Refine
Language
- English (2) (remove)
Keywords
- forest ecology (2) (remove)
Institute
- Institut für Botanik und Landschaftsökologie & Botanischer Garten (2) (remove)
Individual white spruce (Picea glauca (Moench) Voss) growth limitations at treelines in Alaska
(2018)
White spruce (Picea glauca (Moench) Voss) is one of the most common conifers in Alaska and various treelines mark the species distribution range. Because treelines positions are driven by climate and because climate change is estimated to be strongest in northern latitudes, treeline shifts appear likely. However, species range shifts depend on various species parameters, probably most importantly on phenotypic plasticity, genetic adaptation
and dispersal. Due to their long generation cycles and their immobility, trees evolved to endure a wide variety of climatic conditions. In most locations, interannual climate variability is larger than the expected climate change until 2100. Thus treeline position is typically thought of as the integrated effect of multiple years and to lag behind gradual climate change by several decades. Past dendrochronological studies revealed that growth of white spruce in Alaska can be limited by several climatic variables, in particular water stress and low temperatures. Depending on how the intensity of climate warming, this could result in a leading range edge at treelines limited by low temperatures and trailing treelines where soil moisture is or becomes most limiting. Climate-growth correlations are the dendrochronological version of reaction norms and describe the relationship between an environmental variable and traits like tree-ring parameters (e.g. ring width, wood density, wood anatomy). These correlations can be used to explore potential effects of climate change on a target species. However, it is known that individuals differ with respect to multiple variables like size, age, microsite conditions, competition status or their genome. Such individual differences could be important because they can modulate climate-growth relationships and consequently also range shifts and growth trends. Removing individual differences by averaging tree-ring parameters of many individuals into site chronologies could be an oversimplification that might bias estimates of future white spruce performance. Population dynamics that emerge from the interactions of individuals (e.g. competition) and the range of reactions to the same environmental drivers can only be studied via individual tree analyses. Consequently, this thesis focuses on factors that might alter individual white spruce’ climate sensitivity and methods to assess such effects. In particular, the research articles included explore three topics:
1. First, clones were identified via microsatellites and high-frequency climate signals of clones were compared to that of non-clonal individuals. Clonal and non-clonal individuals showed similar high-frequency climate signals which allows to use clonal and non-clonal individuals to construct mean site chronologies. However, clones were more frequently found under the harsher environmental conditions at the treelines which could be of interest for the species survival strategy at alpine treelines and is further explored in the associated RESPONSE project A5 by David Würth.
2. In the second article, methods for the exploration and visualization of individual-tree differences in climate sensitivity are described. These methods represent a toolbox to explore causes for the variety of different climate sensitivities found in individual
trees at the same site. Though, overlaying gradients of multiple factors like temperature, tree density and/or tree height can make it difficult to attribute a single cause to the range of reaction norms (climate growth correlations).
3. Lastly, the third article attempts to disentangle the effect of age and size on climate-growth correlations. Multiple past studies found that trees of different Ages responded differently to climatic drivers. In contrast, other studies found that trees do not age like many other organisms. Age and size of a trees are roughly correlated, though there are large differences in the growth rate of trees, which can lead to smaller trees that are older than taller trees. Consequently, age is an imperfect Proxy for size and in contrast to age, size has been shown to affect wood anatomy and thus tree physiology. The article compares two tree-age methods and one tree-size method based on cumulative ring width. In line with previous research on aging and Wood anatomy, tree size appeared to be the best predictor to explain ontogenetic changes in white spruce’ climate sensitivity. In particular, tallest trees exhibited strongest correlations with water stress in previous year July. In conclusion, this thesis is about factors that can alter climate-growth relationships (reaction norms) of white spruce. The results emphasize that interactions between climate variables and other factors like tree size or competition status are important for estimates of future tree growth and potential treeline shifts. In line with previous studies on white spruce in Alaska, the results of this thesis underline the importance of water stress for white spruce.
Individuals that are taller and that have more competitors for water appear to be most susceptible to the potentially drier future climate in Alaska. While tree ring based growth trends estimates of white spruce are difficult to derive due to multiple overlaying low frequency (>10 years) signals, all investigated treeline sites showed highest growth at the treeline edge. This could indicate expanding range edges. However, a potential bottleneck for treeline advances and retreats could be seedling establishment, which should be explored in more detail in the future.
Species have to cope with climate change either by migration or by adaptation and acclimatisation. Especially for long-living tree species with a low seed dispersal capacity (e.g. European beech, hereafter called beech), the in situ responses through genetic adaptation and phenotypic plasticity play an important role for their persistence. Beech, the dominant climax tree species in Central Europe, shows a high drought sensitivity and its distribution range is expected to shift northwards. On the other hand, projected northward shifts need to be taken with caution, as some studies suggest a sensitivity of beech to frost events in winter and spring. However, studies on the growth performance of cold-marginal beech populations are still rare. Previous studies on beech populations found local adaptation to drought and phenotypic plasticity in fitness-related traits as well as phenological traits. However, studies on the regeneration of beech under natural conditions are yet missing, although germination and establishment of young trees are a very first selective bottleneck and are crucial for tree population persistence and for successful range shifts.
This PhD-thesis aimed to identify the potential of plasticity and local adaptation in the important early life-history traits germination, establishment after the 1st year, and survival after the 2nd year in a reciprocal transplantation experiment at 11 sites across and even beyond the distribution range of beech (Manuscript 1). Moreover, this thesis investigated the climate sensitivity and the adaptation potential of beech populations by conducting dendroecological studies along a large climatic gradient across the distribution range (Manuscript 2) and along a strong winter temperature gradient towards the cold distribution margin in Poland (Manuscript 3). In addition, the impact of local climatic singularities was studied in a local study at the southern margin (Manuscript 4).
Warm and dry conditions limited natural regeneration, which was indicated by very low survival of young trees, even though germination rates increased with increasing temperature (Manuscript 1). This was also the case in parts of the distribution centre due to the hot and dry conditions in 2018. Although the transplantation experiment revealed high plasticity in the early life-history traits, this plasticity might thus not buffer against climate change under dry conditions. Local adaptation was not detected for any of these traits along the climatic gradient. In contrast, the results of the dendroecological study across the gradient (Manuscript 2) hint towards an adaptation potential of adult trees to drought at the southern margin. Thus, adult trees seemed to be adapted to drought at the southern margin, whereas tree growth in the distribution centre was sensitive to drought. These results indicate that parts of the centre may become ecologically marginal with increasing drought frequency in times of climate change. Interestingly, Manuscript 4 shows that beech growth was positively influenced by frequent fog immersion at the southern distribution margin in north-eastern Spain. This study underlines the importance of local climatic singularities, as they may allow marginal populations to grow in climate refugia in an otherwise unfavourable climate.
At the cold distribution margin, the study in Manuscript 1 found a remarkably higher survival of young trees in Sweden than in Poland. Moreover, the dendroecological studies revealed that beech was hampered by both drought at the cold-dry margin (Manuscript 2) and by winter cold at the cold-wet margin in Poland (Manuscript 3). All these results highlight the importance to study climate sensitivity of adult trees and the response of early life-history traits at the cold margin with a more differentiated view comparing cold-dry against the cold-wet populations and growing conditions. However, the high plasticity of the early life-history traits may allow for an increasing germination rate with climate warming at the northern margin and may thus facilitate natural regeneration there. In contrast, the dendroecological studies suggest that adult trees at the cold distribution margin may suffer either from drought or from winter cold and that the risk for spring frost may increase. Thus, the often-predicted compensation of dry-marginal population decline by a northward range expansion should be discussed more critically.
In conclusion, my PhD thesis provides new knowledge about the potential of natural regeneration and about climate sensitivity of adult trees across the distribution range of beech. Moreover, it underlines the importance to study both the young tree stages as well as adult trees to assess the performance and vulnerability of tree species under climate change, as both showed differences in their response to changing environmental conditions.