Global climate change is occurring all over the world, but in the Arctic the climate is changing more rapidly and drastically than in many other parts of our planet. Many species that are already at their climatic limit need to adapt to recent climate conditions or migrate in order to not go extinct. The possibilities of adaption include phenotypic plasticity and adaptation to various extents. This is also the case for white spruce P. glauca, which belongs to the conifers and thus in the largest group of gymnosperms still living today. Among the approx. 600 extant conifer species white spruce is one of the most widespread trees in North American boreal forests. Its range extends from 69° N in the Canadian Northwest Territories to the Great Lakes at about 44° N, where it occurs from sea level to an altitude of about 1520 m (Burns and Honkala, 1990). Site related, climate-dependent differences in white spruce reproduction can be seen as a strategy to survive under the harsh climatic conditions at Alaska's treelines: Besides sexual reproduction, the vegetative propagation occurs in the white spruce as an additional reproductive mechanism. This can be realized by "layering" when the lower branches of the tree crown touch the ground and develop roots to later grow as a separate individual with or without a connection to the mother tree. Known as other mechanisms of vegetative propagation are also the rooting of fallen trees which were not completely uprooted, and the "root suckering", in which new shoots sprout from the roots of the tree. However, the latter was not yet observed in the genus Picea. With the help of short, repetitive, non-coding sequences in the genome, which are therefore not subject to selection and are called microsatellites, these clones can be determined by genotyping.
For this purpose, using different polymorphic microsatellites, an individual multilocus genotype is created for each tree, by means of which it can be compared with all other trees of the same species.
In the first part of this work (article I), the occurrence of clones in three study areas at Alaskan treelines are examined and the reasons for their appearance in variable numbers are discussed. For this purpose, 2571 white spruces (P. glauca) were genotyped and their position was determined via differential GPS in the field. The percentage of clonal trees is higher in areas with harsh climatic conditions and correlates with the height of the lowest branches of the tree crown. This suggests that the vegetative propagation of white spruce is a backup strategy for times when climatic conditions hamper sexual reproduction. The correlation between clone numbers and tree crown height suggests "layering" as the main mechanism for cloning whereas selection for vegetative reproduction seems to be very unlikely shown by the results for genetic differentiation between the clonal and the singleton trees in this study.
In the second part of this work (articles II and III), the influence of environmental factors and phenotypic traits on the mycobiome of the needles (including all fungi living on (epiphytic) and in (endophytic) the needles) in our study areas in Alaska was investigated. The mycobiome of the white spruce needles was chosen as a proxy for the parasite infection rate by fungi and thus serves as a fitness parameter. For this purpose, all epiphytic and endophytic fungal species were analyzed by a metabarcoding analysis.
In article II, 48 trees of one study area at Alaska’s northern treeline (Brooks Range) were examined for differences in mycobiome due to genetic differentiation, phenotypic characteristics and / or habitat characteristics. The trees used for this study were sampled from two adjacent plots on a south-facing mountain slope with an elevation gradient from 875 to 950 meters above sea level. It could be shown that, in contrast to the trees genotype, the height above sea level, the mountain slope, as well as the height and age of the trees have a significant impact on the mycobiome. The genetic differentiation between the tree individuals, however, showed no significant effect.
Based on article II we examined the mycobiome composition of a total of 96 trees in 2 plots (16 trees each) at three sites in Alaska over a distance of 500 kilometers. Additionally, we sampled needles of two different ages for each tree (current year and three years old needles) summing up to 192 samples in total. The incentive of this study (article III) was to investigate the influence of origin and age of spruce needles on their mycobiome and if there is a genetic predisposition that is related to the fungal species community. In addition, the sampling design was improved by collecting needles from all four orientations (North, South, East and West) and sampling trees at a standardized distance to each other to avoid systematic errors. Comparable to article II the influence of the trees genetics on the species community of the epiphytic and endophytic fungi of the white spruce needles seems to be very unlikely. In contrast, a significant influence of the geographic origin and the needle age on the species structure of the needle inhabiting fungal species was found. The phenotypic tree traits height and dbh (diameter at breast height) had only minor influence and did in fact explain less than 2% of the mycobiome variance. Using Illumina sequencing, 10.2 million reads from the nucleotide sequence between the internal transcribed spacer (ITS) genes could be obtained, which yielded in 1575 ribotypes (called operational taxonomic unit, OTU) for the fungi. These were compared with a reference database to compare and assign them to known fungal species. For example, 942 OTUs with >95% similarity could be identified as known species, with 1975 samples identified on genus level and 2683 when determined to family level. The most pronounced difference between the two studies (article II and III) were due to the fungal species of the class of Pucciniomycetes, more specifically the genus Chrysomyxa which belongs to the rust fungi and is plant pathogenic. In the study of article II (sampling in 2012), Pucciniomycetes accounted for only a minor portion of the assigned DNA sequences. In the second study (article III, sampling in 2015) they accounted for more than half of all basidiomycetes found, which in turn contain 20.0% of all DNA sequences, the second largest phylum found beside Ascomycetes (51.4%).
Individual white spruce (Picea glauca (Moench) Voss) growth limitations at treelines in Alaska
(2018)
White spruce (Picea glauca (Moench) Voss) is one of the most common conifers in Alaska and various treelines mark the species distribution range. Because treelines positions are driven by climate and because climate change is estimated to be strongest in northern latitudes, treeline shifts appear likely. However, species range shifts depend on various species parameters, probably most importantly on phenotypic plasticity, genetic adaptation
and dispersal. Due to their long generation cycles and their immobility, trees evolved to endure a wide variety of climatic conditions. In most locations, interannual climate variability is larger than the expected climate change until 2100. Thus treeline position is typically thought of as the integrated effect of multiple years and to lag behind gradual climate change by several decades. Past dendrochronological studies revealed that growth of white spruce in Alaska can be limited by several climatic variables, in particular water stress and low temperatures. Depending on how the intensity of climate warming, this could result in a leading range edge at treelines limited by low temperatures and trailing treelines where soil moisture is or becomes most limiting. Climate-growth correlations are the dendrochronological version of reaction norms and describe the relationship between an environmental variable and traits like tree-ring parameters (e.g. ring width, wood density, wood anatomy). These correlations can be used to explore potential effects of climate change on a target species. However, it is known that individuals differ with respect to multiple variables like size, age, microsite conditions, competition status or their genome. Such individual differences could be important because they can modulate climate-growth relationships and consequently also range shifts and growth trends. Removing individual differences by averaging tree-ring parameters of many individuals into site chronologies could be an oversimplification that might bias estimates of future white spruce performance. Population dynamics that emerge from the interactions of individuals (e.g. competition) and the range of reactions to the same environmental drivers can only be studied via individual tree analyses. Consequently, this thesis focuses on factors that might alter individual white spruce’ climate sensitivity and methods to assess such effects. In particular, the research articles included explore three topics:
1. First, clones were identified via microsatellites and high-frequency climate signals of clones were compared to that of non-clonal individuals. Clonal and non-clonal individuals showed similar high-frequency climate signals which allows to use clonal and non-clonal individuals to construct mean site chronologies. However, clones were more frequently found under the harsher environmental conditions at the treelines which could be of interest for the species survival strategy at alpine treelines and is further explored in the associated RESPONSE project A5 by David Würth.
2. In the second article, methods for the exploration and visualization of individual-tree differences in climate sensitivity are described. These methods represent a toolbox to explore causes for the variety of different climate sensitivities found in individual
trees at the same site. Though, overlaying gradients of multiple factors like temperature, tree density and/or tree height can make it difficult to attribute a single cause to the range of reaction norms (climate growth correlations).
3. Lastly, the third article attempts to disentangle the effect of age and size on climate-growth correlations. Multiple past studies found that trees of different Ages responded differently to climatic drivers. In contrast, other studies found that trees do not age like many other organisms. Age and size of a trees are roughly correlated, though there are large differences in the growth rate of trees, which can lead to smaller trees that are older than taller trees. Consequently, age is an imperfect Proxy for size and in contrast to age, size has been shown to affect wood anatomy and thus tree physiology. The article compares two tree-age methods and one tree-size method based on cumulative ring width. In line with previous research on aging and Wood anatomy, tree size appeared to be the best predictor to explain ontogenetic changes in white spruce’ climate sensitivity. In particular, tallest trees exhibited strongest correlations with water stress in previous year July. In conclusion, this thesis is about factors that can alter climate-growth relationships (reaction norms) of white spruce. The results emphasize that interactions between climate variables and other factors like tree size or competition status are important for estimates of future tree growth and potential treeline shifts. In line with previous studies on white spruce in Alaska, the results of this thesis underline the importance of water stress for white spruce.
Individuals that are taller and that have more competitors for water appear to be most susceptible to the potentially drier future climate in Alaska. While tree ring based growth trends estimates of white spruce are difficult to derive due to multiple overlaying low frequency (>10 years) signals, all investigated treeline sites showed highest growth at the treeline edge. This could indicate expanding range edges. However, a potential bottleneck for treeline advances and retreats could be seedling establishment, which should be explored in more detail in the future.