Refine
Document Type
- Doctoral Thesis (4)
Has Fulltext
- yes (4) (remove)
Is part of the Bibliography
- no (4) (remove)
Keywords
- Transaminasen (4) (remove)
Chiral amines represent high-value fine chemicals serving as key intermediate products in pharmaceutical, chemical and agrochemical industries. In the past decades, application of amine transaminases (ATAs) for stereoselective amination of prochiral ketones emerged to an environmentally benign and economically attractive alternative to transition metal-catalyzed asymmetric synthesis to afford optically pure amines at industrial scale. However, the restricted substrate scope of wild-type transaminases prohibited the conversion of particularly sterically demanding substrates, making protein engineering indispensable. The following thesis covers elaboration of a novel assay for transaminases (Article I) and identification and development of transaminase variants in order to achieve biocatalytic preparation of a set of pharmaceutically relevant model amines, ideally in optically pure form for both stereoisomers, preferentially using asymmetric synthesis and most preferably using isopropylamine as cost-efficient amine donor co-substrate (Article II-IV). The aforementioned target amines and the corresponding precursor ketones (see Scheme 4.1) were conceived and provided by the company F. Hoffmann-La Roche to attain suitable biocatalysts for a variety of potential intermediates for active pharmaceutical ingredients. Protein engineering of the transaminase scaffolds investigated in this thesis comprised: Initial screening for suitable starting enzyme scaffolds, structure-guided rational design of these scaffolds to enable bulky planar substrate acceptance, elaboration of a sequence motif, verification of the motif and preparative-scale asymmetric synthesis reactions (Article II). For non-planar and structurally different target substrates, namely spatially bulky or bi-cyclic bridged substrates, the transaminase variants were specifically refined and a different evolutionary route had to be pursued (Article III and Article IV). These results (Article II) represent not only the first successful endeavor to engineer a PLP-fold type I amine transaminase (commonly denoted as (S)-selective) for the conversion of highly sterically demanding substrates, but also generally expanded the scope of available fold type I amine transaminases by enzymes having a novel and exceptionally broad substrate spectrum. Aside from structure-guided rational protein engineering, as well non-rational methods, such as site-specific saturation mutagenesis or directed evolution, were applied for protein-engineering. In order to do so for all of the target compounds, a novel high-throughput solid phase activity assay for transaminases that was actually developed during the master thesis, was refined and published (Article I). In the context of this thesis, the same assay principle was as well adapted for quantification of specific activities in liquid phase (Article III). A comparison of different methodologies for developing agar plate assays and a detailed step by step protocol of our transaminase assay are illustrated in a book chapter.
The synthesis of valuable chemicals via traditional chemical methods can be often outperformed by the use of enzymes because of their excellent chemo-, regio- and stereoselectivity in aqueous solvents at ambient temperatures. On the other hand, enzymes often suffer from several limitations that hamper their industrial application. Protein engineering is commonly applied to overcome these limitations although the generation and the validation of mutants is often a laborious process that may not lead to the desired results within reasonable time frames. This thesis focuses on engineering the enantioselectivity and the substrate scope of industrially relevant enzymes, such as esterases and transaminases. Semi-rational protein engineering was employed to identify improved variants for the synthesis of valuable chemicals ensuring a reduced screening effort. Compared to previous works, 3DM’s applicability was extended to the study of correlated mutations and proved effective in the acceleration of the comprehension and in the mutation of these enzymatic scaffolds. Semi-rational approaches require an extensive amount of information such as protein structures, reaction mechanisms, previous mutational experiments reported in literature and a considerable amount of amino acid sequences from similar proteins to analyze amino acid distributions and correlated mutations. Here, we have exploited 3DM as a tool that can combine all this wealth of information: 3DM is a convenient solution to retrieve and integrate information simplifying decision making in the planning of a semi-rational mutant library since in 3DM’s multiple sequence alignments (MSA) is summarized Nature’s screening process for alternative variants. Furthermore, naturally evolving enzymes often require mutations at more than one position for the acquisition of a new property. Such mutations generate patterns that are recognized by the 3DM algorithm, which creates networks that can be investigated to design strategies that aim to improve the property of interest. Finally, these correlated mutations are connected to the mutations described in publications covered in the PubMed database, thus helping to investigate the role certain positions might play in the network. Article I shows that it is possible to improve the enantioselectivity of an esterase towards a highly symmetrical substrate while drastically reducing the screening effort. This was achieved through the creation of libraries that limit the variants to those identified in the 3DM alignment. Article II shows that networks of correlated mutations are composed of positions that may cluster around a function. These functions can be investigated because 3DM connects the positions in the network to their related publications. In this article, a mutant of the esterase PFE-I from Pseudomonas fluorescens was generated having increased enantioselectivity in the hydrolysis of important target compounds. Article III suggests that the in silico modelling software YASARA, combined with the use of the 3DM database, can further reduce the screening effort: it was possible to identify a hot-spot because both the 3DM database and YASARA docking studies, indicated its importance. This led to a further improved enantioselectivity of the enzyme variant identified in Article II. Article IV shows how MSA may be used to get structural insights into the catalytic properties of enzymes with documented activity. The study of the patterns observed in a large subfamily alignment allowed the definition of the structural determinants important for the substrate recognition in amine transaminases. Article V and VI apply the knowledge acquired for the improvement of the substrate scope in the amine transaminase from Vibrio fluvialis.
Structure– and sequence–function relationships in (S)-amine transaminases and related enzymes
(2015)
Chiral primary amines are valuable building blocks for many biologically active compounds. Environmentally friendlier alternatives to the classical methods for α-chiral primary amine synthesis are highly desired. A biocatalytic alternative that recently proved beneficial for industrial applications is asymmetric synthesis utilising (S)-selective amine transaminases (S-ATAs). These enzymes can be utilized to transaminate a prochiral ketone with an amino donor (e.g. isopropylamine), to achieve a chiral amine and a carbonyl product (e.g. acetone). However, for several potential applications protein engineering is required to fit (S)-ATAS to the demands of an industrial process. Since no (S)-ATA crystal structure required for understanding the substrate recognition and thus protein engineering was available, we first aimed at obtaining structural data. Instead of solving crystal structures ourselves, we took advantage of structural genomics projects and discovered, that the protein data bank (PDB) already contained crystal structures of four enzymes with unknown function that we hypothesised to possess (S)-ATA activity. After developing a screening method, the four enzymes could be characterized as ω-amino acid:pyruvate transaminases (ωAA:pyr TAs). (S)-amine conversion was suggested to be a ‘substrate-promiscuous’ activity of these enzymes, as it is pronounced differently in the four investigated ones. By comparing the active sites of the highly and poorly active (S)-ATAs, the residues that determine the ability of amine conversion in these enzymes were discovered. Furthermore, the mechanism for dual substrate recognition, the binding of both, carboxyl and bulky hydrophobic substrates in the same active site, could be elucidated with the crystal structures. A flexible arginine side chain is able to adopt various positions thus enabling carboxylate binding and by ‘flipping’ out of the active site, to create space for amine binding. Then, a limitation of these enzymes, the restricted substrate scope caused by a small binding pocket was addressed. First, a rational protein engineering approach was set up to create more space. The tested mutations, however, destroyed most of the activity for both regular and more bulky substrates. We thus learned that the structural requirements for (S)-ATA activity are more complex than initially anticipated and a semi-rational approach was applied to broaden the substrate scope. By systematic saturation of active site positions, substantially improved mutants for bulkier amine synthesis could be obtained. As this study highlighted a lack of understanding of (S)-ATA, the functional important residues in the enzymes belonging to the class III TA family were surveyed. This family is defined by common sequence and structure features and besides (S)-ATAs mainly comprises TAs of various substrate scopes but also a few phospholyases, racemases and decarboxylases. To enable the comparison of active site residues among them, a commercial bioinformatics tool was used to create a family wide structure-based alignment of around 13,000 sequences. Based on statistical analyses of this alignment, structural inspections and literature evaluation, active site residues crucial for certain specificities within this family have been identified. By investigating the ingenious active site designs that enable such a plethora of reactions, and by identifying sets of functional important residues termed ‘active site fingerprints’, the understanding of catalysis in this enzyme family could be broadened. Furthermore, these functional important residues can on the one hand be applied to predict the specificity of uncharacterised enzymes, if a fingerprint is matched. On the other hand, if no fingerprint is matched, they can help to discover yet unknown activities or mechanisms to achieve a known specificity. We exemplified the latter case by functionally characterising a Bacillus anthracis enzyme with the crystal structure 3N5M, whose substrate specificity was unknown and could not be predicted. The 3N5M enzyme was found to possess ωAA:pyr TA and (S)-ATA activity even though it lacks the above-mentioned ‘flipping’ arginine. Based on molecular dynamics simulations we were able to propose an alternative mechanism for dual substrate recognition in the B. anthracis ωAA:pyr TA. By these findings the understanding of the requirements for (S)-ATA activity could be further broadened and a functional knowledge gap within the class III TA family was closed. The active site residue composition in 3N5M is now connected to enzymatic function and may be applied for future specificity predictions.
Einleitung: Die stellaren Zellen der Leber werden durch den Insulin like growth factor I (IGF-I) stimuliert. Hohe IGF-I Level vermindern die Fibrogenese und steigern die Regenerationsfähigkeit der Leber. Dieser Effekt wird vor allem durch Up-Regulation des hepatischen Wachstumsfaktors (HGF) und Down-Regulation des Transforming Growth Factor β1 (TGF β1) beeinflusst. Niedrige IGF-I-Spiegel verschlechtern somit die Regenerationsfähigkeit von Patienten mit einer chronischen Leberinsuffizienz. Das Ziel der vorliegenden Studie war es, die Assoziationen zwischen eingeschränkter Leberfunktion und IGF-I- und IGFBP-3-Serumkonzentrationen zu untersuchen. Methoden: 127 Patienten im Alter zwischen 45-60 Jahren (36 Frauen, 91 Männer) mit diagnostizierten Lebererkrankungen wurden für die Studie rekrutiert. Als Kontrollgruppe standen 508 gesunde Probanden aus der Study of Health in Pomerania (SHIP) adjustiert nach Alter und Geschlecht zur Verfügung. In der vorliegenden Studie wurden Zusammenhänge zwischen Parametern, die eine Leberfunktionsstörung anzeigen (ALAT, ASAT, GGT, Child Pugh Score) und IGF-I- und IGFBP-3- Konzentrationen im Serum untersucht. IGF-I und IGFBP-3-Serumspiegel wurden mit automatischen Two-Site-Chemiluminszenz-Immunoassays bestimmt. Ergebnisse: Patienten mit bestehender Lebererkrankung zeigten signifikant niedrigere IGF-I- und IGFBP-3-Werte als Lebergesunde. Innerhalb der Patientengruppe waren keine signifikanten Assoziationen zwischen den Transaminaseaktivitäten und den IGF-I- und IGFBP-3-Serumspiegeln nachweisbar. Unter Zuhilfenahme des Child Pugh Scores konnte ein Zusammenhang zwischen zunehmender Verschlechterung der Leberleistung und Abnahme der IGF-1 und IGFBP-3 Werte innerhalb der Patientengruppe hergestellt werden. Patienten mit einem Child Pugh Score von C wiesen niedrigere IGF-I-Werte auf als Patienten im Stadium Child A und B. Für IGFBP-3 konnten diese Assoziation ebenfalls ermittelt werden, aber nicht statistisch signifikant. In der gepoolten Analyse aus Patienten und gesunder Kontrollgruppe wurden negative Assoziationen zwischen Aspartat-Aminotransferase- (ASAT) und γ-Glutamyltranspeptidase-Aktivitäten (GGT) und IGF-I- und IGFBP3-Serumspiegeln, sowie zwischen Alanin-Aminotransferase-Aktivität (ALAT) und IGF-I-Serumspiegeln gefunden. Schlussfolgerung: Es konnte gezeigt werden, dass Patienten mit chronischen Leberfunktionsstörungen niedrigere IGF-I- und IGFBP3-Werte aufwiesen als die Kontrollgruppe aus Lebergesunden.