Refine
Document Type
- Doctoral Thesis (2)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2) (remove)
Keywords
- ribozyme (2) (remove)
Institute
Das Forschungsgebiet des RNA-Engineerings beschäftigt sich u.a. mit der Entwicklung von Ribozymen mit neuen oder verbesserten Eigenschaften. Es umfasst nicht nur den Entwurf neuer Ribozyme mittels in-vitro-Selektion oder rationalem Design, sondern auch die Validierung der entworfenen Systeme mit Hilfe von Aktivitätstests oder strukturellen Untersuchungen. In dieser Arbeit wurden mit Hilfe der Methoden des RNA-Engineerings verschiedene Hairpinribozymvarianten generiert werden, die eine ortsspezifische RNA-Sequenzveränderung innerhalb geeigneter RNA-Substrate erlauben. Dabei war sowohl die potenzielle Anwendung dieser Ribozyme in der molekularen Medizin als auch deren Rolle als RNA-Rekombinasen in einer möglichen RNA-Welt von Interesse. Der Schwerpunkt dieser Arbeit lag hierbei in der Entwicklung eines Reportersystems, welches den direkten Nachweis einer twinribozymvermittelten Reparaturreaktion in Zellen erlaubt. Das Reportersystem basiert auf der Reparatur einer Vierbasendeletion innerhalb der EGFP-mRNA. Durch rationales Design wurde ein Twinribozym generiert, das die Reparatur mit einer Reparaturproduktausbeute von 32 % katalysiert. Das erfolgreich entwickelte Reportersystem steht somit für Experimente unter Zellkulturbedingungen zur Verfügung und eröffnet außerdem den Weg, die Twinribozymstrategie in der Zelle zu adaptieren und zu optimieren, um sie später intrazellulär für gewünschte Ziel-RNAs anwenden zu können. Ausgehend von der den Twinribozymen eigenen Aktivität zur Katalyse eines RNA-Fragmentaustauschs wurde darüber hinaus im Kontext der RNA-Welt-Hypothese ein Hairpinribozym entwickelt, welches durch Rekombination zweier nicht-funktioneller RNA-Substrate ein funktionelles RNA-Molekül generiert. Hierbei führte die hairpinribozymvermittelte Spaltung zweier geeigneter Substrate, Rekombination der Spaltfragmente und Ligation der neuangeordneten Fragmente mit einer Rekombinationsproduktausbeute von 76% zur Generierung eines funktionsfähigen Hammerheadribozyms.
Das Hairpin-Ribozym-basierte System CRZ-2 wurde verwendet, um Selbst-Prozessierungsprodukte nach Ribozym-Reaktion zu untersuchen. Inter- und intramolekulare Ribozym-Reaktionen sollten mit CRZ-2 und dem entsprechenden linearen 83mer (l-83mer) durchgeführt und Oligomere und zyklisierte RNAs nachgewiesen werden. Über die Bildung der intermediären Spaltprodukte und des finalen Spaltproduktes konnte der Ablauf der Spalt-Kaskade komplett gezeigt werden. Dies war insbesondere durch vergleichende Verwendung von Test-Systemen im denaturierenden Polyacrylamid-Gel möglich, da eines der Systeme eine eindeutige Separation der Produkte im Gel zulässt. Weiter konnten die zwei erwarteten Spalt-Produkte (83mer und 92mer) über Sequenzierung ihrer komplementären DNAs nachgewiesen werden. Um zwischen zyklischen und linearen Reaktionsprodukten unterscheiden zu können, wurden folgende Methoden herangezogen: i) 2D-PAGE ii) exonukleolytischer Abbau von RNA in Lösung und im Gel, iii) Vergleich des Laufverhaltens eines inaktiven RNA-Monomers mit dem Reaktionsgemisch des l-83mer nach Ligationsreaktion, iv) AFM und v) Ferguson-Plot. Es zeigte sich, dass das CRZ-2 nach Ribozym-Reaktion ausschließlich lineare Produkte und Oligomere bis zum Trimer hervorbringt, während das l-83mer nach Ligationsreaktion auch einen Ring, das zyklische 83mer, hervorbringt. Das Wissen um die Art der Reaktionsprodukte von CRZ-2 und dem l-83mer ermöglichten es, diese beiden RNAs als Referenz-Systeme zu benutzen, um Hairpin-Ribozym-basierte Varianten zu untersuchen. Die bioinformatische Entwicklung neuer Varianten erfolgte in Kooperation mit der Arbeitsgruppe von Prof. Ivo Hofacker (Universität Wien). Dabei wurde ein wahrscheinlichkeitsbasierter Entwurf (probability based design, kurz: PBD) für RNA-Sekundärstrukturen mittels Programm Switch.pl aus dem Vienna RNA package 2.0 verwendet. Die für die katalytische Aktivität der Hairpin-Ribozym-Varianten essentiellen Basenfolgen in den Loops wurden beibehalten. Alle Test-Systeme waren bistabil, denn sie zeigten indirekt, das die für CRZ-2 übliche Spalt-Kaskade durchlaufen wurde, indem das jeweilige zyklische 83mer über 2D-PAGE nachgewiesen wurde. Wie erwartet, waren die Varianten insgesamt aktiver als das Referenzsystem CRZ-2 und sie unterschieden sich, wie bioinformatisch charakterisiert, in ihrem Zirkularisationsverhalten bezüglich der Monomere. Bioinformatisch unerwartet war das Zyklisierungsverhalten der Dimere. Ausschließlich bei Test-System 4 könnten gemäß 2D-PAGE und AFM Analyse unter anderem auch dimere RNA-Ring entstanden sein. PBD4 ist das System, bei welchem die geringste Dimer-Zyklisierungstendenz angenommen wurde. Eine erste Evaluierung der PBD-Methode ergibt somit, dass die Erwartungen für die bioinformatische Charakterisierung des Ablaufs der Spalt-Kaskade bis zur Monomerzyklisierung erfüllt wurden. Für die bioinformatisch nicht vorausgesagten experimentellen Ergebnisse, z.B. bei der Dimerzyklisierung, könnten verstärkt tertiäre Interaktionen relevant sein, die mit der PBD-Methode zur Sekundärstrukturvorhersage nicht berücksichtigt werden. Sequenz-Alignments der Test-Systeme zu CRZ-2 ließen Rückschlüsse auf die Funktionen einzelner Basen zu. Vier Basen traten zusätzlich zu den vorgegebenen Sequenzen auf. Diese befinden sich in einer Helix und könnten kritisch für das Zustandekommen dieser Helix als wichtiges Strukturelement im bistabilen Ribozym sein. Dieser Aspekt könnte in weiterführenden Arbeiten mit rationalem Design z.B. über Einfach- oder Doppelmutation weiter untersucht und die Auswirkungen auf die Selbst-Prozessierungsereignisse analysiert werden. Interessant sind auch die eingeführten Mutationen im superstabilen Tetraloop der Hairpin-Ribozym-Varianten. Im Sequenz-Alignment zeigte sich, dass sich PBD3 und 4 nur um zwei sich im Tetraloop befindlichen Basen unterscheiden (Positionen 1 und 3). Da sich die beiden Systeme bezüglich ihrer Oligomerisierungs- und Zyklisierungstendenz unterscheiden, sind diese beiden Positionen für die Funktionen essentiell.