder Freisetzen von
Medikamenten.
Daher wurde die Rolle einiger Faktoren, wie die molare Masse der Polyelektrolyte und das
Vorhandensein von Salzionen in der Präparationslösung auf die interne Struktur sowie die
Oberfläche der PEMs untersucht.
Für alle Untersuchungen dieser Dissertation wurde das häufig verwendete Modell-System aus
dem positiv geladenen Polyelektrolyten Polydimethyldiallylammonium (PDADMA), und dem
negativ geladenen Polyelektrolyten Polystyrolsulfonat (PSS), verwendet. Die Dicke der Filme
wurde mit Röntgenreflektometrie, Ellipsometrie, UV-Vis-NIR-Spektrometrie bestimmt die
interne Struktur mit Neutronenreflektometrie und die Oberflächentopografie mit Rasterkraftmikroskopie
(eng. AFM) und Rasterelektronenmikroskopie (eng. SEM).
In Artikel 1 wurde mit Hilfe der Neutronenreflektometrie die Struktur des Filmes und die
Diffusion des Polyanions PSS (DPSS) senkrecht zur PEM Oberfläche untersucht. Variiert wurde
die molare Masse des Polykations PDADMA und die Salzkonzentration der
Präparationslösung. PEMs wurden aus drei verschiedenen NaCl-Konzentrationen in der
Abscheidelösung hergestellt: 10 mmol/L, 100 mmol/L und 200 mmol/L. Die Salzkonzentration
in der Polyelektrolytlösung bestimmt die Konformation der Polyelektrolyte während der
Adsorption. Die Ketten werden weniger flach adsorbiert, wenn mehr Salzionen in der
Adsorptionslösung vorhanden sind und die Filme werden dicker.
Die Diffusion nahm mit zunehmender molarer Masse von PDADMA in Filmen, die aus 10
mmol/L, 100 mmol/L und 200 mmol/L hergestellt wurden, um mindestens drei Größenordnungen
ab, denn die Zunahme der Kettenlänge, erhöht den Vernetzungsgrad im Film. Dabei zeigten Filme aus 10 mmol/L (NaCl) mit einer niedrigen molaren Masse von PDADMA
die größte Diffusion (DPSS = 4.9 × 10−20 m2/s). Der Diffusionskoeffizient DPSS als Funktion des
Polymerisationsgrades folgt zwei Potenzgesetzen mit einem Übergang bei einem
Polymerisationsgrad von 288. Bei kürzeren Ketten stimmt der Exponent des Potenzgesetzes
gut mit dem Modell der Sticky Reptation überein. Bei längeren Ketten war der Exponent viel
größer, was vermuten lässt, dass die PSS-Ketten in einem zunehmend komplexen
Polymernetzwerk gefangen sind. Wir verstehen den Übergang als Verschränkungsgrenze für
das untersuchte System.
Bei PEMs, die aus 100 mmol/L hergestellt wurden, konnte kein Potenzgesetz festgestellt
werden. DPSS nahm sprunghaft um drei Größenordnungen ab, wenn die molare Masse von
PDADMA von 45 kDa auf 72 kDa erhöht wurde.
In Artikel 2 wurden die Oberfläche von PEMs aus Polyelektrolyten unterschiedlicher molarer
Massen untersucht. Die Oberflächenrauhigkeit und die Dicke des Films wurden mit
Röntgenreflektometrie und Ellipsometrie bestimmt. Die Oberflächentopografie wurde mit AFM
und SEM aufgenommen. Alle PEMs wurden aus PE-Lösungen mit 0,1 mol/L NaCl hergestellt.
Die Oberfläche der PEM, präpariert aus langem PSS und kurzem PDADMA oder langem PSS
und langem PDADMA, war immer flach. Bei einer Filmzusammensetzung aus langen
Polykationen (Mw (PDADMAlang) = 322 kDa) und kurzen PSS Molekülen (Mw (PSSkurz) = 10,7
kDa) wurden drei Wachstumsregime identifiziert: exponentiell, parabolisch und linear. Im
exponentiellen Wachstumsregime bildet sich nach etwa sieben Beschichtungsschritten von
PDADMA/PSS (eng. bilayers, bl) eine granulare Oberflächenstruktur aus mit einer
Oberflächenrauigkeit von 1,6 nm und einer lateralen Periodizität von 70 nm. Mit zunehmender
Schichtzahl nimmt die Oberflächenrauhigkeit sowie die laterale Periodizität zu. Im
parabolischen Wachstumsbereich aggregieren die Strukturen zu Säulen, mit einer
Oberflächenrauigkeit bis zu 23 nm und einer lateralen Periodizität bis zu 210 nm. Im linearen
Wachstumsregime sind die säulenförmigen Domänen vollständig ausgebildet und die
Oberflächenstruktur ändert sich nicht mehr. Diese Strukturen wurden schon während der
Präparation, bereits vor dem Trocknen beobachtet. Dies zeigt, dass sich die Strukturen
während der Abscheidung von PDADMA/PSS bilden.
Bei Beobachtungen im Vakuum (SEM) war im linearen Bereich die Säulenstruktur bei der
PDADMA terminierten PEM ausgeprägter als bei der PSS terminierten.
Diese Strukturen bilden sich nur im Film mit anfänglichem exponentiellem Wachstum, d.h.
wenn kurzen Ketten durch den ganzen Film diffundieren können. Das legt nahe, dass es für
die Strukturbildung nicht ausreicht, dass der Polyelektrolyt kurz ist, sondern dass es auch
beweglich sein muss. Um dies näher zu untersuchen wurde in Manuskript 1 die molare Masse des PSS variiert. Es
wurden PEMs aus langem 322 kDa PDADMA und kurzem 6,5 kDa und 3,9 kDa PSS
hergestellt und mit den Messungen von PEMs aus 10,7 kDa PSS verglichen.
Die Verkürzung von PSS hat subtile Auswirkungen auf den Filmaufbau und die
Selbststrukturierung. Für PEM aus PSS mit einer molaren Masse von 6,5 kDa konnten nur
zwei Wachstumsregime ermittelt werden: ein exponentielles und ein lineares Wachstumsregime.
Der Übergang vom exponentiellen zum linearen Wachstum erfolgte bei 28
Doppelschichten. Bei PEMs, die aus 3,9 kDa PSS hergestellt wurden, wurde bis zu 29 bl nur
ein exponentielles Wachstum beobachtet. Dies zeigt, dass eine Verringerung der molaren
Masse von PSS das exponentielle Wachstum auf eine größere Anzahl von abgeschiedenen
Doppelschichten ausdehnt. Dies ist auf die zunehmende PSS-Diffusion zurückzuführen.
In allen Filmen wurden Selbststrukturierungen beobachtet. Der Abstand und die Höhe der
säulenartigen Domänen nehmen mit jeder abgeschiedenen PDADMA/PSS-Doppelschicht
deutlich zu. Der durchschnittliche Domänenabstand ändert sich weniger und korreliert mit den
vertikalen Wachstumsregimen. Der Domänenabstand schwankt zwischen 70 nm und 750 nm.
Die größten lateralen Abstände und ein längeres exponentielles Wachstumsregime wurden
mit dem kürzesten PSS (3,9 kDa) erreicht, was auf die hohe Mobilität des PSS zurückgeführt
wird. Die Domänenhöhe ist immer kleiner als der Domänenabstand. Wenn die PEM mit
PDADMA terminiert ist, sind die Oberflächenrauhigkeit und der durchschnittliche Abstand
größer als bei PSS terminierten Filme in Wasser und nach dem Trocknen.
Darüber hinaus wurden zwischen den Domänen Filamente beobachtet. Die Filamente
bestehen aus PDADMA/PSS-Komplexen. Eine mögliche Vermutung ist, dass diese Komplexe
zwischen den Domänen diffundieren und ihren Abstand anpassen.
Die Oberflächenstruktur des Films aus PSS 10,7 kDa zeigt eine symmetrische gaußförmige
Höhenverteilung in allen drei Wachstumsregimen von 5 bis 40 bl. Für die kurze PSS war eine
solche Verteilung nur bis 15 bl (6,5 kDa) bzw. 20 bl (3,9 kDa) zu beobachten. Danach wurde
für 6,5 kDa schiefe Verteilung mit Ausläufern zu größeren Höhen beobachtet. 3,9 kDa PSS
zeigte dann sogar eine bimodale Höhenverteilung.
Die lineare Ladungsdichte von PDADMA ist etwa halb so groß wie die von PSS. Folglich
adsorbiert PDADMA in einer bürstenartigen Konformation. Wenn die oberste Schicht
PDADMA ist, dann ist das PDADMA-Molekül nicht fest an die Oberfläche gebunden. Daher ist
die durch die Oberflächenspannung erzeugte Kraft für PDADMA groß genug, um zu einer
Veränderung der Oberflächenmorphologie und folglich zu einer kleineren Gesamtoberfläche
zu führen.Außerdem sind die Domänen in 1 M NaCl-Lösung stabil, schrumpfen aber in 2 M NaCl enorm,
während ihr Abstand leicht zunimmt.
Diese Untersuchungen zeigten, dass die Mobilität des Polyelektrolyten PSS die
Voraussetzung für den Aufbau einer strukturierten Oberfläche in einem PEM-System aus
PDADMA/PSS ist. Diese Ergebnisse zeigten auch, dass die Verkürzung der Kette der PSS Moleküle
die Herstellung von Filmen erleichtert, deren Dicke und Selbststrukturierung je nach
dem gewünschten Zweck angepasst werden kann. Solche Filme können in der Medizin und
Biologie als geeignetes Substrat zur Optimierung der Adsorption von Zellen und anderen
Molekülen oder als Nanofilter effektiv eingesetzt werden.
In dieser Dissertation konnte ich zeigen, wie die Verkürzung der Kette der PSS-Moleküle zur
Bildung einer lateralen selbststrukturierten Oberfläche führt und wie die zunehmende Mobilität
der PSS-Moleküle die Oberflächenmorphologie signifikant beeinflusst.
Interplay of reactive oxygen species with the mechanical properties of cells and mitochondria
(2023)
Cell mechanical properties are a popular label-free method for understanding basic cellular processes. In this thesis, I used Real-time deformability cytometry (RT-DC), a high-throughput microfluidic technology, to investigate the mechanical properties of cells and mitochondria under various conditions such as increased reactive oxygen species (ROS) levels and the application of different ligand coated gold nano-particles (Au-Nps) effect on cells. Initially, we showed the possibility to measure organelles, cells, and tissue-like structures (spheroids) in a single system by constructing a virtual fluidic channel. We investigated a potential application using cytochalasin D (cyto D) treatment, which revealed increased deformation and decreased stiffness in both the normal and virtual channels. Using mechanics as a marker, I investigated the effect of excessive ROS on the mechanical properties of human myeloid precursor cells (HL60). My findings suggest that the mechanical response of HL60 cells to increased ROS levels is mediated by re-localization of microtubules toward the cell center and F-actin to the cell periphery. Interestingly, I also observed intracellular acidification, which is a largely unexplored mechanism that may have contributed to our findings. I then extended our ROS and mechanics assay to investigate cell-AuNP interactions, demonstrating that cell properties vary depending on the cell culture media and ligand coating. The results showed that dextran coated gold nano-particels (Au-Nps) had low cytotoxicity, lower ROS release, and no change in cell mechanics, indicating a potential application for dextran Au NPs. Finally, I expanded our assays to include high-throughput microfluidic characterization of isolated mitochondria. Using both exogenously and endogenously induced ROS, we found an increase in mitochondrial deformation and a decrease in their size, which could have implications on mitochondrial function, i.e., fission and fusion. We believe that advanced applications of RT-DC technology will improve the comparability of results across different sample sizes while also promoting it as a disease detection technique.
In this work, 2-dimensional measurements in the THz frequency range with self-made spintronic THz emitters were presented. The STE were used to optimize the spatial resolution and determine the magnetization in geometric shapes. At the beginning, various combinations of FM and NM layers were produced and measured to achieve an optimal composition of the STE. The layer thickness of the ferromagnetic CoFeB layer and the nonmagnetic PT layer was also varied. The investigations have shown that a layer combination of 2 nm thick CoFeB and 2 nm thick Pt, applied to a fused silica glass substrate and covered with a 300 nm thick SiO2 layer, emits the highest THz amplitude. Based on these, a structured sample, consisting of an STE and an additional layer system of 5 nm Cr and 100 nm Au, was produced. Further, three wedge-shaped structures were removed from the gold layer by an etching process so that the THz radiation generated by the STE can pass through these areas. This enables the optimization of the resolution of the system. For this purpose, the sample was moved perpendicular to the laser beam by two stepping motors with a step size of 5 μm and imaged 2-dimensionally. By reducing the step size to 0.2 μm, the beam diameter could be measured at the edge of the structure using the knife-edge method. Based on this measurement, the resolution of the system could be determined as 5.1 ± 0.5 μm at 0.5 THz, 4.9 ± 0.4 μm at 1 THz, and 5.0 ± 0.5 μm at 1.5 THz. These results are confirmed by simulations considering the propagation of THz wave packets through the SiO2. The expansion of the FWHM of the waves, passing through the 300 nm thick layer, is about 1%. Only a SiO2 layer with a thickness in the μm range occurs an expansion of around 10%. This shows that it is possible to perform 2-dimensional THz spectroscopy with a resolution in the dimension of the exciting laser beam by using near-field optics. Afterward, the achieved spatial resolution was used to investigate the influence of external magnetic fields on the STE and the emitted THz radiation. By implementing a pair of coils above the sample, an external magnetic field could be applied parallel to the pattern. The used sample was designed in such a way that only certain geometric areas on the fused silica glass substrate were coated with an STE so that THz radiation is emitted only in those areas. The 2-dimensional images show the geometric structures for f = 1.0 THz and f = 1.5 THz clearly. By applying a permanent, positive magnetic field (+M), a positive course of the THz amplitude can be seen. A rotation of the magnetic field by 180° (-M) leads to a reversal of the orientation of the emitted THz radiation, whereby the magnetic field does not influence the corresponding frequency spectrum. By using minor loops, the sample was demagnetized by the constant reduction of the magnetic field strength with alternating magnetic field direction. The 2-dimensional representation of the pattern with a step size of 10 μm shows that the sample was demagnetized since both, positively and negatively magnetized structures, could be imaged. In addition, in the 2nd row from the top, a completely demagnetized circle and a rectangle with a division into two domains can be seen. These structures have both positive and negative magnetized areas, which are separated by a domain wall. To investigate this in more detail a 2-dimensional measurement of the divided regions was made with a step size of 2.5 μm. These images confirm the division of the structures into positive and negative domains, separated by a domain wall, which was verified by Kerr-microscope measurements. Both data show a similar course of the domains and the domain wall. However, to be able to examine the domain wall more precisely using 2-dimensional THz spectroscopy, the resolution of the system must be improved to a range of a few nm, because the expected domain wall width is between 𝑙𝑊 = 12.56 nm and 𝑙𝑊 = 125.6 nm. The improved resolution would make it possible to image foreign objects, such as microplastics in biological cells or tissue. For this purpose, different plastics, such as polypropylene, polyethylene, and polystyrene, were investigated in the THz frequency range up to 4 THz. While no specific absorption could be determined for PP, characteristic absorption peaks were found for PE and PS. The energy of the photons with a frequency of about 2.2 THz excites lattice vibrations in the PE. Therefore, this frequency is specifically absorbed, and the intensity in the transmission spectrum is lower than for other frequencies. PS absorbs especially THz radiation with a frequency of 3.2 THz. In addition, all of the investigated plastics are mostly transparent for THz radiation, which makes imaging of these materials feasible. Based on these basic properties, it will be possible to image and identify these types of plastic.
A novel method for time-resolved tuned diode laser absorption spectroscopy has been developed. In this paper, we describe in detail developed electronic module that controls time-resolution of laser absorption spectroscopy system. The TTL signal triggering plasma pulse is used for generation of two signals: the first one triggers the fine tuning of laser wavelength and second one controls time-defined signal sampling from absorption detector. The described method and electronic system enable us to investigate temporal evolution of sputtered particles in technological low-temperature plasma systems. The pulsed DC planar magnetron sputtering system has been used to verify this method. The 2" in diameter titanium target was sputtered in pure argon atmosphere. The working pressure was held at 2 Pa. All the experiments were carried out for pulse ON time fixed at 100 (is. When changing OFF time the discharge has operated between High Power Impulse Magnetron Sputtering regime and pulsed DC magnetron regime. The effect of duty cycle variation results in decrease of titanium atom density during ON time while length of OFF time elongates. We believe that observed effect is connected with higher degree of ionization of sputtered particles. As previously reported by Bohlmark et al., the measured optical emission spectra in HiPIMS systems were dominated by emission from titanium ions [1].
Application of quantum cascade laser absorption spectroscopy to studies of fluorocarbon molecules
(2009)
The recent advent of quantum cascade lasers (QCLs) enables room-temperature mid-infrared spectrometer operation which is particularly favourable for industrial process monitoring and control, i.e. the detection of transient and stable molecular species. Conversely, fluorocarbon containing radio-frequency discharges are of special interest for plasma etching and deposition as well as for fundamental studies on gas phase and plasma surface reactions. The application of QCL absorption spectroscopy to such low pressure plasmas is typically hampered by non-linear effects connected with the pulsed mode of the lasers. Nevertheless, adequate calibration can eliminate such effects, especially in the case of complex spectra where single line parameters are not available. In order to facilitate measurements in fluorocarbon plasmas, studies on complex spectra of CF4 and C3F8 at 7.86 μm (1269 – 1275 cm-1) under low pressure conditions have been performed. The intra-pulse mode, i.e. pulses of up to 300 ns, was applied yielding highly resolved spectral scans of ∼ 1 cm-1 coverage. Effective absorption cross sections were determined and their temperature dependence was studied in the relevant range up to 400 K and found to be non-negligible.
Fluorocarbon containing capacitively coupled radio frequency (cc-rf) plasmas are widely used in technical applications and as model systems for fundamental investigations of complex plasmas. Absorption spectroscopy based on pulsed quantum cascade lasers (QCL) was applied in the mid-IR spectral range of 1269-1275 cm-1. Absolute densities of the precursor molecule CF4 and of the stable product C3F8 were measured with a time resolution of up to 1 ms in pulsed CF4/H2 asymmetrical cc-rf (13.56 MHz) discharges. For this purpose both the non-negligible temperature dependence of the absorption coefficients and the interference of the absorption features of CF4 and C3F8 had to be taken into account in the target spectral range. Therefore, at two different spectral positions composite absorption spectra were acquired under the same plasma conditions in order to discriminate between CF4 and C3F8 contributions. A total consumption of∼ 12 % was observed for CF4 during a 1 s plasma pulse, whereas C3F8 appeared to be produced mainly from amorphous fluorocarbon layers deposited at the reactor walls. A gas temperature increase by ∼ 100 K in the plasma pulse was estimated from the measurements. Additionally, not yet identified unresolved absorption (potentially from the excited CF4 molecule) was found during the àon-phase'.
We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.
In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.
A quantum kinetic approach is presented to investigate the energy relaxation of dense strongly coupled two-temperature plasmas. We derive a balance equation for the mean total energy of a plasma species including a quite general expression for the transfer rate. An approximation scheme is used leading to an expression of the transfer rates for systems with coupled modes relevant for the warm dense matter regime. The theory is then applied to dense beryllium plasmas under conditions such as realized in recent experiments. Special attention is paid to the influence of correlation and quantum effects on the relaxation process.
In order to clarify the physics of the crossover from a spin-density-wave (SDW) Mott insulator to a charge-density-wave (CDW) Peierls insulator in one-dimensional (1D) systems, we investigate the Hubbard-Holstein Hamiltonian at half filling within a density matrix renormalisation group (DMRG) approach. Determining the spin and charge correlation exponents, the momentum distribution function, and various excitation gaps, we confirm that an intervening metallic phase expands the SDW-CDW transition in the weak-coupling regime.
We discuss a numerical method to study electron transport in mesoscopic devices out of equilibrium. The method is based on the solution of operator equations of motion, using efficient Chebyshev time propagation techniques. Its peculiar feature is the propagation of operators backwards in time. In this way the resource consumption scales linearly with the number of states used to represent the system. This allows us to calculate the current for non-interacting electrons in large one-, two- and three-dimensional lead-device configurations with time-dependent voltages or potentials. We discuss the technical aspects of the method and present results for an electron pump device and a disordered system, where we find transient behaviour that exists for a very long time and may be accessible to experiments.
A research of the temperature effect of the muon cosmic ray (CR) component on the MuSTAnG super telescope data (Greifswald, Germany) for the whole period of its work (from 2007) was carried out. The primary hourly telescope's data were corrected for the temperature effect, using vertical temperature atmospheric profile at the standard isobaric levels obtained from the GFS model. To estimate the model accuracy and applicability the air sounding data for some years were used.
The properties of the ion feature of the Thomson scattering signal are investigated. Firstly, the description of the atomic form factor by hydrogen-like wave functions is reviewed and better screening charges are obtained. Then the ionic structure in systems with several ion species is calculated from the HNC integral equation.
Based on distributions of local Green's functions we present a stochastic approach to disordered systems. specifically we address Anderson localisation and cluster effects in binary alloys. Taking Anderson localisation of Holstein polarons as an example we discuss how this stochastic approach can be used for the investigation of interacting disordered systems.
The interaction of partially ionized plasmas with an electromagnetic field is investigated using quantum statistical methods. A general statistical expression for the current density of a plasma in an electromagnetic field is presented and considered in the high field regime. Expressions for the collisional absorption are derived and discussed. Further, partially ionized plasmas are considered. Plasma Bloch equations for the description of bound-free transitions are given and the absorption coefficient as well as rate coefficients for multiphoton ionization are derived and numerical results are presented.
First-principle path integral Monte Carlo simulations were performed in order to analyze correlation effects in complex electron-hole plasmas, particularly with regard to the appearance of excitonic bound states. Results are discussed in relation to exciton formation in unconventional semiconductors with large electron hole mass asymmetry.
Collisional absorption of dense fully ionized plasmas in strong high-frequency laser fields is investigated in the non-relativistic case. Quantum statistical methods are used as well as molecular dynamics simulations. In the quantum statistical expressions for the electrical current density and the electron-ion collision frequency–valid for arbitrary field strength–strong correlations are taken into account. In addition, molecular dynamic simulations were performed to calculate the heating of dense plasmas in laser fields. Comparisons with the analytic results for different plasma parameters are given. Isothermal plasmas as well as two-temperature plasmas are considered.
The relaxation of nonideal two-temperature plasmas is investigated with a kinetic approach. First the energy transfer between the electrons and ions is described using different approximations: the energy transfer through classical collisions (Landau-Spitzer approach) is reviewed; quantum diffraction and strong collisions are included by applying the quantum Boltzmann equation; the influence of collective modes is considered on the basis of the Lenard-Balescu equation (coupled modes) and with the Fermi-Golden-Rule approach (independent electron and ion modes). Finally, the evolution of the species temperature is investigated. In nonideal plasmas, changes in the correlation energy have to be taken into account during the relaxation. It is demonstrated that ionic correlations can significantly influence the relaxation particularly the evolution of the ion temperature).
We investigate the equilibration of nonideal plasmas from initial states where each species has already established a Maxwellian distribution, but the species temperatures and the chemical composition are not in equilibrium. On the basis of quantum kinetic equations, we derive hydrodynamic balance equations for the species densities and temperatures. The coupled density-temperature relaxation is then given in terms of the energy transfer between the subsystems and the population kinetics. We use the Landau-Spitzer approach for the energy transfer rates and a system of rate equations to describe the nonequilibrium plasma composition. Nonideality corrections are included in the rate coefficients and as potential energy contributions in the temperature equations on the simplest level of a Debye shift.
The triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN has demonstrated the feasibility of mass spectrometry of in-trap-decay product ions. This novel technique gives access to radionuclides, which are not produced directly at ISOL-type radioactive ion beam facilities. As a proof of principle, the in-trap decay of 37K+ has been investigated in a Penning trap filled with helium buffer gas. The half-life of the mother nuclide was confirmed and the recoiling 37Ar+ daughter ion was contained within the trap. The ions of either the mother or the daughter nuclide were transferred to a precision Penning trap, where their mass was determined.
Colossal magneto-resistance manganites are characterized by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting two conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low-energy physics. Focusing on short-range electron–lattice and spin–orbital correlations we supplement the modelling with numerical simulations.
Low-pressure plasmas offer a unique possibility of confinement, control and
fine tailoring of particle properties. Hence, dusty plasmas have grown
into a vast field and new applications of plasma-processed dust particles
are emerging. There is demand for particles with special properties and
for particle-seeded composite materials. For example, the stability of
luminophore particles could be improved by coating with protective Al2O3
films which are deposited by a PECVD process using a metal-organic precursor gas.
Alternatively, the interaction between plasma and injected micro-disperse powder
particles can also be used as a diagnostic tool for the study of plasma surface
processes. Two examples will be provided: the interaction of micro-sized (SiO2)
grains confined in a radiofrequency plasma with an external ion beam as well as
the effect of a dc-magnetron discharge on confined particles during deposition
have been investigated.
The region surrounding the excitonic insulator phase is a three-component plasma composed of electrons, holes, and excitons. Due to the extended nature of the excitons, their presence influences the surrounding electrons and holes. We analyze this correlation. To this end, we calculate the density of bound electrons, the density of electrons in the correlated state, the momentum-resolved exciton density, and the momentum-resolved density of electron-hole pairs that are correlated but unbound. We find qualitative differences in the electron-hole correlations between the weak-coupling and the strong-coupling regime.
Solar Activity Driven 27‐Day Signatures in Ionospheric Electron and Molecular Oxygen Densities
(2022)
Abstract
The complex interactions in the upper atmosphere, which control the height‐dependent ionospheric response to the 27‐day solar rotation period, are investigated with the superposed epoch analysis technique. 27‐day signatures describing solar activity are calculated from a solar proxy (F10.7) and wavelength‐dependent extreme ultraviolet (EUV) fluxes (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Solar EUV Experiment), and the corresponding 27‐day signatures describing ionospheric conditions are calculated from electron density profiles (Pruhonice ionosonde station) and O2 density profiles (Global‐scale Observations of the Limb and Disk). The lag analysis of these extracted signatures is applied to characterize the delayed ionospheric response at heights from 100 to 300 km and the impact of major absorption processes in the lower (dominated by O2) and upper ionosphere (dominated by O) is discussed. The observed variations of the delay in these regions are in good agreement with model simulations in preceding studies. Additionally, the estimated significance and the correlation of the delays based on both ionospheric parameters are good. Thus, variations such as the strong shift in 27‐day signatures for the O2 density at low heights are also reliably identified (up to half a cycle). The analysis confirms the importance of ionospheric and thermospheric coupling to understand the variability of the delayed ionospheric response and introduces a method that could be applied to additional ionosonde stations in future studies. This would allow to describe the variability of the delayed ionospheric response spatially, vertically and temporally and therefore may contribute further to the understanding of processes and improve ionospheric modeling.
Abstract
Based on the analysis of electron density Ne profiles (Grahamstown ionosonde), a case study of the height‐dependent ionospheric response to two 27‐day solar rotation periods in 2019 is performed. A well‐defined sinusoidal response is observed for the period from 27 April 2019 to 24 May 2019 and reproduced with a Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model simulation. The occurring differences between model and observations as well as the driving physical and chemical processes are discussed based on the height‐dependent variations of Ne and major species. Further simulations with an artificial noise free sinusoidal solar flux input show that the Ne delay is defined by contributions due to accumulation of O+ at the Ne peak (positive delay) and continuous loss of O2+ ${\mathrm{O}}_{2}^{+}$ in the lower ionosphere (negative delay). The neutral parts' 27‐day signatures show stronger phase shifts. The time‐dependent and height‐dependent impact of the processes responsible for the delayed ionospheric response can therefore be described by a joint analysis of the neutral and ionized parts. The return to the initial ionospheric state (and thus the loss of the accumulated O+) is driven by an increase of downward transport in the second half of the 27‐day solar rotation period. For this reason, the neutral vertical winds (upwards and downwards) and their different height‐dependent 27‐day signatures are discussed. Finally, the importance of a wavelength‐dependent analysis, statistical methods (superposed epoch analysis), and coupling with the middle atmosphere is discussed to outline steps for future analysis.
The role of large-scale fluctuation structures in electrostatic
drift-wave-type plasma turbulence is highlighted. In particular,
well-defined laboratory experiments allow one to study the
dynamics of drift wave mode structures as well as `eddies' in
drift wave turbulence. In the present paper we discuss the
mutual relationships between observations made in linear
magnetic geometry, purely toroidal geometry and magnetic
confinement. The simplest structure, a saturated, nonlinear
drift mode, is the starting point for a Ruelle-Takens-Newhouse
transition route to chaos and weakly developed turbulence. Both
spectral and phase space analysis are applied to characterize in
detail the transition scenario, which is enforced due to an
increased drive by the plasma equilibrium state. In addition to
direct multi-probe observation, statistical approaches are most
revealing for the systematic study of the spatiotemporal
dynamics in fully developed drift wave turbulence. In
particular, the propagation of large-scale `eddy' structures is
traced by conditional statistics methods. Finally, the control
of drift wave turbulence by spatiotemporal synchronization is
discussed.
Abstract
We formulate exact generalized nonequilibrium fluctuation relations for the quantum mechanical harmonic oscillator coupled to multiple harmonic baths. Each of the different baths is prepared in its own individual (in general nonthermal) state. Starting from the exact solution for the oscillator dynamics we study fluctuations of the oscillator position as well as of the energy current through the oscillator under general nonequilibrium conditions. In particular, we formulate a fluctuation–dissipation relation for the oscillator position autocorrelation function that generalizes the standard result for the case of a single bath at thermal equilibrium. Moreover, we show that the generating function for the position operator fulfils a generalized Gallavotti–Cohen-like relation. For the energy transfer through the oscillator, we determine the average energy current together with the current fluctuations. Finally, we discuss the generalization of the cumulant generating function for the energy transfer to nonthermal bath preparations.
AbstractComplex plasma is a state of soft matter where micrometer-sized particles are immersed in a weakly ionized gas. The particles acquire negative charges of the order of several thousand elementary charges in the plasma, and they can form gaseous, liquid and crystalline states. Direct optical observation of individual particles allows to study their dynamics on the kinetic level even in large many-particle systems. Gravity is the dominant force in ground-based experiments, restricting the research to vertically compressed, inhomogeneous clouds, or two-dimensional systems, and masking dynamical processes mediated by weaker forces. An environment with reduced gravity, such as provided on the International Space Station (ISS), is therefore essential to overcome this limitations. We will present the research goals for the next generation complex plasma facility COMPACT to be operated onboard the ISS. COMPACT is envisaged as an international multi-purpose and multi-user facility that gives access to the full three-dimensional kinetic properties of the particles.
AbstractGas puff modulation experiments are performed at ASDEX Upgrade in L-mode plasmas. We model the discharge with the ASTRA transport code in order to determine transport coefficients outside of a normalized radius of ρ
pol = 0.95. The experimental data is consistent with a range of particle diffusivities and pinch velocities of the order of D = (0.20 ± 0.13) m2 s−1 and v = (−1 ± 2) m s−1, respectively. The electron temperature response caused by the gas modulation permits to estimate also that heat diffusivity χ
e increases almost linearly when collisionality rises due to fuelling. The fuelling particle flux is amplified by recycling, overcompensating losses.
Synopsis
By interaction with electrons in ion storage devices (ion-cyclotron-resonance and radio-frequency traps) negatively charged clusters of gold and aluminum have been produced up to the 6th and 10th charge state, respectively. The production of these poly-anions opens exciting new possibilities to measure their lifetimes, to monitor their relaxation schemes after laser radiation, as well as to probe their Coulomb barriers.
Synopsis
C+60 has been proposed to be responsible for two of the diffuse interstellar bands (DIBs), the absorption features observed in the visible-to-near-infrared spectra of the interstellar medium. However, a confirmation requires laboratory gas-phase spectra, which are so far not available. We plan to develop a novel spectroscopy technique that will allow us to obtain the first gas-phase spectra of C+60, and that will be applicable to other complex organic molecules such as polycyclic aromatic hydrocarbons. The current status of the experimental setup, the ideas behind the measurement scheme and the preparatory work toward its implementation will be presented.
Synopsis
A network of ion sources is being developed on the 300-kV acceleration platform of the cryogenic storage ring (CSR) at the Max-Planck-Institut für Kernphysik. It consists of several types of sources like a metal ion sputtering source (MISS), a Penning source, a laser vaporization (LVAP) source, and an electrospray ionization (ESI) source to produce a large variety of ions which can be studied for photon and electron interaction in a ro-vibrationally cold environment. Furthermore a storage device such as a radiofrequency quadrupole (RFQ) is foreseen for internal state cooling and accumulation of rarely produced species.
AbstractThe 2022 Roadmap is the next update in the series of Plasma Roadmaps published by Journal of Physics D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.
Detecting changes in plasmas is compulsory for control and the detection of novelties.
Moreover, automated novelty detection allows one to investigate large data sets to substantially
enhance the efficiency of data mining approaches. To this end we introduce permutation entropy
(PE) for the detection of changes in plasmas. PE is an information-theoretic complexity measure
based in fluctuation analysis that quantifies the degree of randomness (resp. disorder,
unpredictability) of the ordering of time series data. This method is computationally fast and
robust against noise, which allows the evaluation of large data sets in an automated procedure.
PE is applied on electron cyclotron emission and soft x-ray measurements in different
Wendelstein 7-X low-iota configuration plasmas. A spontaneous transition to high core-electron
temperature (Te) was detected, as well as a localized low-coherent intermittent oscillation which
ceased when Te increased in the transition. The results are validated with spectrogram analysis
and provide evidence that a complexity measure such as PE is a method to support in-situ
monitoring of plasma parameters and for novelty detection in plasma data. Moreover, the
acceleration in processing time offers implementations of plasma-state-detection that provides
results fast enough to induce control actions even during the experiment.
Abstract
We present experiments on the luminescence of excitons confined in a potential trap at milli-Kelvin bath temperatures under continuous-wave (cw) excitation. They reveal several distinct features like a kink in the dependence of the total integrated luminescence intensity on excitation laser power and a bimodal distribution of the spatially resolved luminescence. Furthermore, we discuss the present state of the theoretical description of Bose–Einstein condensation of excitons with respect to signatures of a condensate in the luminescence. The comparison of the experimental data with theoretical results with respect to the spatially resolved as well as the integrated luminescence intensity shows the necessity of taking into account a Bose–Einstein condensed excitonic phase in order to understand the behaviour of the trapped excitons.
Abstract
Nanoscale multilayer thin films of W and PC (Polycarbonate) show, due to the great difference of the components’ characteristics, fascinating properties for a variety of possible applications and provide an interesting research field, but are hard to fabricate with low layer thicknesses. Because of the great acoustic mismatch between the two materials, such nanoscale structures are promising candidates for new phononic materials, where phonon propagation is strongly reduced. In this article we show for the first time that W/PC-multilayers can indeed be grown with high quality by pulsed laser deposition. We analyzed the polymer properties depending on the laser fluence used for deposition, which enabled us to find best experimental conditions for the fabrication of high-acoustic-mismatch W/PC multilayers. The multilayers were analyzed by fs pump-probe spectroscopy showing that phonon dynamics on the ps time-scale can strongly be tailored by structural design. While already periodic multilayers exhibit strong phonon localization, especially aperiodic structures present outstandingly low phonon propagation properties making such 1D-layered W/PC nano-structures interesting for new phononic applications.
Abstract
We have demonstrated efficient injection and trapping of a cold positron beam in a dipole magnetic field configuration. The intense 5 eV positron beam was provided by the NEutron induced POsitron source MUniCh facility at the Heinz Maier-Leibnitz Zentrum, and transported into the confinement region of the dipole field trap generated by a supported, permanent magnet with 0.6 T strength at the pole faces. We achieved transport into the region of field lines that do not intersect the outer wall using the
drift of the positron beam between a pair of tailored plates that created the electric field. We present evidence that up to 38% of the beam particles are able to reach the intended confinement region and make at least a 180° rotation around the magnet where they annihilate on an insertable target. When the target is removed and the
plate voltages are switched off, confinement of a small population persists for on the order of 1 ms. These results lend optimism to our larger aims to apply a magnetic dipole field configuration for trapping of both positrons and electrons in order to test predictions of the unique properties of a pair plasma.
Abstract
Experimental studies on dusty plasmas containing systems of (super-)paramagnetic dust particles are presented. In our experiments, external (homogeneous as well as inhomogeneous) magnetic fields in the mT range are applied to study the effect on single particles or few-particle systems that are trapped inside the sheath region. The behavior of the paramagnetic dust particles is considerably different than that of dielectric plastic particles, which are widely used in dusty plasmas. It is revealed that especially non-magnetic contributions play an important role in the interaction between superparamagnetic particles.
Abstract
Many processes in nature are governed by the interaction of electro-magnetic radiation with matter. New tools such as femtosecond and free-electron lasers allow one to study the interaction in unprecedented detail with high temporal and spatial resolution. In addition, much work is devoted to the exploration of novel target systems that couple to radiation in an effective and controllable way or that could serve as efficient sources of energetic particles when being subjected to intense laser fields. The interaction between matter and radiation fields as well as their mutual modification via correlations constitutes a rich field of research that is impossible to cover exhaustively. The papers in this focus issue represent a selection that largely reflects the program of the international conference on ‘Correlation Effects in Radiation Fields’ held in 2011 in Rostock, Germany.
Abstract
The spectral properties of three-dimensional dust clusters confined in gaseous discharges are investigated using both a fluid mode description and the normal mode analysis (NMA). The modes are analysed for crystalline clusters as well as for laser-heated fluid-like clusters. It is shown that even for clusters with low particle numbers and under presence of damping fluid modes can be identified. Laser-heating leads to the excitation of several, mainly transverse, modes. The mode frequencies are found to be nearly independent of the coupling parameter and support the predictions of the underlying theory. The NMA and the fluid mode spectra demonstrate that the wakefield attraction is present for the experimentally observed Yukawa balls at low pressure. Both methods complement each other, since NMA is more suitable for crystalline clusters, whereas the fluid modes allow to explore even fluid-like dust clouds.
The nature and origin of electronic nematicity remains a significant challenge in our
understanding of the iron-based superconductors. This is particularly evident in the
iron chalcogenide, FeSe, where it is currently unclear how the experimentally
determined Fermi surface near the M point evolves from having two electron pockets
in the tetragonal state, to exhibiting just a single electron pocket in the nematic state. This
has posed a major theoretical challenge, which has become known as the missing electron
pocket problem of FeSe, and is of central importance if we wish to uncover the secrets
behind nematicity and superconductivity in the wider iron-based superconductors. Here,
we review the recent experimental work uncovering this nematic Fermi surface of FeSe
from both ARPES and STM measurements, as well as current theoretical attempts to
explain this missing electron pocket of FeSe, with a particular focus on the emerging
importance of incorporating the dxy orbital into theoretical descriptions of the nematic
state. Furthermore, we will discuss the consequence this missing electron pocket has on
the theoretical understanding of superconductivity in this system and present several
remaining open questions and avenues for future research.
Response of Osteoblasts to Electric Field Line Patterns Emerging from Molecule Stripe Landscapes
(2022)
Molecular surface gradients can constitute electric field landscapes and serve to control local cell adhesion and migration. Cellular responses to electric field landscapes may allow the discovery of routes to improve osseointegration of implants. Flat molecule aggregate landscapes of amine- or carboxyl-teminated dendrimers, amine-containing protein and polyelectrolytes were prepared on glass to provide lateral electric field gradients through their differing zeta potentials compared to the glass substrate. The local as well as the mesoscopic morphological responses of adhered osteoblasts (MG-63) with respect to the stripes were studied by means of Scanning Ion Conductance Microscopy (SICM) and Fluorescence Microscopy, in situ. A distinct spindle shape oriented parallel to the surface pattern as well as a preferential adhesion of the cells on the glass site have been observed at a stripe and spacing width of 20 μm. Excessive ruffling is observed at the spindle poles, where the cells extend. To explain this effect of material preference and electro-deformation, we put forward a retraction mechanism, a localized form of double-sided cathodic taxis.
The heaviest actinide elements are only accessible in accelerator-based experiments on a one-atom-at-a-time level. Usually, fusion–evaporation reactions are applied to reach these elements. However, access to the neutron-rich isotopes is limited. An alternative reaction mechanism to fusion–evaporation is multinucleon transfer, which features higher cross-sections. The main drawback of this technique is the wide angular distribution of the transfer products, which makes it challenging to catch and prepare them for precision measurements. To overcome this obstacle, we are building the NEXT experiment: a solenoid magnet is used to separate the different transfer products and to focus those of interest into a gas-catcher, where they are slowed down. From the gas-catcher, the ions are transferred and bunched by a stacked-ring ion guide into a multi-reflection time-of-flight mass spectrometer (MR-ToF MS). The MR-ToF MS provides isobaric separation and allows for precision mass measurements. In this article, we will give an overview of the NEXT experiment and its perspectives for future actinide research.
Insight into the Impact of Oxidative Stress on the Barrier Properties of Lipid Bilayer Models
(2022)
As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.
Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides
(2022)
RAdiation-Detected Resonance Ionization Spectroscopy (RADRIS) is a versatile method for highly sensitive laser spectroscopy studies of the heaviest actinides. Most of these nuclides need to be produced at accelerator facilities in fusion-evaporation reactions and are studied immediately after their production and separation from the primary beam due to their short half-lives and low production rates of only a few atoms per second or less. Only recently, the first laser spectroscopic investigation of nobelium (Z=102) was performed by applying the RADRIS technique in a buffer-gas-filled stopping cell at the GSI in Darmstadt, Germany. To expand this technique to other nobelium isotopes and for the search for atomic levels in the heaviest actinide element, lawrencium (Z=103), the sensitivity of the RADRIS setup needed to be further improved. Therefore, a new movable double-detector setup was developed, which enhances the overall efficiency by approximately 65% compared to the previously used single-detector setup. Further development work was performed to enable the study of longer-lived (t1/2>1 h) and shorter-lived nuclides (t1/2<1 s) with the RADRIS method. With a new rotatable multi-detector design, the long-lived isotope 254Fm (t1/2=3.2 h) becomes within reach for laser spectroscopy. Upcoming experiments will also tackle the short-lived isotope 251No (t1/2=0.8 s) by applying a newly implemented short RADRIS measurement cycle.
Abstract
The surface charge distribution deposited by the effluent of a dielectric barrier discharge driven atmospheric pressure plasma jet on a dielectric surface has been studied. For the first time, the deposition of charge was observed phase resolved. It takes place in either one or two events in each half cycle of the driving voltage. The charge transfer could also be detected in the electrode current of the jet. The periodic change of surface charge polarity has been found to correspond well with the appearance of ionized channels left behind by guided streamers (bullets) that have been identified in similar experimental situations. The distribution of negative surface charge turned out to be significantly broader than for positive charge. With increasing distance of the jet nozzle from the target surface, the charge transfer decreases until finally the effluent loses contact and the charge transfer stops.
Abstract
Identifying materials with an efficient spin-to-charge conversion is crucial for future spintronic applications. In this respect, the spin Hall effect is a central mechanism as it allows for the interconversion of spin and charge currents. Spintronic material research aims at maximizing its efficiency, quantified by the spin Hall angle and the spin-current relaxation length . We develop an all-optical contact-free method with large sample throughput that allows us to extract and . Employing terahertz spectroscopy and an analytical model, magnetic metallic heterostructures involving Pt, W and Cu80Ir20 are characterized in terms of their optical and spintronic properties. The validity of our analytical model is confirmed by the good agreement with literature DC values. For the samples considered here, we find indications that the interface plays a minor role for the spin-current transmission. Our findings establish terahertz emission spectroscopy as a reliable tool complementing the spintronics workbench.
Formation of singly and doubly charged Arq+ and Tiq+ (q = 1,2) and of molecular Ar 2 +, ArTi+, and Ti 2 + ions in a direct current magnetron sputtering discharge with a Ti cathode and argon as working gas was investigated with the help of energy-resolved mass spectrometry. Measured ion energy distributions consist of low-energy and high-energy components resembling different formation processes. Intensities of Ar 2 + and ArTi+ dimer ions strongly increase with increasing gas pressure. Addition of oxygen gas leads to the formation of positively charged O+, O2 +, and TiO+ and of negatively charged O− and O2 - ions.
Abstract
Alkali ion beams are among the most intense produced by the ISOLDE facility. These were the first to be studied by the ISOLTRAP mass spectrometer and ever since, new measurements have been regularly reported. Recently the masses of very neutron-rich and short-lived cesium isotopes were determined at ISOLTRAP. The isotope 148Cs was measured directly for the first time by Penning-trap mass spectrometry. Using the new results, the trend of two-neutron separation energies in the cesium isotopic chain is revealed to be smooth and gradually decreasing, similar to the ones of the barium and xenon isotopic chains. Predictions of selected microscopic models are employed for a discussion of the experimental data in the region.
AbstractWe propose a new scattering mechanism of Rydberg excitons, i.e., those with high principal quantum numbers, namely scattering by coupled LO phonon-plasmon modes, which becomes possible due to small differences in energies of the states due to different quantum defects. Already in very low-density electron–hole plasmas these provide a substantial contribution to the excitonic linewidth. This effect should allow determining plasma densities by a simple line shape analysis. Whenever one expects that low-density electron–hole plasma is present the plasmon induced broadening is of high significance and must be taken into account in the interpretation.
AbstractMagneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today’s magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future.
AbstractPulsed streamer discharges submerged in water have demonstrated potential in a number of applications. Especially the generation of discharges by short high-voltage pulses in the nanosecond range has been found to offer advantages with respect to efficacies and efficiencies. The exploited plasma chemistry generally relies on the initial production of short-lived species, e.g. hydroxyl radicals. Since the diagnostic of these transient species is not readily possible, a quantification of hydrogen peroxide provides an adequate assessment of underlying reactions. These conceivably depend on the characteristics of the high-voltage pulses, such as pulse duration, pulse amplitude, as well as pulse steepness.A novel electrochemical flow-injection system was used to relate these parameters to hydrogen peroxide concentrations. Accordingly, the accumulated hydrogen peroxide production for streamer discharges ignited in deionized water was investigated for pulse durations of 100 ns and 300 ns, pulse amplitudes between 54 kV and 64 kV, and pulse rise times from 16 ns to 31 ns. An independent control of the individual pulse parameters was enabled by providing the high-voltage pulses with a Blumlein line. Applied voltage, discharge current, optical light emission and time-integrated images were recorded for each individual discharge to determine dissipated energy, inception statistic, discharge expansion and the lifetime of a discharge.Pulse steepness did not affect the hydrogen peroxide production rate, but an increase in amplitude of 10 kV for 100 ns pulses nearly doubled the rate to (0.19 ± 0.01) mol l−1 s−1, which was overall the highest determined rate. The energy efficiency did not change with pulse amplitude, but was sensitive to pulse duration. Notably, production rate and efficiency doubled when the pulse duration decreased from 300 ns to 100 ns, resulting in the best peroxide production efficiency of (9.2 ± 0.9) g kWh−1. The detailed analysis revealed that the hydrogen peroxide production rate could be described by the energy dissipation in a representative single streamer. The production efficiency was affected by the corresponding discharge volume, which was comprised by the collective volume of all filaments. Hence, dissipating more energy in a filament resulted in an increased production rate, while increasing the relative volume of the discharge compared to its propagation time increased the energy efficiency.
Three-dimensional (3D) dynamical properties of fast particles being injected into the void region of a dusty plasma under microgravity conditions have been measured. For that purpose, a stereoscopic camera setup of three cameras has been developed that is able to track and reconstruct the 3D trajectories of individual dust particles. From more than 500 particle trajectories, the force field inside the void region and its influence on particle movement are derived and analyzed in 3D. It is shown that the force field is dominated by forces pointing radially out of the void and that this radial character is reflected in the velocity distributions of particles leaving the void. Furthermore, the structure of the force field is used for measuring the neutral gas friction for the particles inside the void.
Behavior of a porous particle in a radiofrequency plasma under pulsed argon ion beam bombardment
(2010)
The behavior of a single porous particle with a diameter of 250 μm levitating in a radiofrequency (RF) plasma under pulsed argon ion beam bombardment was investigated. The motion of the particle under the action of the ion beam was observed to be an oscillatory motion. The Fourier-analyzed motion is dominated by the excitation frequency of the pulsed ion beam and odd higher harmonics, which peak near the resonance frequency. The appearance of even harmonics is explained by a variation of the particles's charge depending on its position in the plasma sheath. The Fourier analysis also allows a discussion of neutral and ion forces. The particle's charge was derived and compared with theoretical estimates based on the orbital motion-limited (OML) model using also a numerical simulation of the RF discharge. The derived particle's charge is about 7–15 times larger than predicted by the theoretical models. This difference is attributed to the porous structure of the particle.
Abstract
The presented experimental system is a barrier discharge system with plane parallel electrodes. The lateral surface charge distribution being deposited on the dielectric layer during each breakdown is observed optically using the well known electro-optic effect (Pockels effect). The temporal resolution of the surface charge measurement has been increased to 200 ns, and so for the first time it is possible to resolve the charge transfer to the dielectric surface in a single breakdown. In the present measurements, a patterned glow-like barrier discharge is investigated. It is found that the charge reversal in a single discharge spot (microdischarge) starts in the centre and then grows outwards. These experimental findings verify previously unconfirmed predictions from earlier numerical calculations and thereby contribute to a better understanding of the interaction between the plasma and the electrical charge on the electrodes.
An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles with the surrounding plasma for diagnostic purposes. Local electric fields can be determined from the behaviour of particles in the plasma, e.g. particles may serve as electrostatic probes. Since in many cases of applications in plasma technology it is of great interest to describe the electric field conditions in front of floating or biased surfaces, the confinement and behaviour of test particles is studied in front of floating walls inserted into a plasma as well as in front of additionally biased surfaces. For the latter case, the behaviour of particles in front of an adaptive electrode, which allows for an efficient confinement and manipulation of the grains, has been experimentally studied in terms of the dependence on the discharge parameters and on different bias conditions of the electrode. The effect of the partially biased surface (dc and rf) on the charged micro-particles has been investigated by particle falling experiments. In addition to the experiments, we also investigate the particle behaviour numerically by molecular dynamics, in combination with a fluid and particle-in-cell description of the plasma.
Interaction of injected dust particles with metastable neon atoms in a radio frequency plasma
(2008)
Spatial density and temperature profiles of neon metastables produced in a radio frequency (rf) discharge were investigated by means of tunable diode laser absorption spectroscopy. The experiments were performed in the PULVA1 reactor, which is designed for the study of complex (dusty) plasmas. The line averaged measured density is about 1.5×1015 m−3 in the bulk and drops almost linearly in the plasma sheath. The gas temperature is in the range of 370–390 K. The flow of metastable atoms in the plasma sheath deduced from the spatial density distribution is dominated by the flow towards the rf electrode. The sheath length is supposed as the effective diffusion length in the plasma sheath region. This approximation was used to investigate the interaction of injected particles with the plasma. The observations and estimation provide evidence for a significant interaction between metastable atoms and powder particles which is important for energy transfer from the plasma to the particles. The power per unit area absorbed by dust particles due to the collision of metastable atoms with the dust particle surface is in the range of a few tens of mW m−2.
AbstractThe performance of a positively biased external ring anode in combination with a hollow cathode (HC) discharge or a magnetron sputtering (MS) discharge, both with a Ti cathode and with Ar as working gas, is investigated. Plasma and floating potential increase as function of anode voltage. Energy-resolved mass spectrometry reveals that the kinetic energy of argon and titanium ions is enhanced by a positive anode voltage allowing for an effective energy control of plasma ions.
AbstractInfrared IR absorption spectra of melamine-formaldehyde (MF) microparticles confined in an rf plasma are studied at different plasma conditions. Several absorption peaks have been analysed in dependence of plasma power and their temporal evolution. For comparison, the IR absorption spectra of heated MF microparticles without plasma exposition are used to determine the general influence of the temperature on the IR spectra. Measuring the temperature of the particles inside the plasma shows that the temperature is not the only process changing the particles’ IR spectra. Chemical changes of the MF particles with increasing plasma power influence the absorption peak structure.
Abstract
We propose a setup enabling electron energy loss spectroscopy to determine the density of the electrons accumulated by an electropositive dielectric in contact with a plasma. It is based on a two-layer structure inserted into a recess of the wall. Consisting of a plasma-facing film made out of the dielectric of interest and a substrate layer, the structure is designed to confine the plasma-induced surplus electrons to the region of the film. The charge fluctuations they give rise to can then be read out from the backside of the substrate by near specular electron reflection. To obtain in this scattering geometry a strong charge-sensitive reflection maximum due to the surplus electrons, the film has to be most probably pre-n-doped and sufficiently thin with the mechanical stability maintained by the substrate. Taking electronegative CaO as a substrate layer we demonstrate the feasibility of the proposal by calculating the loss spectra for Al2O3, SiO2, and ZnO films. In all three cases we find a reflection maximum strongly shifting with the density of the surplus electrons and suggest to use it for charge diagnostics.
Abstract
Reactive high power impulse magnetron sputtering (HiPIMS) of a cobalt cathode in pure argon gas and with different oxygen admixtures was investigated by time-resolved optical emission spectroscopy (OES) and time-integrated energy-resolved mass spectrometry. The HiPIMS discharge was operated with a bipolar pulsed power supply capable of providing a large negative voltage with a typical pulse width of 100 μs followed by a long positive pulse with a pulse width of about 350 μs. The HiPIMS plasma in pure argon is dominated by Co+ ions. With the addition of oxygen, O+ ions become the second most prominent positive ion species. OES reveals the presence of Ar I, Co I, O I, and Ar II emission lines. The transition from an Ar+ to a Co+ ion sputtering discharge is inferred from time-resolved OES. The enhanced intensity of excited Ar+* ions is explained by simultaneous excitation and ionisation induced by energetic secondary electrons from the cathode. The intensity of violet Ar I lines is drastically reduced during HiPIMS. Intensity of near-infrared Ar I lines resumes during the positive pulse indicating an additional heating mechanism.
Abstract
The presented work highlights the role of residual weakly-bound surface electrons acting as an effective seed electron reservoir that favors the pre-ionization of diffuse barrier discharges (BDs). A glow-like BD was operated in helium at a pressure of 500 mbar in between two plane electrodes each covered with float glass at a distance of
3 mm.The change in discharge development due to laser photodesorption of surface electrons was studied by electrical measurements and optical emission spectroscopy. Moreover, a 1D numerical fluid model of the diffuse discharge allowed the simulation of the laser photodesorption experiment, the estimation of the released surface electrons, and the understanding of their impact on the reaction kinetics in the volume. The breakdown voltage is clearly reduced when the laser beam at photon energy of 2.33 eV hits the cathodic dielectric that is charged with residual electrons during the discharge pre-phase. According to the adapted simulation, the laser releases only a small amount of surface electrons in the order of
10 pC. Nevertheless, this significantly supports the pre-ionization. Using a lower photon energy of 1.17 eV, the transition from the glow mode to the Townsend mode is induced due to a much higher electron yield up to 1 nC. In this case, both experiment and simulation indicate a retarded stepwise release of surface electrons initiated by the low laser photon energy.
Abstract
In this series of two papers we present results about the E-H transition of an inductively coupled oxygen discharge driven at radio frequency (13.56 MHz) for different total gas pressures. The mode transition from the low density E-mode to the high density H-mode is studied using comprehensive plasma diagnostics. The measured electron density can be used to distinguish between the different operation modes. This paper focuses on the determination of the negative atomic ion density and the electronegativity by two experimental methods and global rate equation calculation. As a result, the electronegativity significantly decreases over two orders of magnitude from about 25 in the E-mode to about 0.1 in the H-mode. The temporal behavior of the electronegativity in pulsed ICP shows that the negative atomic ion density reaches a steady state after 10 ms. Negative atomic ions are mainly produced by the dissociative attachment with the molecular ground state. The ion–ion recombination with the positive molecular ions and the collisional detachment with the singlet molecular metastables contribute significantly to the loss of the negative atomic ions.
Abstract
In this series of two papers, the E-H transition in a planar inductively coupled radio frequency discharge (13.56 MHz) in pure oxygen is studied using comprehensive plasma diagnostic methods. The electron density serves as the main plasma parameter to distinguish between the operation modes. The (effective) electron temperature, which is calculated from the electron energy distribution function and the difference between the floating and plasma potential, halves during the E-H transition. Furthermore, the pressure dependency of the RF sheath extension in the E-mode implies a collisional RF sheath for the considered total gas pressures. The gas temperature increases with the electron density during the E-H transition and doubles in the H-mode compared to the E-mode, whereas the molecular ground state density halves at the given total gas pressure. Moreover, the singlet molecular metastable density reaches 2% in the E-mode and 4% in the H-mode of the molecular ground state density. These measured plasma parameters can be used as input parameters for global rate equation calculations to analyze several elementary processes. Here, the ionization rate for the molecular oxygen ions is exemplarily determined and reveals, together with the optical excitation rate patterns, a change in electronegativity during the mode transition.
Abstract
The laser photodetachment experiment in a diffuse helium–oxygen barrier discharge is evaluated by a 1D fluid simulation. As in the experiment, the simulated discharge operates in helium with
400
ppm
oxygen admixture at
500
mbar
inside a discharge gap of
3
mm
. The laser photodetachment is included by the interaction of negative ions with a temporally and spatially dependent photon flux. The simulation with the usually applied set of reactions and rate coefficients provides a much lower negative ion density than needed to explain the impact on the discharge characteristics in the experiment. Further processes for an enhanced negative ion formation and their capabilities of reproducing the experimental results are discussed. These further processes are additional attachment processes in the volume and the negative ion formation at the negatively charged dielectric. Both approaches are able to reproduce the measured laser photodetachment effect partially, but the best agreement with the experimental results is achieved with the formation of negative ions at the negatively charged dielectric.
AbstractFluctuations of electron cyclotron emission (ECE) signals are analyzed for differently heated Wendelstein 7-X plasmas. The fluctuations appear to travel predominantly on flux surfaces and are used as ‘tracers’ in multivariate time series. Different statistical techniques are assessed to reveal the coupling and information entropy-based coupling analysis are conducted. All these techniques provide evidence that the fluctuation analysis allows one to check the consistency of magneto-hydrodynamic (MHD) equilibrium calculations. Expanding the suite of techniques applied in fusion data analysis, partial mutual information (PMI) analysis is introduced. PMI generalizes traditional partial correlation (Frenzel and Pompe Phys. Rev. Lett.
99 204101) and also Schreiber’s transfer entropy (Schreiber 2000 Phys. Rev. Lett.
85 461). The main additional capability of PMI is to allow one to discount for specific spurious data. Since PMI analysis allows one to study the effect of common drivers, the influence of the electron cyclotron resonance heating on the mutual dependencies of simultaneous ECE measurements was assessed. Additionally, MHD mode activity was found to be coupled in a limited volume in the plasma core for different plasmas. The study reveals an experimental test for equilibrium calculations and ECE radiation transport.
AbstractThe efficient operation of a tokamak is limited by several constraints, such as the transition to high confinement or the density limits occurring in both confinement regimes. These particular boundaries of operation are derived in terms of a combination of dimensionless parameters describing interchange-drift-Alfvén turbulence without any free adjustable parameter. The derived boundaries describe the operational space at the separatrix of the ASDEX Upgrade tokamak, which is presented in terms of an electron density and temperature existence diagram. The derived density limits are compared against Greenwald scaling. The power threshold and role of ion heat flux for the transition to high confinement are discussed.
Fast 3D particle reconstruction using a convolutional neural network: application to dusty plasmas
(2021)
AbstractWe present an algorithm to reconstruct the three-dimensional positions of particles in a dense cloud of particles in a dusty plasma using a convolutional neural network. The approach is found to be very fast and yields a relatively high accuracy. In this paper, we describe and examine the approach regarding the particle number and the reconstruction accuracy using synthetic data and experimental data. To show the applicability of the approach the 3D positions of particles in a dense dust cloud in a dusty plasma under weightlessness are reconstructed from stereoscopic camera images using the prescribed neural network.
AbstractAnalytical results for the dielectric function in RPA are derived for three-, two-, and one-dimensional semiconductors in the weakly-degenerate limit. Based on this limit, quantum corrections are derived. Further attention is devoted to systems with linear carrier dispersion and the resulting Dirac-cone physics.
Abstract
Single self-stabilized discharge filaments were investigated in the plane-parallel electrode configuration. The barrier discharge was operated inside a gap of 3 mm shielded by glass plates to both electrodes, using helium-nitrogen mixtures and a square-wave feeding voltage at a frequency of 2 kHz. The combined application of electrical measurements, ICCD camera imaging, optical emission spectroscopy and surface charge diagnostics via the electro-optic Pockels effect allowed the correlation of the discharge development in the volume and on the dielectric surfaces. The formation criteria and existence regimes were found by systematic variation of the nitrogen admixture to helium, the total pressure and the feeding voltage amplitude. Single self-stabilized discharge filaments can be operated over a wide parameter range, foremost, by significant reduction of the voltage amplitude after the operation in the microdischarge regime. Here, the outstanding importance of the surface charge memory effect on the long-term stability was pointed out by the recalculated spatio-temporally resolved gap voltage. The optical emission revealed discharge characteristics that are partially reminiscent of both the glow-like barrier discharge and the microdischarge regime, such as a Townsend pre-phase, a fast cathode-directed ionization front during the breakdown and radially propagating surface discharges during the afterglow.
Surface charge measurements on different dielectrics in diffuse and filamentary barrier discharges
(2017)
Abstract
Previously, we reported on the measurement of surface charges during the operation of barrier discharges (BDs) using the electro-optic Pockels effect of a bismuth silicon oxide (BSO) crystal. With the present work, the next milestone is achieved by making this powerful method accessible to various dielectrics which are typically used in BD configurations. The dynamics and spatial distribution of positive and negative surface charges were determined on optically transparent borosilicate glass, mono-crystalline alumina and magnesia, respectively, covering the BSO crystal. By variation of the nitrogen admixture to helium and the pressure between 500 mbar and 1 bar, both the diffuse glow-like BD and the self-stabilized discharge filaments were operated inside of a gas gap of 3 mm. The characteristics of the discharge and, especially, the influence of the different dielectrics on its development were studied by surface charge diagnostics, electrical measurements and ICCD camera imaging. Regarding the glow-like BD, the breakdown voltage changes significantly by variation of the cathodic dielectric, due to the different effective secondary electron emission (SEE) coefficients. These material-specific SEE yields were estimated using Townsend’s criterion in combination with analytical calculations of the effective ionization coefficient in helium with air impurities. Moreover, the importance of the surface charge memory effect for the self-stabilization of discharge filaments was quantified by the recalculated spatio-temporal behavior of the gap voltage.
In this work, spatial distributions for reactive stable and transient species that are involved
in the reaction cycle of H2O2, a key species for biomedical applications, were
determined directly in the effluent of a kINPen-sci plasma jet. The small diameter
of cold atmospheric pressure plasma jets and their operation at atmospheric pressure
that causes strong quenching reactions make diagnostics challenging. Here, various diagnostic
techniques have been employed and adapted for the use in the effluent of a
cold atmospheric pressure plasma jet, which were laser atomic absorption spectroscopy
(LAAS) at 811.5 nm for the detection of Ar(3P2), picosecond two-photon absorption
laser-induced fluorescence spectroscopy (ps-TALIF) at 225 nm and 205 nm for the
detection of O and H atoms, respectively, and continuous wave cavity ring-down spectroscopy
(cw-CRDS) at 1.506 µm for the detection of HO2, and cw-CRDS at 8000 µm
for the detection of H2O2. All these methods provide absolute number densities. In
this work, spatial distributions within the small diameter of the effluent of a CAPJ
were obtained, which have not been reported so far literature. In order to overcome the
line-of-sight limitations of CRDS, radial scans were performed and transformed into a
spatial distribution by using Abel inversion.
Based on the determined spatial density distributions for H atoms, O atoms, HO2
radicals, and H2O2 molecules, together with the investigated impact of humidity in the
feed gas on the excitation dynamics and the production of Ar(3P2), and finally on a
comparison of the experimental results to a plasma chemical and reacting flow model,
three different zones with varying reaction kinetics were identified. The densities close
to the nozzle of the kINPen-sci plasma jet were dominated by reactions within the
plasma zone including the dissociation of H2O added to the Ar feed gas and O2 that
was presumably transferred into the plasma zone by counter-propagating ionisation
waves. Notably, also the larger molecules, such as HO2 and H2O2 were mainly formed
within the plasma zone of the plasma jet. Between 1.5 mm and 5 mm below the nozzle,
the atomic species and molecular radicals generated in the plasma zone were consumed
by chemical reactions with the surrounding gas, whose composition was controlled by
applying a gas curtain. At further distances from the nozzle, where typically biological
samples are positioned, only H2O2 and HO2 were observed.
With this work, it is successfully demonstrated that even for the small diameters of
cold atmospheric pressure plasma jets the determination of spatial profiles for reactive
transient and stable species is possible within the effluent. By combining the experimental
results, important insights into the formation and consumption of H2O2 and its
precursors were gained, which are essential for the understanding of use of plasmas in
biomedical applications.
The biomechanical (Young's modulus, adhesion force, deformability) properties of platelets depend on the cytoskeleton and have an undisputed influence on physiological and pathological processes such as hemostasis and thrombosis. The alterations of these biomechanical properties can be used as label-free diagnostic markers in initiation or progressive diseases such as MYH9-inherited disease. Therefore, the focus of my thesis was to investigate the relationship between the changes in platelet cytoskeleton proteins and the resulting biomechanical properties using biophysical methods.
In the first chapter of my thesis I focused on my review of the biophysical methods that are most commonly used to assess and quantify the biomechanical properties of platelets. In this review, I provide an in-depth insight into the governing principles and instrumentation setup and discuss relevant examples applied to platelet mechanics. In addition, my review also summarizes the limitations of these biophysical methods and highlight latest improvements. The review covers the following techniques: micropipette aspiration, atomic force microscopy (AFM), scanning ion conductance microscopy (SICM), tensile force microscopy on hydrogel substrates, microcolumns, and deformable 3D substrates, and real-time deformability cytometry (RT-DC). This review is directed toward clinician scientists who are interested in exploring applications of single-cell based biophysical approaches in unraveling the role of platelet biomechanics in hemostasis and thrombosis research.
In the second chapter of my thesis, I present my research paper on the influence of commonly used ex vivo anticoagulants on the intrinsic biomechanical properties and functional parameters (e.g. activation profils) of human platelets. To comprehensively assess this, platelets obtained in different ex vivo anticoagulants such as ACD-A, Na-Citrate, K2-EDTA, Li-Heparin, and r-Hirudin were used, and their biomechanical properties were determined by real-time fluorescence and deformability cytometry (RT-FDC). Flow cytometry, and confocal laser scanning fluorescence microscopy were used to determine platelet function properties. K2-EDTA and Li-Heparin were found to affect platelet biomechanics by increasing actin polymerization of non-stimulated human platelets. This increased actin polymerization results in decreased platelet deformation. It is recommended that an ex vivo anticoagulant such as ACD-A, Na-Citrate, or r-Hirudin be chosen for the study of the cytoskeleton of human platelets and, if possible, that it not be exchanged, because comparability of results is not assured. Furthermore, I demonstrate the significance of choosing correct ex vivo anticoagulants in RT-FDC by showing that platelets from a healthy donor and a MYH9 patient with the E1841K point mutation differ in their deformation. This paper is the first comprehensive investigation at the single platelet level to establish the relevance of preanalytical standardization in platelet sample preparation for biomechanical studies.
The third chapter of my thesis is focused on the biomechanical analyses of platelets and thrombi from MYH9-related disease. Here I studied three Myh9 mouse lines with a point mutation in the Myh9 gene at positions 702, 1424, or 1841. Furthermore, two MYH9 patients (MYH9 p.D1424N, MYH9 p.E1841K) were examined. MYH9-related disease (MYH9-RD) presents with macrothrombocytopenia with a moderate bleeding tendency. It is caused by mutations in the MYH9 gene that lead to alteration of non-muscle myosin heavy chains type IIA (NMMHC IIA), resulting in disruption of the platelet cytoskeleton. Western blot analysis, flow cytometry, in vitro aggregometry, and transmission electron microscopy demonstrated that Myh9 point mutant mice have comparable primary function compared to the control group. The heterozygous point mutations in the Myh9 gene resulted in decreased platelet deformation (RT-FDC), decreased platelet adhesion to collagen (single platelet force spectroscopy-SPFS), and decreased platelet-platelet interaction forces (SPFS). Decreased platelet force (Micropost Arrays) results in softer thrombi (colloidal probe Spectroscopy), impaired clot retraction, and thus prolonged bleeding time. The R702C, D1424N, and E1841K mutations have a similar effect on platelet biomechanical functions, although the E1841K mutation had less impact on thrombus formation and stiffness. MYH9-RD patients have an increased risk of bleeding, and the antifibrinolytic drug tranexamic acid (TXA) is one way to control bleeding complications in these patients. It was shown that TXA treatment significantly reduced bleeding time in the three Myh9 mouse models, confirming that the enhanced bleeding phenotype due to decreased platelet forces in Myh9 mutant mice can be compensated by the addition of TXA.
With the biophysical methods and research results presented in my thesis, it is clear that it is essential to study the altered response of the platelet cytoskeleton by cytoskeletal mutations, biochemical, physical stimuli, or by pharmacological aspects. This will provide us with an opportunity to better understand the underlying mechanisms and thus contribute to better clinical treatment.
Kinetic modeling and infrared spectroscopy of charge carriers across the plasma-wall interface
(2022)
In this thesis, charge transport at the plasma-wall interface is investigated theoretically, on a semiclassical, microscopic level. Based on the Boltzmann and Poisson equations a set of equations is derived and numerically solved to model charge carriers both within a semiconducting wall and a gaseous plasma in front of it. While the plasma is considered collision-free, within the solid, phonon collisions, as well as recombination processes between conduction band electrons and valence band holes are considered. This results, for the first time, in a self-consistent modeling of both the gaseous electron-ion plasma and the electron-hole plasma in the solid on the same footing. Utilizing specific approximations for different physical scenarios, numerical solutions are presented both for the floating and the electronically contacted (biased) interface. In the latter case, the current voltage characteristic is calculated and shown to heavily depend on the charge kinetics within the wall.
Furthermore, we present optical methods to measure the wall charge noninvasively. These utilize the influence of the deposited surplus charges on the optical reflection coefficient of the surface. By calculating the optical response of these charges, we show that the magnitude of the surface charge can be inferred from the change in the reflectivity of the surface caused by the presence of the plasma. While nonlocal effects are considered, it is shown analytically and numerically that these can be neglected at the scales of the considered physical systems.
Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe−/−, n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe−/− mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability.
Indium-cluster anions In−nare probed for delayed dissociation by photoexcitation in a multi-reflection time-of-flight device. In addition to prompt dissociation with below-microsecond decay constants, we observe reactionson timescales of several tens to hundreds of microseconds. These time-resolved decay-rate measurements reveala power-law behavior in time which can be traced back to the clusters’ energy distribution due to their productionby laser ablation in high vacuum. Modeling energy distributions from such a production allows us to connect thecluster-specific dissociation energy with the ensemble temperature through experimentally determined power-law exponents.
The Madden-Julian Oscillation (MJO) is a prominent feature of the intraseasonal variability of the atmosphere. The MJO strongly modulates tropical precipitation and has implications around the globe for weather, climate and basic atmospheric research. The time-dependent state of the MJO is described by MJO indices, which are calculated through sometimes complicated statistical approaches from meteorological variables. One of these indices is the OLR-based MJO Index (OMI; OLR stands for outgoing longwave radiation). The Python package mjoindices, which is described in this paper, provides the first open source implementation of the OMI algorithm, to our knowledge. The package meets state-of-the-art criteria for sustainable research software, like automated tests and a persistent archiving to aid the reproducibility of scientific results. The agreement of the OMI values calculated with this package and the original OMI values is also summarized here. There are several reuse scenarios; the most probable one is MJO-related research based on atmospheric models, since the index values have to be recalculated for each model run.
This work investigates turbulence in the core plasma of the optimised stellarator
Wendelstein 7-X. It focuses on experimental characterisation and
evaluation of the electrostatic micro-instabilities, which drive turbulent fluctuations,
and the saturation of turbulence by zonal flows. Expectations for
Wendelstein 7-X are formulated by reviewing theoretical work and with
the help of gyrokinetic simulations. The experimental analysis centres on
line-integrated density fluctuation measurements with the phase contrast
imagining diagnostic in electron cyclotron heated hydrogen discharges. An
absolute amplitude calibration was implemented, and a method for reliable
determination of dominant phase velocities in wavenumber-frequency
spectra of density fluctuations has been developed. Line-averaged density
fluctuation levels are observed to vary between magnetic configurations.
The wavenumber spectra exhibit a dual cascade structure, indicating fully
developed turbulence. The dominant instability driving turbulent density
fluctuations on transport relevant scales is identified as ion-temperaturegradient-
driven modes, which are mainly localised in the edge region of the
confined plasma. Despite the line-integrated nature of the measurement, the
localisation of density fluctuations is shown by comparing their dominant
phase velocity with the radial profile of the E × B rotation velocity due to
the ambipolar neoclassical electric field. Nonlinear gyrokinetic simulations
and a simplified plasma rotation model within a synthetic diagnostic confirm
the localisation. Oscillations of the dominant phase velocity indicate
the existence of zonal flows as a saturation mechanism of ion-temperaturegradient-
driven turbulence. A direct effect on turbulent density fluctuation
amplitudes and radial transport is observed.
Particle-in-Cell (PIC) simulations are used to model the MS4 test thruster of Thales Deutschland. Given as input the geometric shape, material components, magnetic field and the operating parameters of the experiment, the model is able to reproduce the experimentally observed emission pattern in the plume. This is determined by the magnetic field line structure and the resulting plasma dynamics in the near-field region close to the exit.
Synopsis
Polyanionic metal clusters are produced by electron attachment in both Paul and Penning traps. After size and charge-state selection, the cluster properties are further investigated by various methods including photo-dissociation. Depending on the particular cluster species various decay modes are observed.
The layer-by-layer method is a robust way of surface functionalization using a wide range of materials, e.g. synthetic and natural polyelectrolytes (PEs), proteins and nanoparticles. Thus, this method yields films with applications in diverse areas including biology and medicine. Sequential adsorption of different oppositely charged macromolecules can be used to prepare tailored films with controlled molecular organization. In biomedical research, electrically conductive coatings are of interest. In manuscript 1, we investigated films sequentially assembled from the polycation poly (diallyldimethyl-ammonium) (PDADMA) and modified carbon nanotubes (CNTs), with CNTs serving as the electrically conductive material. We assume that charge transport occurs through CNT contacts. We showed that with more than four CNT/PDADMA bilayers, the electrical conductivity is constant and independent of the number of CNT/PDADMA bilayers. A conductivity up to 4∙10^3 S/m was found. It is possible to control the conductivity with the CNT concentration of the CNT deposition suspension. A higher CNT concentration resulted in thicker CNT/PDADMA bilayers, but in a lower conductivity per bilayer. We suspect that an increased CNT concentration leads to a rapid CNT adsorption without the possibility to rearrange themselves. If PDADMA then adsorbs on the disordered CNTs in the next deposition step, the average thickness of the polymer layer is thicker than on the more ordered CNT layer from the dilute solution. This leads to an increased PE monomer/CNT ratio and lower conductivity. More polycations between the CNT layers leads to less CNT contacts. Thus, the controlled composition of films can be used to fulfill specific requirements.
For many applications of polyelectrolyte multilayers (PEMs), cheap PEs with a broad distribution of molecular weights are used. It was unknown whether the distribution of molecular weights of the PE in the adsorption solution is maintained during the adsorption process and hence in the film. To investigate this, the PSS adsorption solution in article 2 consisted of a binary mixture of short and long poly (styrene sulfonate) (PSS). A good model system to study layered films in terms of composition are PDADMA/PSS multilayers. Neutron reflectivity and in-situ ellipsometry measurements were carried out to determine the PSS composition in the film and the growth regimes. At a mole fraction of long PSS of 5 % or more in solution, the exponential growth (which is characteristic of short PSS) is totally suppressed, and only long PSS is deposited in the resulting multilayer. Variation of adsorption time of PSS showed that short PSS first adsorbs to the surface but is displaced by long PSS. Between 0 and 5 % of long PSS in the adsorption solution exponential growth occurs. The fraction of short PSS in the film continuously decreases with the increase of long PSS in the adsorption solution. In the assembly of films prepared from binary PSS mixtures, the short PSS leaves the film through adsorption/desorption steps both during PSS adsorption and during PDADMA adsorption (as PDADMA/PSS complexes). Both techniques show that the composition of the film does not correspond to that of the deposition solution. The composition and thus the properties of the resulting multilayer are influenced by the choice of adsorption time. Moreover, we conclude that a multilayer grown from a polydisperse polyelectrolyte contains fewer mobile low molecular weight polymers than the deposition solution.
In manuscript 1 and article 2, the composition of multilayers was studied. In manuscript 1 adsorption kinetics were important for the arrangement of CNTs on the surface. In article 2, the adsorption kinetics, i.e. the diffusion of the polyelectrolytes to the surface, was also investigated. In article 3, we investigated the influence of the composition of the film as well as the preparation condition on the mobility of PEs in the film. The molecular weight of the polycation PDADMA and the NaCl concentration of the deposition solution were varied. The vertical PSS diffusion constant D_PSS within the PDADMA/PSS multilayers was measured using neutron reflectivity. The salt concentration of the preparation solution defines the polymer conformation during deposition. The molecular weight of the polycation determines the degree of intertwining. Together, both parameters determine the polyanion-polycation coupling and thus the PSS mobility within the network. Log−log display of D_PSS vs the molecular weight of PDADMA and fits to two power laws (D_PSS ∝ X_n(PDADMA)^(-m) ∝ M_w(PDADMA)^(-m)) reveals for films built from 10 or 200 mM NaCl a kink. Below and above the kink, the dependence of D_PSS on M_w(PDADMA) can be described by different power laws. For Χ_n(PDADMA) < X_n,kink(PDADMA) ≈ 288, the exponents are consistent with the predictions of the sticky reptation model. X_n(PDADMA) ≈ 288 is the entanglement limit. For Χ_n(PDADMA) > X_n,kink(PDADMA) ≈ 288, the decrease of D_PSS with M_w(PDADMA) is larger than below the entanglement limit, which is indicative of sticky reptation and entanglement. The PSS diffusion constant of films built from 100 mM NaCl drops three orders of magnitude when increasing the molecular weight of PDADMA from 45 kDa to 72 kDa. To figure out if an immobile PSS fraction exists in the film built from 72 kDa PDADMA (beyond the entanglement limit), the film was annealed at different conditions in article 4: both temperature and salt concentration were varied. For data analysis, the simplest model with two PSS fractions with different diffusion constants was used. These diffusion constants increase as the temperature of the surrounding solution is increased. As assumed in article 3, an immobile PSS fraction exists when annealing at room temperature. At higher annealing temperatures, at least two diffusion processes must be distinguished: the diffusion of the highly mobile PSS fraction through the entire film and a slow PSS fraction, mowing in a limited way. The choice of preparation conditions determines whether a polyelectrolyte multilayer can intermix completely. It is not clear if complete intermixing will ever occur for films built with PDADMA beyond the entanglement limit. It is possible that the diffusion is more complex. Long-term measurements will clarify this question. Calculating scattering length density profiles with subdiffusive behavior would be interesting and is a challenge for the future. Furthermore, immobile fractions are only visible with long annealing times. We hypothesize that an immobile or nearly immobile fraction is present whenever the dependence of D_PSS on the molecular weight of PDADMA cannot be described by the sticky reptation. To verify this hypothesis, further studies are necessary.
All results presented and discussed in the manuscript and articles show that by varying the preparation conditions, tailored films can be built. The composition of the film is also determined by the adsorption kinetics. In addition, the mobility of the PEs within the multilayers can be controlled by varying the conformation, mingling and entanglement of the chains within the film. The influence of the salt concentration in the preparation solution on the growth regimes during film formation is part of our future research. It is planned to investigate films built of different PDADMA molecular weights under varied annealing conditions to better understand the mobile and immobile fractions.
Cell mechanical properties reveal substantial information on cell state and function. Utilizing mechanics as a label-free biomarker allows for investigation of fundamental cellular processes as well as biomedical applications, e.g., disease diagnosis. High-throughput methods for accessing the elastic properties of cells in suspension from hydrodynamic deformation in a microfluidic constriction are available with real-time analysis rates of up to 1000 cells per second. However, accessing elastic as well as viscous properties of cells and multicellular systems in suspension as well as adhered to surfaces at high throughput has not been possible so far. In this thesis, I approached this question and developed as well as applied microfluidic and holographic technologies to analyze the viscoelastic properties of single cells and multicellular aggregates, respectively.
First, I demonstrated that real-time deformability cytometry (RT-DC) can be applied in transfusion medicine, where the highest quality standards have to be maintained while blood product release is time-critical. We showed for platelet and red blood cell concentrates as well as for hematopoietic stem cells that their mechanical properties can be used for label-free quality assessment. The results have been published in Lab on a Chip (Aurich et al. 2020).
For RT-DC and many other methods based on hydrodynamic deformation, the constriction size has to be adapted to the objects of interest to allow for a shear-induced deformation. We introduced virtual fluidic channels, which are established by two co-flowing aqueous polymer solutions. Virtual fluidic channels can be precisely adjusted in their cross section, allowing for mechanical phenotyping of single cells as well as cell clusters or tissue spheroids in one microfluidic system. Importantly, measurements can also be performed in standard microfluidic geometries beyond soft lithography, e.g., in the cuvette of a flow cytometer. For cell spheroids as a model system for multicellular aggregates, we show a 10-fold lower Young's modulus of the tissue compared to single-cell mechanics, suggesting cell-cell and cell-matrix interactions being potential contributors to the mechanics of multicellular aggregates. Our work on virtual fluidic channels has been published in Nature Communications (Panhwar et al. 2020).
Within this thesis, I expanded the high-throughput elastic phenotyping performed by RT-DC towards viscoelastic cell properties by developing dynamic real-time deformability cytometry (dRT-DC). Dynamic tracking of cells while passing the microfluidic constriction allows to access steady-state (elasticity) and time-dependent (viscosity) material properties for a complete viscoelastic characterization of cells in suspension at high throughput. I introduced a shape mode decomposition based on a Fourier transformation, which allows to disentangle the superimposed stress responses to an extensional stress at the channel inlet and a constant shear stress in the channel. These hydrodynamic stress distributions are present in almost every microfluidic channel geometry. From the separated stress responses, viscoelastic material properties can be determined independent of cell shape.
We demonstrated experimentally the sensitivity of dRT-DC to cytoskeletal alterations and confirmed the validity of the method by reference measurements on calibrated hydrogel beads. In our work, we also presented a viscoelastic fingerprint of the major subpopulations of peripheral blood: erythrocytes, granulocytes, and peripheral blood mononuclear cells (PBMCs) (e.g., lymphocytes and monocytes), all characterized by the same method. The technique and the results have been published in Nature Communications (Fregin et al. 2019).
In cell mechanical methods based on hydrodynamic deformation, cell shape is usually monitored while a stress is applied. For extraction of material properties as well as for studying shape dynamics, it is essential to describe cell shape yielding highest strain differences for a given microfluidic system and experimental setting. Using dRT-DC, I compared nine different shape descriptors to analyze cell deformation in an extensional as well as shear flow. A relaxation time analysis was performed on different levels of data aggregation from single cells to an ensemble scale. I demonstrated that the steady-state deformation can be predicted from stress response curves without them reaching the steady-state. This is important for cell mechanical measurements in microfluidic systems as the characteristic times are unknown in general and as the channel length is fixed. In addition, by introducing a cut-off criterion for how much of the response trace needs to be captured within the channel, the analysis time per cell can be reduced while material properties can still be extracted. Performing simulations, I compared the accuracy of relaxation times extracted from ensemble and single-cell studies under experimental conditions. Introducing a scoring system to evaluate which combinations of shape descriptors and analysis strategies provide biggest effect size, we concluded that single-cell analyses in an extensional flow are most sensitive to cytoskeletal modifications independent of shape parametrization. The manuscript was submitted to the Biophysical Journal.
Finally, I translated the fast non-contact cell mechanical probing from suspension to adherent cells. No such technology has been available and with the majority of cells being adherent, a robust label-free method for mechanophenotyping at high-throughput is required. Within this thesis, I have introduced and realized a new concept: holographic vibration spectroscopy (HVS), where adherent cells are mechanically excited on a vibrating surface while their height oscillations are measured optically. Analysis is done in an interferometric heterodyne setup by using frequency multiplexing and time-averaged holography in off-axis configuration. Based on interference images captured by a high-speed complementary metal-oxide-semiconductor (CMOS) camera, I established a mathematical model to reconstruct the vibration amplitude of adherent cells as well as their retardation phase compared to the exciting vibration. From the amplitude and phase response, viscoelastic parameters can be derived, which have to be investigated in subsequent studies.
In summary, I introduced in my work two high-throughput methods for the viscoelastic characterization of suspended as well as adherent cells while highlighting applications in tissue mechanics and transfusion medicine that are relevant not only in basic but also in translational research.
This thesis discusses three publications in the field of dusty plasmas.
In the first section, measurements of the ir absorption of silica nanoparticles confined in an argon radiofrequency plasma discharge using a Fourier transform infrared spectrometer have been performed. By varying the gas pressure of the discharge and duty cycle of the applied radiofrequency voltage, a shift of the absorption peak of silica is observed. This shift is attributed to charge-dependent absorption features of silica. The charge-dependent shift has been calculated for silica particles, and from comparisons with the experiment the particle charge has been retrieved using the infrared phonon resonance shift method. With the two different approaches of changing the gas pressure and altering the duty cycle, one is able to deduce a relative change of the particle charge with pressure variations and an absolute estimate of the charge with the duty cycle.
In the second part, infrared (IR) absorption spectra of melamine-formaldehyde (MF) microparticles confined in an rf plasma are studied at different plasma conditions. Several absorption peaks have been analysed in dependence of plasma power and their temporal evolution. For comparison, the IR absorption spectra of heated MF microparticles without plasma exposition are used to determine the general influence of the temperature on the IR spectra. Measuring the temperature of the particles inside the plasma shows that the temperature is not the only process changing the particles' IR spectra. Chemical changes of the MF particles with increasing plasma power influence the absorption peak structure.
Finally, experiments on dust clusters trapped in the sheath of a radio frequency discharge have been performed for different magnetic field strengths ranging from a few milliteslas to 5.8 T. The dynamics of the dust clusters are analyzed in terms of their normal modes. From that, various dust properties such as the kinetic temperature, the dust charge, and the screening length are derived. It is found that the kinetic temperature of the cluster rises with the magnetic field, whereas the dust charge nearly remains constant. The screening length increases slightly at intermediate magnetic field strengths. Generally, the dust properties seem to correlate with magnetization parameters of the plasma electrons and ions, however only to a small degree.
This thesis describes how the data of the Langmuir probes in the Wendelstein 7-X (W7X) Test Divertor Unit (TDU) were evaluated, checked for consistency with other diagnostics and used to analyse plasma detachment.
Langmuir probes are an electronic diagnostic, and were among the first to be used in plasma physics to determine particle fluxes, potentials, temperatures and densities.
W7X is a large, advanced stellarator, magnetic confinement fusion experiment, operated at the Max-Planck-Institut for Plasma Physics(IPP) in Greifswald, Germany.
Its TDU is an uncooled graphite component, shaped and positioned to intercept the convective heat load of the plasma.
Detachment describes a desirable operation state of strongly reduced loads on this component.
The evaluation of Langmuir probe data relies heavily on models of the sheath, formed at the interface between plasma and a solid surface, to infer plasma parameters from the directly measured quantities.
Multiple such models are analysed, generalised, and adapted to our use case.
A detailed comparison is made to determine the most suitable model, as this choice strongly affects the predicted parameters.
Special attention is paid to uncertainties on the parameters, which are determined using a Bayesian framework.
From the inferred parameters, heat and particle fluxes are calculated.
These are also indirectly measured by two other, camera-based diagnostic systems.
Observations are compared to test the validity of assumptions and calculations in the evaluation of all three diagnostics by checking their results for consistency.
The first comparison, with the infrared emission camera system, shows good agreement with theoretical predictions and reported measurements of the sheath transmission factor, for which we derive and measure a value in W7X.
Parameter dependencies in the quality of this agreement hint at remaining issues.
The second comparison, with the Hydrogen alpha photon flux camera system, shows significant discrepancy with expectations.
These are argued to originate from systematic differences in the measurement locations, which are quantified and related to the magnetic topology.
Langmuir probe observations of individual discharges are analysed to discuss conditions under which detachment occurs, transition into that state and fluctuations observed prior to and during it.
A spatial parametrisation of the data is developed and used to facilitate this.
These observations contribute to the larger aim of understanding particle balance control and fusion plasma edge processes.
Three-dimensionally extended dusty plasmas containing mixtures of two particle species of different size have been investigated on parabolic flights. To distinguish the species even at small size disparities, one of the species is marked with a fluorescent dye, and a two-camera video microscopy setup is used for position determination and tracking. Phase separation is found even when the size disparity is below 5%. Particles are tracked to obtain the diffusion flux, and resulting diffusion coefficients are in the expected range for a phase separation process driven by plasma forces. Additionally, a measure for the strength of the phase separation is presented that allows to quickly characterize measurements. There is a clear correlation between size disparity and phase separation strength.
Molecular dynamics simulations of binary dusty plasmas have been performed and their behavior with respect to the phase separation process has been analyzed. Here as well, it is found that even the smallest size disparities lead to phase separation. The separation is due to the force imbalance on the two species and the separation becomes weaker with increasing mean particle size.
In the second part of the thesis, Experiments on self-excited dust-density waves under various magnetic fields have been performed. For that purpose, different dust clouds of micrometer-sized dust particles were trapped in the sheath of a radio frequency discharge. The self-excited dust-density waves were studied for magnetic field strengths ranging from 0 mT to about 2 T. It was observed that the waves are very coherent at the lowest fields (B < 20 mT). At medium fields (20 mT < B < 300 mT), the waves seem to feature a complex competition between different wave modes before, at even higher fields, the waves become more coherent again. At the highest fields (B > 1 T), the wave activity is diminished. The corresponding wave frequencies and wavenumbers have been derived. From the comparison of the measured wave properties and a model dispersion relation, the ion density and the dust charge are extracted. Both quantities show only little variation with magnetic field strength.
Modern space missions depend more and more on electric propulsion devices for in-space
flights. The superior efficiency by ionizing the feedgas and propelling them using electric
fields with regard to conventional chemical thrusters makes them a great alternative. To
find optimized thruster designs is of high importance for industrial applications. Building
new prototypes is very expensive and takes a lot of time. A cheaper alternative is to rely
on computer simulations to get a deeper understanding of the underlying physics. In order
to gain a realistic simulation the whole system has to be taken into account including the
channel and the plume region. Because numerical models have to resolve the smallest time
and spatial scales, simulations take up an unfeasible amount of time. Usually a self-similarity
scaling scheme is used to greatly speed up these simulations. Until now the limits of this
method have not been thoroughly discussed. Therefore, this thesis investigates the limits
and the influence of the self-similarity scheme on simulations of ion thrusters. The aim
is to validate the self-similarity scaling and to look for application oriented tools to use
for thruster design optimization. As a test system the High-Efficiency-Multistage-Plasma
thruster (HEMP-T) is considered.
To simulate the HEMP-T a fully kinetic method is necessary. For low-temperature plasmas,
as found in the HEMP-T, the Particle-in-Cell (PIC) method has proven to be the best
choice. Unfortunately, PIC requires high spatial and temporal resolution and is hence
computationally costly. This limits the size of the devices PIC is able to simulate as well
as limiting the exploration of a wider design space of different thrusters. The whole system
is physically described using the Boltzmann and Maxwell equations. Using these system
of equations invariants can be derived. In the past, these invariants were used to derive a
self-similarity scaling law, maintaining the exact solution for the plasma volume, which is
applicable to ion thrusters and other plasmas. With the aid of the self-similarity scaling
scheme the computation cost can be reduced drastically. The drawback of the geometrical
scaling of the system is, that the plasma density and therefore the Debye length does not
scale. This expands the length at which charge separation occurs in respect to the system
size. In this thesis the limits of this scaling are investigated and the influence of the scaling
at higher scaling factors is studied. The specific HEMP-T design chosen for these studies is
the DP1.
Because the application of scaling laws is limited by the increasing influence of charge separation with increased scaling, PIC simulations still are computationally costly. Another approach to explore a wider design space is given using Multi-Objective-Design-Optimization
(MDO). MDO uses different tools to generate optimized thruster designs in a comparatively
short amount of time. This new approach is validated using the PIC method. During this
validation the drawback of the MDO surfaces. The MDO calculations are not self-consistent
and are based on empirical values of old thruster designs as input parameters, which not
necessarily match the new optimized thruster design. By simulating the optimized thruster
design with PIC and recalculate the former input parameters, a more realistic thruster design is achieved. This process can be repeated iteratively. The combination of self-consistent
PIC simulations with the performance of MDO is a great way to generate optimized thruster
designs in a comparatively short amount of time. The proof of concept of such a combination
is the pinnacle of this thesis.
The first Therapeutic ROS and Immunity in Cancer (TRIC) meeting was organized by the excellence research center ZIK plasmatis (with its previous Frontiers in Redox Biochemistry and Medicine (FiRBaM) and Young Professionals’ Workshop in Plasma Medicine (YPWPM) workshop series in Northern Germany) and the excellence research program ONKOTHER-H (Rostock/Greifswald, Germany). The meeting showcased cutting-edge research and liberated discussions on the application of therapeutic ROS and immunology in cancer treatment, primarily focusing on gas plasma technology. The 2-day hybrid meeting took place in Greifswald and online from 15–16 July 2021, facilitating a wide range of participants totaling 66 scientists from 12 countries and 5 continents. The meeting aimed at bringing together researchers from a variety of disciplines, including chemists, biochemists, biologists, engineers, immunologists, physicists, and physicians for interdisciplinary discussions on using therapeutic ROS and medical gas plasma technology in cancer therapy with the four main sessions: “Plasma, Cancer, Immunity”, “Plasma combination therapies”, “Plasma risk assessment and patients studies”, and “Plasma mechanisms and treated liquids in cancer”. This conference report outlines the abstracts of attending scientists submitted to this meeting.
Surface Stoichiometry and Depth Profile of Tix-CuyNz Thin Films Deposited by Magnetron Sputtering
(2021)
Organic molecules are the carbon-based complex of several atoms, is an innovative and essential element to create nano-structural platforms, as a building block in the
field of organic electronics and organic spintronics. Because of its variety and functionality via widely studied synthetic methods, molecules have played an important role in electronics as not only a transport channel in bulk form but also a tuning layer
at the interface of hetero structures. The potential of molecular layers has also stood out in spintronics, owing to its mass-low composition producing long spin life time.
Organic materials can be employed in spintronics applications, benefiting from their low cost, ease of processing, and chemical tunability. Beyond this advantage, the configuration
of molecules on a metal film displays unique phenomena as it can control the molecular spins and interfacial coupling between them, resulting in the emergence
of molecular spinterface.
This thesis work focuses on identifying the interfacial properties between the ferromagnet and the Phenalenyl (PLY) based metal complexes. The growth morphology study of the copper-phenalenyl Cu-PLY based molecules influence the electronic coupling between the molecular layer and the ferromagnet. Zinc- Phenalenyl (ZMP) molecule already have been studied [1] by demonstrate the formation of a spinterface,
resulting interface magneto resistance (IMR) close to room temperature. The
spinterface formation leads to the unique property, that a magnetic tunnel junction
with a ZMP barrier requires only one ferromagnetic metal layer, while the other ferromagnetic layer is formed in the organic barrier directly at the ferromagnet/organic
barrier interface. Here we compare Phenaleny, Copper-Phenaleny Cu-PLY and Zincmethyl- phenaleny molecule based MTJ electrical and magnetic properties which will
be suitable for tunnel barrier and can be used for stable memory devices. We tune the magnetic property of ferromagnet and forma hybrid interface without any oxide layers in between the ferromagnet and molecular layers. The tuning of magnetic properties
via the molecular approach will certainly extend versatile functionalities of organic spinterfaces.
Abstract
The anomalous Hall effect (AHE) is a fundamental spintronic charge‐to‐charge‐current conversion phenomenon and closely related to spin‐to‐charge‐current conversion by the spin Hall effect. Future high‐speed spintronic devices will crucially rely on such conversion phenomena at terahertz (THz) frequencies. Here, it is revealed that the AHE remains operative from DC up to 40 THz with a flat frequency response in thin films of three technologically relevant magnetic materials: DyCo5, Co32Fe68, and Gd27Fe73. The frequency‐dependent conductivity‐tensor elements σxx and σyx are measured, and good agreement with DC measurements is found. The experimental findings are fully consistent with ab initio calculations of σyx for CoFe and highlight the role of the large Drude scattering rate (≈100 THz) of metal thin films, which smears out any sharp spectral features of the THz AHE. Finally, it is found that the intrinsic contribution to the THz AHE dominates over the extrinsic mechanisms for the Co32Fe68 sample. The results imply that the AHE and related effects such as the spin Hall effect are highly promising ingredients of future THz spintronic devices reliably operating from DC to 40 THz and beyond.
Development of an Electrostatic Ion Beam Trap for Laser Spectroscopy of Short-lived Radionuclides
(2021)
Due to its high accuracy and resolution, collinear laser spectroscopy (CLS) is a powerful tool to measure nuclear ground state properties such as nuclear spins, electromagnetic moments and mean-square charge radii of short-lived radionuclides. Performing CLS with fast beams (>30 keV) provides an excellent spectral resolution approaching the natural linewidth. However, its fluorescence-light detection limits its successful application to nuclides with yields of more than several 100 to 10,000 ions/s, depending on the specific case and spectroscopic transition. To extend its reach to the most exotic nuclides with very low production yields far away from stability, more sensitive methods are needed. For this reason, the novel Multi Ion Reflection Apparatus for CLS (MIRACLS) is currently under development at ISOLDE/CERN. This setup aims to combine the high resolution of conventional fluorescence based CLS with a high experimental sensitivity, enhanced by a factor of 30 to 700 depending on the mass and lifetime of the studied nuclide. By repetitively reflecting the ion beam between the electrostatic mirrors of an electrostatic ion beam trap, often also called Multi-Reflection Time of Flight (MR-ToF) device, the laser beam probes the ion bunch during each revolution. Therefore, the observation time is extended and the experimental sensitivity is enhanced compared to conventional single-passage CLS. As part of this thesis, a MIRACLS proof-of-principle apparatus has been constructed around an MR-ToF system, operating at ~1.5 keV beam energy, which has been upgraded for the purpose of CLS. The goal of this setup is to demonstrate the potential of the MIRACLS concept, to benchmark simulations that are employed to design a future device operating at 30 keV, and to further develop the technique. For this purpose, CLS measurements with ions of stable magnesium and calcium isotopes are performed. This data serves to characterise the performance of the new method, especially in terms of gain in sensitivity and measurement accuracy.
In this thesis, the transport properties of topological insulators are investigated. In contrast to trivial insulators, topological insulators possess conducting boundary states which cross the bulk energy gap that separates the highest occupied electronic band from the lowest unoccupied band. The materials used in this thesis are three-dimensional topological insulators with time-reversal symmetry. Their associated helical surface states are protected against elastic backscattering by Kramers degeneracy. The unique properties of the helical surface states can be utilized to generate spin-polarized currents at the surface of topological insulators and to control their propagation direction. This makes them a promising material class for the field of spintronics.
Here, we perform photocurrent scans of topological insulator Hall bar and nanowire devices. From these measurements, we obtained two-dimensional maps of the polarization-independent and helicity-dependent components of the photocurrents.
We find that the polarization-independent component is dominated by the Seebeck effect and thus driven by thermoelectric currents. On the other hand, the helicity-dependent component is driven by the spin-polarized currents that emerge from the topologically non-trivial helical surface states via the circular photogalvanic effect.
First and foremost, our experiments demonstrate that topological insulator nanowires provide a promising platform for the generation of spin-polarized currents, whose direction can be controlled via the helicity of the excitation light. They also highlight the importance of analysing the spatial distribution of the photocurrent, as we observe a strong enhancement of the spin-polarized current and the thermoelectric current at the interface between the nanowire and the metallic contacts. As our analysis shows, the thermoelectric current is enhanced by the Schottky effect and the spin-polarized current is amplified by the spin Nernst effect. In addition, the spin Nernst effect is also present in Hall bar devices and manifest as an enhancement of the spin-polarized current along the Hall bar sides.
Motiviert durch den Vorschlag einer direkten, optischen Ladungsmessung an Staubteilchen wird die Lichtstreuung an den dielektrischen Kern-Schale-Teilchen tiefgehend untersucht.
Das Streuregime wird durch Analyse des Nah- und Fernfeldes unter Verwendung von Methoden, die für homogene Teilchen entwickelt wurden, eingehend charakterisiert und eine Verallgemeinerung der dazu verwendeten Funktionen auf ein k-fach beschichtetes Teilchen angegeben. Dabei werden die sich im Teilcheninneren manifestierenden Effekte der Hybridisierung der beiden Oberflächenphononen des Kern-Schale-Teilchens herausgearbeitet und visualisiert.
Die vorliegende Untersuchung der unterschiedlichen Kenngrößen ermöglicht ein detailliertes und umfangreiches Verständnis der Lichtstreuung an dielektrischen Kern-Schale-Teilchen und der Art und Weise, wie sich die Hybridisierung der Oberflächenphononen auf diese auswirkt.
Die dabei analysierte Interferenzstruktur des elektromagnetischen Feldes in der Teilchenschale, berechnet mittels der vollen Mie-Rechnung, passt zur Interpretation der optischen Antwort des Kern-Schale-Teilchens mithilfe der Hybridisierungstheorie.
Dieses Hybridisierungsbild und somit die Subsysteme und ihre Wechselwirkung werden in dieser Arbeit aus den analytisch exakten Mie-Koeffizienten heraus präpariert, um die neue Sichtweise mit der alten Mie-Theorie zusammenzubringen.
Die Idee einer spektroskopische Ladungsmessung wird im Hinblick auf die Bestimmung der Wandladung aufgegriffen. Die bisherigen Methoden zur Ladungsmessung sind zwar vielfältig, bieten jedoch nur Zugang zur absoluten Wandladung und liefern keine Informationen über ihre Verteilung senkrecht zur Oberfläche oder über die Dynamik der Aufladung.
Beides wäre jedoch für ein mikroskopisches Verständnis der Plasma-Wand-Wechselwirkung notwendig, sodass die Elektronenenergieverlustspektroskopie zur Ladungsbestimmung vorgeschlagen wird. Die Methode wird zunächst anhand einer lokalen Antworttheorie für verschiedene in die Wand eingesetzte Schichtstrukturen ausgelotet und aufgrund vielversprechender Resultate anschließend mittels der im betrachteten Parameterbereich notwendigen nichtlokalen Antworttheorie eingehend untersucht. Diese Theorie erfasst die Anregung von Resonanzen höherer Moden, die sich als besonders sensitiv auf die zusätzlichen Ladungsträger erweisen. Insgesamt wird ein experimenteller Aufbau mit einer geeigneten, in die Plasmakammerwand einsetzbaren Schichtstruktur vorgeschlagen, mit dem die Wandladung durch Elektronenenergieverlustspektroskopie bestimmt werden könnte.