Refine
Year of publication
Document Type
- Article (42)
- Doctoral Thesis (41)
Has Fulltext
- yes (83)
Is part of the Bibliography
- no (83)
Keywords
- - (39)
- Streptococcus pneumoniae (7)
- Saccharomyces cerevisiae (6)
- Arxula adeninivorans (4)
- proteomics (4)
- Biochemische Analyse (3)
- Enzym (3)
- Hefe (3)
- Pneumokokken (3)
- Virulenz (3)
Institute
- Institut für Mikrobiologie - Abteilung für Genetik & Biochemie (83) (remove)
Publisher
- Frontiers Media S.A. (19)
- MDPI (14)
- S. Karger AG (3)
- ASM Journals (1)
- Frontiers (1)
- John Wiley & Sons, Inc. (1)
- Public Library of Science (PLoS) (1)
The aquaculture industry has been consistently and successfully growing over the
years, supplying over 50% of the fish humans consume. A large part of this success is due
to the implementation of vaccination, which is by far the most reliable prophylactic method
in large-scale fish farming. Nonetheless, although recent fish vaccines have greatly
contributed to the development and sustainability of the aquaculture industry, they not
always offer sufficient protection to provide acceptable survival rates when infectious
diseases outbreaks occur. Therefore, infectious diseases and effective vaccines still
constitute major problems for aquaculture.
Different practical aspects and biological factors of fish have also contributed to the
unsuccessful outcome of fish vaccines. To date, many of the most effective vaccines for fish
are injectable, and their formulation includes aluminum or oil emulsion adjuvants. Both facts
constitute a major issue for animal welfare due to the stress and side effects they trigger.
Great strides have been made in innovative technologies for fish vaccines. However, as of
today, they are not available on the market. Thus, improvements in vaccine formulations and
delivery routes remain an open topic and leads the to-do list of science with the aquaculture
of the future.
Vaccination provides immunity against a determined pathogen, and this is inherent
to the immune system. Therefore, thorough knowledge about the fish immune system and
how it is influenced by internal and external factors will certainly support rational vaccine
design. Thereby, the immune responses triggered by a vaccine can be exhaustively
characterized, and the formulations improved in case it is needed.
Hence, the goal of this PhD thesis, is to provide knowledge to improve fish
vaccination, both in its formulation and in its efficacy, aiming to promote the rational design
of fish vaccines. Additionally, this work proposes a holistic view of fish, where the
physiology and culture conditions of the fish are the starting points for the development and
application of vaccines. Thus, concepts and considerations for rational vaccine design
specific for fish are presented here.
Article I of this thesis offers a comprehensive review on the current situation in
Chile, but also worldwide aquaculture and the challenges it must face in the future. Namely,
recurrent pathogenic outbreaks and sub-optimal levels of protection due to inefficient
vaccination. This article established an open and flexible ground upon which to reflect on
how and what to improve in fish vaccines, leading the efforts towards rational vaccine
design.
In Article II, we investigated whether the current most used vaccination route,
intraperitoneal, can be improved by reducing the side effects of adjuvants, replacing them
with in the vaccine formulations with Poly-(D,L-lactic-co-glycolic) acid (PLGA)
microparticles, that serve simultaneously as vaccine vehicle and adjuvants.
Article III summarizes the scientific literature about what is known about the teleost
thymus. From this, it became clear how external factors such as photoperiod and seasonality
can modulate this primary lymphatic organ, and probably, immune responses. These are
essential factors to consider if effective and protective vaccines are needed in species highly
influenced by the environment such as fish.
As discussed in Article III, fish are poikilotherm animals, highly sensitive to
environmental factors like light. In Article IV, we reported for the first time, light generates
daily rhythms in cells’ circulation and gene expression, entraining the trout immune
response. Therefore, “when” (time of the day) we stimulate fish matters in order to get
optimal immune responses. Article V provides valuable knowledge about what happens
with fish immune responses, against a bacterial agent, under constant cues like light/dark
cycles and temperature. Once again, “when” we stimulate fish (season), influences the fish
immune status and therefore, their immune responses.
Finally, Article VI reports, for the first time, leukocytes extracted from fins of trout
directly respond to a parasitic infection. This article supports the idea that further research
must be done on fish mucosal surfaces, since they are key to stimulating/vaccinating fish, as
they are a natural entry route for pathogens and modulate the immune responses mounted.
Overall, the information provided by these articles is highly relevant for the
aquaculture industry. Firstly, because the vaccine platform based on PLGA microparticles
is promising for the future of fish vaccination, harmful adjuvants can be avoided, while still
providing enhanced stimulation thanks to the timed-released capacity of the particles.
Additionally, they offer the possibility to adapt them to in-feed vaccine pellets, which is the
ideal delivery route for fish. Secondly, accurate vaccination protocols can be established;
vaccination should be done during daytime, and preferably during the morning, where the
physiological status of fish provide optimal conditions for induction of an ultimately
protective immune response after vaccination. Furthermore, vaccination should be done
during warm months, spring, or summertime, as apparently fish have free-run internal clocks
that negatively modulate adaptive immune responses during wintertime.
In summary, the present thesis provides a novel concept for vaccination of
aquacultured species based on new data for rational vaccine design, with optimal application
procedures based on the optimal timing (season and daytime), reduced stress by oral
application and considerations about improving “first-line defenses” by vaccination via
mucosal surfaces of gut or skin.
Infective/bacterial endocarditis is a rare but life-threatening disease with a hospital mortality rate of 22.7% and a 1-year mortality rate of 40%. Therefore, continued research efforts to develop efficient anti-infective implant materials are of the utmost importance. Equally important is the development of test systems that allow the performance of new materials to be comprehensively evaluated. In this study, a novel antibacterial coating based on dalbavancin was tested in comparison to rifampicin/minocycline, and the suitability of a recently developed mouse tail vein model for testing the implant coatings was validated. Small polymeric stent grafts coated with a poly-L-lactic acid (PLLA) layer and incorporated antibiotics were colonized with Staphylococcus (S.) aureus before implantation into the tail vein of mice. The main assessment criteria were the hematogenous spread of the bacteria and the local tissue reaction to the contaminated implant. For this purpose, colony-forming units (CFU) in the blood, spleen and kidneys were determined. Tail cross sections were prepared for histological analysis, and plasma cytokine levels and expression values of inflammation-associated genes were examined. Both antibiotic coatings performed excellently, preventing the onset of infection. The present study expands the range of available methods for testing the anti-infectivity of cardiovascular implants, and the spectrum of agents for effective surface coating.
Feasible Cluster Model Method for Simulating the Redox Potentials of Laccase CueO and Its Variant
(2022)
Laccases are regarded as versatile green biocatalysts, and recent scientific research has focused on improving their redox potential for broader industrial and environmental applications. The density functional theory (DFT) quantum mechanics approach, sufficiently rigorous and efficient for the calculation of electronic structures, is conducted to better comprehend the connection between the redox potential and the atomic structural feature of laccases. According to the crystal structure of wild type laccase CueO and its variant, a truncated miniature cluster model method was established in this research. On the basic of thermodynamic cycle, the overall Gibbs free energy variations before and after the one-electron reduction were calculated. It turned out that the trends of redox potentials to increase after variant predicted by the theoretical calculations correlated well with those obtained by experiments, thereby validating the feasibility of this cluster model method for simulating the redox potentials of laccases.
Editorial: Streptococci in infectious diseases – pathogenic mechanisms and host immune responses
(2022)
Bloodstream infections caused by Streptococcus pneumoniae induce strong inflammatory and procoagulant cellular responses and affect the endothelial barrier of the vascular system. Bacterial virulence determinants, such as the cytotoxic pore-forming pneumolysin, increase the endothelial barrier permeability by inducing cell apoptosis and cell damage. As life-threatening consequences, disseminated intravascular coagulation followed by consumption coagulopathy and low blood pressure is described. With the aim to decipher the role of pneumolysin in endothelial damage and leakage of the vascular barrier in more detail, we established a chamber-separation cell migration assay (CSMA) used to illustrate endothelial wound healing upon bacterial infections. We used chambered inlets for cell cultivation, which, after removal, provide a cell-free area of 500 μm in diameter as a defined gap in primary endothelial cell layers. During the process of wound healing, the size of the cell-free area is decreasing due to cell migration and proliferation, which we quantitatively determined by microscopic live cell monitoring. In addition, differential immunofluorescence staining combined with confocal microscopy was used to morphologically characterize the effect of bacterial attachment on cell migration and the velocity of gap closure. In all assays, the presence of wild-type pneumococci significantly inhibited endothelial gap closure. Remarkably, even in the presence of pneumolysin-deficient pneumococci, cell migration was significantly retarded. Moreover, the inhibitory effect of pneumococci on the proportion of cell proliferation versus cell migration within the process of endothelial gap closure was assessed by implementation of a fluorescence-conjugated nucleoside analogon. We further combined the endothelial CSMA with a microfluidic pump system, which for the first time enabled the microscopic visualization and monitoring of endothelial gap closure in the presence of circulating bacteria at defined vascular shear stress values for up to 48 h. In accordance with our CSMA results under static conditions, the gap remained cell free in the presence of circulating pneumococci in flow. Hence, our combined endothelial cultivation technique represents a complex in vitro system, which mimics the vascular physiology as close as possible by providing essential parameters of the blood flow to gain new insights into the effect of pneumococcal infection on endothelial barrier integrity in flow.
Epithelial cells are an important line of defense within the lung. Disruption of the epithelial barrier by pathogens enables the systemic dissemination of bacteria or viruses within the host leading to severe diseases with fatal outcomes. Thus, the lung epithelium can be damaged by seasonal and pandemic influenza A viruses. Influenza A virus infection induced dysregulation of the immune system is beneficial for the dissemination of bacteria to the lower respiratory tract, causing bacterial and viral co-infection. Host cells regulate protein homeostasis and the response to different perturbances, for instance provoked by infections, by post translational modification of proteins. Aside from protein phosphorylation, ubiquitination of proteins is an essential regulatory tool in virtually every cellular process such as protein homeostasis, host immune response, cell morphology, and in clearing of cytosolic pathogens. Here, we analyzed the proteome and ubiquitinome of A549 alveolar lung epithelial cells in response to infection by either Streptococcus pneumoniae D39Δcps or influenza A virus H1N1 as well as bacterial and viral co-infection. Pneumococcal infection induced alterations in the ubiquitination of proteins involved in the organization of the actin cytoskeleton and Rho GTPases, but had minor effects on the abundance of host proteins. H1N1 infection results in an anti-viral state of A549 cells. Finally, co-infection resembled the imprints of both infecting pathogens with a minor increase in the observed alterations in protein and ubiquitination abundance.
Background: Klebsiella pneumoniae causes severe diseases including sepsis, pneumonia
and wound infections and is differentiated into hypervirulent (hvKp) and classic (cKp) pathotypes.
hvKp isolates are characterized clinically by invasive and multiple site infection and phenotypically
in particular through hypermucoviscosity and increased siderophore production, enabled by the
presence of the respective virulence genes, which are partly carried on plasmids. Methods: Here, we
analyzed two K. pneumoniae isolates of a human patient that caused severe multiple site infection.
By applying both genomic and phenotypic experiments and combining basic science with clinical
approaches, we aimed at characterizing the clinical background as well as the two isolates in-depth.
This also included bioinformatics analysis of a chromosomal virulence plasmid integration event.
Results: Our genomic analysis revealed that the two isolates were clonal and belonged to sequence
type 420, which is not only the first description of this K. pneumoniae subtype in Germany but also
suggests belonging to the hvKp pathotype. The latter was supported by the clinical appearance and
our phenotypic findings revealing increased siderophore production and hypermucoviscosity similar
to an archetypical, hypervirulent K. pneumoniae strain. In addition, our in-depth bioinformatics
analysis suggested the insertion of a hypervirulence plasmid in the bacterial chromosome, mediated
by a new IS5 family sub-group IS903 insertion sequence designated ISKpn74. Conclusion: Our study
contributes not only to the understanding of hvKp and the association between hypervirulence and
clinical outcomes but reveals the chromosomal integration of a virulence plasmid, which might lead
to tremendous public health implications.
Proteasomes comprise a family of proteasomal complexes essential for maintaining protein homeostasis. Accordingly, proteasomes represent promising therapeutic targets in multiple human diseases. Several proteasome inhibitors are approved for treating hematological cancers. However, their side effects impede their efficacy and broader therapeutic applications. Therefore, understanding the biology of the different proteasome complexes present in the cell is crucial for developing tailor-made inhibitors against specific proteasome complexes. Here, we will discuss the structure, biology, and function of the alternative Proteasome Activator 200 (PA200), also known as PSME4, and summarize the current evidence for its dysregulation in different human diseases. We hereby aim to stimulate research on this enigmatic proteasome regulator that has the potential to serve as a therapeutic target in cancer.
Four aerobic bacteria with bacteriolytic capabilities were isolated from the brackish water site Strait Uzynaral of Lake Balkhash in Kazakhstan. The morphology and physiology of the bacterial isolates have subsequently been analyzed. Using matrix assisted laser desorption ionization-time of flight mass spectrum and partial 16S rRNA gene sequence analyses, three of the isolates have been identified as Pseudomonas veronii and one as Paenibacillus apiarius. We determined the capability of both species to lyse pre-grown cells of the Gram-negative strains Pseudomonas putida SBUG 24 and Escherichia coli SBUG 13 as well as the Gram-positive strains Micrococcus luteus SBUG 16 and Arthrobacter citreus SBUG 321 on solid media. The bacteriolysis process was analyzed by creating growth curves and electron micrographs of co-cultures with the bacteriolytic isolates and the lysis sensitive strain Arthrobacter citreus SBUG 321 in nutrient-poor liquid media. One metabolite of Paenibacillus apiarius was isolated and structurally characterized by various chemical structure determination methods. It is a novel antibiotic substance.
Animals experience climatic variation in their natural habitats, which may lead to variation in phenotypic responses among populations through local adaptation or phenotypic plasticity. In ectotherm arthropods, the expression of thermoprotective metabolites such as free amino acids, sugars, and polyols, in response to temperature stress, may facilitate temperature tolerance by regulating cellular homeostasis. If populations experience differences in temperatures, individuals may exhibit population-specific metabolite profiles through differential accumulation of metabolites that facilitate thermal tolerance. Such thermoprotective metabolites may originate from the animals themselves or from their associated microbiome, and hence microbial symbionts may contribute to shape the thermal niche of their host. The social spider Stegodyphus dumicola has extremely low genetic diversity, yet it occupies a relatively broad temperature range occurring across multiple climate zones in Southern Africa. We investigated whether the metabolome, including thermoprotective metabolites, differs between populations, and whether population genetic structure or the spider microbiome may explain potential differences. To address these questions, we assessed metabolite profiles, phylogenetic relationships, and microbiomes in three natural populations along a temperature gradient. The spider microbiomes in three genetically distinct populations of S. dumicola showed no significant population-specific pattern, and none of its dominating genera (Borrelia, Diplorickettsia, and Mycoplasma) are known to facilitate thermal tolerance in hosts. These results do not support a role of the microbiome in shaping the thermal niche of S. dumicola. Metabolite profiles of the three spider populations were significantly different. The variation was driven by multiple metabolites that can be linked to temperature stress (e.g., lactate, succinate, or xanthine) and thermal tolerance (e.g., polyols, trehalose, or glycerol): these metabolites had higher relative abundance in spiders from the hottest geographic region. These distinct metabolite profiles are consistent with a potential role of the metabolome in temperature response.
The main goal of this contribution was to determine the effect of predation of the often abundant to dominant doliolid Dolioletta gegenbauri (Tunicata, Thaliacea) on the abundance of co-occurring planktonic copepods by feeding on their eggs. Previous oceanographic investigations revealed that doliolids had ingested eggs of small calanoid copepods. The ecological significance of such feeding could not be quantified completely because the environmental abundance of such eggs was not known. In this study, the eggs and nauplii of the neritic calanoid Paracalanus quasimodo (Crustacea, Copepoda) were offered to gonozooids and phorozooids of D. gegenbauri with a 6–6.5 mm length together with three species of phytoplankton; i.e., simulating diet conditions on the shelf. We hypothesized that copepod eggs of a similar size as food particles would be readily ingested whereas small nauplii, which could escape, would hardly be eaten by the doliolids. Our results revealed that doliolids have the potential to control small calanoids by ingesting their eggs at high rates but not their nauplii or later stages. Late copepodid stages and adults of co-occurring calanoid species could cause less mortality because they prey less on such eggs than doliolids of a similar weight. However, certain abundant omnivorous calanoid species with pronounced perception and/or capture abilities can prey successfully on the nauplii of small calanoids.
MicroRNAs (miRNA) are ubiquitous non-coding RNAs that have a prominent role in cellular regulation. The expression of many miRNAs is often found deregulated in prostate cancer (PCa) and castration-resistant prostate cancer (CRPC). Although their expression can be associated with PCa and CRPC, their functions and regulatory activity in cancer development are poorly understood. In this study, we used different proteomics tools to analyze the activity of hsa-miR-3687-3p (miR-3687) and hsa-miR-4417-3p (miR-4417), two miRNAs upregulated in CRPC. PCa and CRPC cell lines were transfected with miR-3687 or miR-4417 to overexpress the miRNAs. Cell lysates were analyzed using 2D gel electrophoresis and proteins were subsequently identified using mass spectrometry (Maldi-MS/MS). A whole cell lysate, without 2D-gel separation, was analyzed by ESI-MS/MS. The expression of deregulated proteins found across both methods was further investigated using Western blotting. Gene ontology and cellular process network analysis determined that miR-3687 and miR-4417 are involved in diverse regulatory mechanisms that support the CRPC phenotype, including metabolism and inflammation. Moreover, both miRNAs are associated with extracellular vesicles, which point toward a secretory mechanism. The tumor protein D52 isoform 1 (TD52-IF1), which regulates neuroendocrine trans-differentiation, was found to be substantially deregulated in androgen-insensitive cells by both miR-3687 and miR-4417. These findings show that these miRNAs potentially support the CRPC by truncating the TD52-IF1 expression after the onset of androgen resistance.
Multidrug-resistant (MDR) Enterobacterales, including extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae, not only emerge in healthcare settings but also in other habitats, such as livestock and wildlife. The spread of these pathogens, which often combine resistance with high-level virulence, is a growing problem, as infections have become increasingly difficult to treat. Here, we investigated the occurrence of ESBL-producing E. coli and K. pneumoniae in fecal samples from two black-headed gull colonies breeding on two nature conservation islands in Western Pomerania, Germany. In addition to cloacal samples from adult birds (n = 211) and their nestlings (n = 99) during the 2021 breeding season, collective fecal samples (n = 29) were obtained. All samples were screened for ESBL producers, which were then subjected to whole-genome sequencing. We found a total of 12 ESBL-producing E. coli and K. pneumoniae consisting of 11 E. coli and 1 K. pneumoniae, and including the international high-risk E. coli sequence types (ST)131, ST38, and ST58. Eight of the investigated strains had a MDR genotype and carried a large repertoire of virulence-associated genes, including the pap operon, which is important for urinary tract infections. In addition, we identified many genes associated with adherence, biofilm formation, iron uptake, and toxin production. Finally, our analysis revealed the close phylogenetic relationship of ST38 strains with genomes originating from human sources, underlining their zoonotic and pathogenic character. This study highlights the importance of the One Health approach, and thus the interdependence between human and animal health and their surrounding environment.
Gallic acid, protocatechuic acid, catechol, and pyrogallol are only a few examples of industrially relevant aromatics. Today much attention is paid to the development of new microbial factories for the environmentally friendly biosynthesis of industrially relevant chemicals with renewable resources or organic pollutants as the starting material. The non–conventional yeast, Blastobotrys raffinosifermentans, possesses attractive properties for industrial bio-production processes such as thermo- and osmotolerance. An additional advantage is its broad substrate spectrum, with tannins at the forefront. The present study is dedicated to the characterization of catechol-1,2-dioxygenase (Acdo1p) and the analysis of its function in B. raffinosifermentans tannic acid catabolism. Acdo1p is a dimeric protein with higher affinity for catechol (KM = 0.004 ± 0.001 mM, kcat = 15.6 ± 0.4 s–1) than to pyrogallol (KM = 0.1 ± 0.02 mM, kcat = 10.6 ± 0.4 s–1). It is an intradiol dioxygenase and its reaction product with catechol as the substrate is cis,cis-muconic acid. B. raffinosifermentans G1212/YIC102-AYNI1-ACDO1-6H, which expresses the ACDO1 gene under the control of the strong nitrate-inducible AYNI1 promoter, achieved a maximum catechol-1,2-dioxygenase activity of 280.6 U/L and 26.9 U/g of dry cell weight in yeast grown in minimal medium with nitrate as the nitrogen source and 1.5% glucose as the carbon source. In the same medium with glucose as the carbon source, catechol-1,2-dioxygenase activity was not detected for the control strain G1212/YIC102 with ACDO1 expression under the regulation of its respective endogenous promoter. Gene expression analysis showed that ACDO1 is induced by gallic acid and protocatechuic acid. In contrast to the wild-type strain, the B. raffinosifermentans strain with a deletion of the ACDO1 gene was unable to grow on medium supplemented with gallic acid or protocatechuic acid as the sole carbon source. In summary, we propose that due to its substrate specificity, its thermal stability, and its ability to undergo long-term storage without significant loss of activity, B. raffinosifermentans catechol-1,2-dioxygenase (Acdo1p) is a promising enzyme candidate for industrial applications.
The full genome of a Methanomassiliicoccales strain, U3.2.1, was obtained from enrichment cultures of percolation fen peat soil under methanogenic conditions, with methanol and hydrogen as the electron acceptor and donor, respectively. Metagenomic assembly of combined long-read and short-read sequences resulted in a 1.51-Mbp circular genome.
Allicin (diallyl thiosulfinate) is the major thiol-reactive organosulfur compound produced by garlic plants (Allium sativum) upon tissue damage. Allicin exerts its strong antimicrobial activity against bacteria and fungi via S-thioallylation of protein thiols and low molecular weight thiols. Here, we investigated the effect of allicin on SARS-CoV-2 infected Vero E6 and Calu-3 cells. Toxicity tests revealed that Calu-3 cells showed greater allicin tolerance, probably due to >4-fold higher GSH levels compared to the very sensitive Vero E6 cells. Exposure of infected Vero E6 and Calu-3 cells to biocompatible allicin doses led to a ∼60–70% decrease of viral RNA and infectious viral particles. Label-free quantitative proteomics was used to investigate the changes in the Calu-3 proteome after SARS-CoV-2 infection and the effect of allicin on the host-virus proteome. SARS-CoV-2 infection of Calu-3 cells caused a strong induction of the antiviral interferon-stimulated gene (ISG) signature, including several antiviral effectors, such as cGAS, Mx1, IFIT, IFIH, IFI16, IFI44, OAS, and ISG15, pathways of vesicular transport, tight junctions (KIF5A/B/C, OSBPL2, CLTCL1, and ARHGAP17) and ubiquitin modification (UBE2L3/5), as well as reprogramming of host metabolism, transcription and translation. Allicin treatment of infected Calu-3 cells reduced the expression of IFN signaling pathways and ISG effectors and reverted several host pathways to levels of uninfected cells. Allicin further reduced the abundance of the structural viral proteins N, M, S and ORF3 in the host-virus proteome. In conclusion, our data demonstrate the antiviral and immunomodulatory activity of biocompatible doses of allicin in SARS-CoV-2-infected cell cultures. Future drug research should be directed to exploit the thiol-reactivity of allicin derivatives with increased stability and lower human cell toxicity as antiviral lead compounds.
Re-Establishment Techniques and Transplantations of Charophytes to Support Threatened Species
(2021)
Re-establishment of submerged macrophytes and especially charophyte vegetation is a common aim in lake management. If revegetation does not happen spontaneously, transplantations may be a suitable option. Only rarely have transplantations been used as a tool to support threatened submerged macrophytes and, to a much lesser extent, charophytes. Such actions have to consider species-specific life strategies. K-strategists mainly inhabit permanent habitats, are perennial, have low fertility and poor dispersal ability, but are strong competitors and often form dense vegetation. R-strategists are annual species, inhabit shallow water and/or temporary habitats, and are richly fertile. They disperse easily but are weak competitors. While K-strategists easily can be planted as green biomass taken from another site, rare R-strategists often must be reproduced in cultures before they can be planted on-site. In Sweden, several charophyte species are extremely rare and fail to (re)establish, though apparently suitable habitats are available. Limited dispersal and/or lack of diaspore reservoirs are probable explanations. Transplantations are planned to secure the occurrences of these species in the country. This contribution reviews the knowledge on life forms, dispersal, establishment, and transplantations of submerged macrophytes with focus on charophytes and gives recommendations for the Swedish project.
Abstract
Amphidiploid fungal Verticillium longisporum strains Vl43 and Vl32 colonize the plant host Brassica napus but differ in their ability to cause disease symptoms. These strains represent two V. longisporum lineages derived from different hybridization events of haploid parental Verticillium strains. Vl32 and Vl43 carry same‐sex mating‐type genes derived from both parental lineages. Vl32 and Vl43 similarly colonize and penetrate plant roots, but asymptomatic Vl32 proliferation in planta is lower than virulent Vl43. The highly conserved Vl43 and Vl32 genomes include less than 1% unique genes, and the karyotypes of 15 or 16 chromosomes display changed genetic synteny due to substantial genomic reshuffling. A 20 kb Vl43 lineage‐specific (LS) region apparently originating from the Verticillium dahliae‐related ancestor is specific for symptomatic Vl43 and encodes seven genes, including two putative transcription factors. Either partial or complete deletion of this LS region in Vl43 did not reduce virulence but led to induction of even more severe disease symptoms in rapeseed. This suggests that the LS insertion in the genome of symptomatic V. longisporum Vl43 mediates virulence‐reducing functions, limits damage on the host plant, and therefore tames Vl43 from being even more virulent.
The function and mode of action of small regulatory RNAs is currently still understudied in archaea. In the halophilic archaeon Haloferax volcanii, a plethora of sRNAs have been identified; however, in-depth functional analysis is missing for most of them. We selected a small RNA (s479) from Haloferax volcanii for detailed characterization. The sRNA gene is encoded between a CRISPR RNA locus and the Cas protein gene cluster, and the s479 deletion strain is viable and was characterized in detail. Transcriptome studies of wild-type Haloferax cells and the deletion mutant revealed upregulation of six genes in the deletion strain, showing that this sRNA has a clearly defined function. Three of the six upregulated genes encode potential zinc transporter proteins (ZnuA1, ZnuB1, and ZnuC1) suggesting the involvement of s479 in the regulation of zinc transport. Upregulation of these genes in the deletion strain was confirmed by northern blot and proteome analyses. Furthermore, electrophoretic mobility shift assays demonstrate a direct interaction of s479 with the target znuC1 mRNA. Proteome comparison of wild-type and deletion strains further expanded the regulon of s479 deeply rooting this sRNA within the metabolism of H. volcanii especially the regulation of transporter abundance. Interestingly, s479 is not only encoded next to CRISPR–cas genes, but the mature s479 contains a crRNA-like 5′ handle, and experiments with Cas protein deletion strains indicate maturation by Cas6 and interaction with Cas proteins. Together, this might suggest that the CRISPR–Cas system is involved in s479 function.
Background: Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the control of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of PTW on the vitality and biofilm formation of Listeria monocytogenes, a common foodborne pathogen.
Results: Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100, 300, and 900 s (pre-treatment time), after which the bacterial biofilm was exposed to the PTW for 1, 3, and 5 min (post-treatment time) for each pre-treatment time, separately. Colony-forming units (CFU) were significantly reduced by 4.7 log10 ± 0.29 log10, as well as the metabolic activity decreased by 47.9 ± 9.47% and the cell vitality by 69.5 ± 2.1%, compared to the control biofilms. LIVE/DEAD staining and fluorescence microscopy showed a positive correlation between treatment and incubation times, as well as reduction in vitality. Atomic force microscopy (AFM) indicated changes in the structure quality of the bacterial biofilm.
Conclusion: These results indicate a promising antimicrobial impact of plasma-treated water on Listeria monocytogenes, which may lead to more targeted applications of plasma decontamination in the food industry in the future.
Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name-giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses confirm the partition of functions in lichen partnerships. The ample functional diversity of the mycobiont contrasts the predominant function of the photobiont in production (and secretion) of energy-rich carbohydrates, and the cyanobiont’s contribution by nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify the bacterial community present on L. pulmonaria as a surprisingly abundant and structurally integrated element of the lichen symbiosis. Comparative metaproteome analyses of lichens from different sampling sites suggest the presence of a relatively stable core microbiome and a sampling site-specific portion of the microbiome. Moreover, these studies indicate how the microbiota may contribute to the symbiotic system, to improve its health, growth and fitness.
Proteomic Adaptation of Clostridioides difficile to Treatment with the Antimicrobial Peptide Nisin
(2021)
Abstract
Aerated topsoils are important sinks for atmospheric methane (CH4) via oxidation by CH4‐oxidizing bacteria (MOB). However, intensified management of grasslands and forests may reduce the CH4 sink capacity of soils. We investigated the influence of grassland land‐use intensity (150 sites) and forest management type (149 sites) on potential atmospheric CH4 oxidation rates (PMORs) and the abundance and diversity of MOB (with qPCR) in topsoils of three temperate regions in Germany. PMORs measurements in microcosms under defined conditions yielded approximately twice as much CH4 oxidation in forest than in grassland soils. High land‐use intensity of grasslands had a negative effect on PMORs (−40%) in almost all regions and fertilization was the predominant factor of grassland land‐use intensity leading to PMOR reduction by 20%. In contrast, forest management did not affect PMORs in forest soils. Upland soil cluster (USC)‐α was the dominant group of MOBs in the forests. In contrast, USC‐γ was absent in more than half of the forest soils but present in almost all grassland soils. USC‐α abundance had a direct positive effect on PMOR in forest, while in grasslands USC‐α and USC‐γ abundance affected PMOR positively with a more pronounced contribution of USC‐γ than USC‐α. Soil bulk density negatively influenced PMOR in both forests and grasslands. We further found that the response of the PMORs to pH, soil texture, soil water holding capacity and organic carbon and nitrogen content differ between temperate forest and grassland soils. pH had no direct effects on PMOR, but indirect ones via the MOB abundances, showing a negative effect on USC‐α, and a positive on USC‐γ abundance. We conclude that reduction in grassland land‐use intensity and afforestation has the potential to increase the CH4 sink function of soils and that different parameters determine the microbial methane sink in forest and grassland soils.
Urm1: A Non-Canonical UBL
(2021)
Summary
This study aimed to establish a robust and reliable metaproteomics protocol for an in‐depth characterization of marine particle‐associated (PA) bacteria. To this end, we compared six well‐established protein extraction protocols together with different MS‐sample preparation techniques using particles sampled during a North Sea spring algae bloom in 2009. In the final optimized workflow, proteins are extracted using a combination of SDS‐containing lysis buffer and cell disruption by bead‐beating, separated by SDS‐PAGE, in‐gel digested and analysed by LC–MS/MS, before MASCOT search against a metagenome‐based database and data processing/visualization with the in‐house‐developed bioinformatics tools Prophane and Paver. As an application example, free‐living (FL) and particulate communities sampled in April 2009 were analysed, resulting in an as yet unprecedented number of 9354 and 5034 identified protein groups for FL and PA bacteria, respectively. Our data suggest that FL and PA communities appeared similar in their taxonomic distribution, with notable exceptions: eukaryotic proteins and proteins assigned to Flavobacteriia, Cyanobacteria, and some proteobacterial genera were found more abundant on particles, whilst overall proteins belonging to Proteobacteria were more dominant in the FL fraction. Furthermore, our data points to functional differences including proteins involved in polysaccharide degradation, sugar‐ and phosphorus uptake, adhesion, motility, and stress response.
Glutathione (GSH) was initially identified and characterized for its redox properties andlater for its contributions to detoxification reactions. Over the past decade, however, the essentialcontributions of glutathione to cellular iron metabolism have come more and more into focus. GSH isindispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeSclusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the exportof the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is anessential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeStrafficking. In this review, we summarize the recent advances and progress in this field. The mosturgent open questions are discussed, such as the role of GSH in the export of FeS precursors frommitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins andthe cluster transfer between Grxs and recipient proteins
Acidobacteria represents one of the most dominant bacterial groups across diverse ecosystems. However, insight into their ecology and physiology has been hampered by difficulties in cultivating members of this phylum. Previous cultivation efforts have suggested an important role of trace elements for the proliferation of Acidobacteria, however, the impact of these metals on their growth and metabolism is not known. In order to gain insight into this relationship, we evaluated the effect of trace element solution SL10 on the growth of two strains (5B5 and WH15) of Acidobacteria belonging to the genus Granulicella and studied the proteomic responses to manganese (Mn). Granulicella species had highest growth with the addition of Mn, as well as higher tolerance to this metal compared to seven other metal salts. Variations in tolerance to metal salt concentrations suggests that Granulicella sp. strains possess different mechanisms to deal with metal ion homeostasis and stress. Furthermore, Granulicella sp. 5B5 might be more adapted to survive in an environment with higher concentration of several metal ions when compared to Granulicella sp. WH15. The proteomic profiles of both strains indicated that Mn was more important in enhancing enzymatic activity than to protein expression regulation. In the genomic analyses, we did not find the most common transcriptional regulation of Mn homeostasis, but we found candidate transporters that could be potentially involved in Mn homeostasis for Granulicella species. The presence of such transporters might be involved in tolerance to higher Mn concentrations, improving the adaptability of bacteria to metal enriched environments, such as the decaying wood-rich Mn environment from which these two Granulicella strains were isolated.
Regulated ATP-dependent proteolysis is a common feature of developmental processes and plays also a crucial role during environmental perturbations such as stress and starvation. The Bacillus subtilis MgsR regulator controls a subregulon within the stress- and stationary phase σB regulon. After ethanol exposition and a short time-window of activity, MgsR is ClpXP-dependently degraded with a half-life of approximately 6 min. Surprisingly, a protein interaction analysis with MgsR revealed an association with the McsB arginine kinase and an in vivo degradation assay confirmed a strong impact of McsB on MgsR degradation. In vitro phosphorylation experiments with arginine (R) by lysine (K) substitutions in McsB and its activator McsA unraveled all R residues, which are essentially needed for the arginine kinase reaction. Subsequently, site directed mutagenesis of the MgsR substrate was used to substitute all arginine residues with glutamate (R-E) to mimic arginine phosphorylation and to test their influence on MgsR degradation in vivo. It turned out, that especially the R33E and R94/95E residues (RRPI motif), the latter are adjacently located to the two redox-sensitive cysteines in a 3D model, have the potential to accelerate MgsR degradation. These results imply that selective arginine phosphorylation may have favorable effects for Clp dependent degradation of short-living regulatory proteins. We speculate that in addition to its kinase activity and adaptor function for the ClpC ATPase, McsB might also serve as a proteolytic adaptor for the ClpX ATPase in the degradation mechanism of MgsR.
Recently, we engineered a tunable rhamnose promoter-based setup for the production of recombinant proteins in E. coli. This setup enabled us to show that being able to precisely set the production rate of a secretory recombinant protein is critical to enhance protein production yields in the periplasm. It is assumed that precisely setting the production rate of a secretory recombinant protein is required to harmonize its production rate with the protein translocation capacity of the cell. Here, using proteome analysis we show that enhancing periplasmic production of human Growth Hormone (hGH) using the tunable rhamnose promoter-based setup is accompanied by increased accumulation levels of at least three key players in protein translocation; the peripheral motor of the Sec-translocon (SecA), leader peptidase (LepB), and the cytoplasmic membrane protein integrase/chaperone (YidC). Thus, enhancing periplasmic hGH production leads to increased Sec-translocon capacity, increased capacity to cleave signal peptides from secretory proteins and an increased capacity of an alternative membrane protein biogenesis pathway, which frees up Sec-translocon capacity for protein secretion. When cells with enhanced periplasmic hGH production yields were harvested and subsequently cultured in the absence of inducer, SecA, LepB, and YidC levels went down again. This indicates that when using the tunable rhamnose-promoter system to enhance the production of a protein in the periplasm, E. coli can adapt its protein translocation machinery for enhanced recombinant protein production in the periplasm.
Invasion of the bacterial pathogen Listeria monocytogenes into human host cells requires specialized surface molecules for attachment and induction of phagocytosis. However, efficient invasion is also dependent on factors with house-keeping functions, such as SecA2-dependent secretion of autolysins for post-divisional segregation of daughter cells. Mutations in this pathway prevent degradation of peptidoglycan cross-walls, so that long cell chains are formed that cannot be phagocytosed. The extreme chaining of such mutants manifests as rough colony phenotype. One rough clone was isolated from a transposon library with a transposon insertion in the uncharacterized lmo0720 gene (lftS) together with a spontaneous point mutation in the secA2 gene. We separated both mutations and demonstrated that this point mutation in the intramolecular regulator 2 domain of SecA2 was sufficient to inactivate the protein. In contrast, lftS deletion did not cause a ΔsecA2-like phenotype. lftS is located in an operon with lftR (lmo0719), encoding a PadR-like transcriptional regulator, and lftR deletion affected growth, invasion and day-light dependent coordination of swarming. Inactivation of lftS partially suppressed these phenotypes, suggesting a functional relationship between LftR and LftS. However, the invasion defect of the ΔlftR mutant was only marginally suppressed by lftS removal. LftR regulates expression of the lmo0979–0980 (lieAB) operon, encoding a putative multidrug resistance transporter and lieAB transcription was strongly upregulated in the absence of LftR. Deletion of lieAB in the ΔlftR background restores wild type-like invasion levels. Hence, we conclude that tight transcriptional repression of the lieAB operon is essential for efficient listerial host cell invasion.
Purines of exogenous and endogenous sources are degraded to uric acid in human beings. Concentrations >6.8 mg uric acid/dl serum cause hyperuricemia and its symptoms. Pharmaceuticals and the reduction of the intake of purine-rich food are used to control uric acid levels. A novel approach to the latter proposition is the enzymatic reduction of the purine content of food by purine-degrading enzymes. Here we describe the production of recombinant guanine deaminase by the yeast Arxula adeninivorans LS3 and its application in food. In media supplemented with nitrogen sources hypoxanthine or adenine, guanine deaminase (AGDA) gene expression is induced and intracellular accumulation of guanine deaminase (Agdap) protein occurs. The characteristics of the guanine deaminase isolated from wild-type strain LS3 and a transgenic strain expressing the AGDA gene under control of the strong constitutive TEF1 promoter were determined and compared. Both enzymes were dimeric and had temperature optima of 55°C with high substrate specificity for guanine and localisation in both the cytoplasm and vacuole of yeast. The enzyme was demonstrated to reduce levels of guanine in food. A mixture of guanine deaminase and other purine degradation enzymes will allow the reduction of purines in purine-rich foods.
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.
Background: The association of polyomaviruses BK and JC with other opportunistic infections and graft-versus-host disease (GvHD) in allogeneic stem cell transplantation is controversially discussed. Methods: We conducted a retrospective study of 64 adult patients who received their first allogeneic stem cell transplantation between March 2010 and December 2014; the follow-up time was 2 years. Results: Acute leukemia was the most frequent underlying disease (45.3%), and conditioning included myeloablative (67.2%) and nonmyeloablative protocols (32.8%). All patients received 10 mg of alemtuzumab on day -2 (20 mg in case of mismatch) as GvHD prophylaxis. Twenty-seven patients (41.5%) developed cytomegalovirus (CMV) reactivation. BKPyV-associated hemorrhagic cystitis was diagnosed in 10 patients (15.6%). Other opportunistic infections caused by viruses or protozoa occurred rarely (<10%). There was no association of BKPyV or JCPyV with CMV reactivation, Epstein-Barr virus reactivation, human herpes virus 6, or parvovirus B19 infection requiring treatment. There was a significant correlation of BKPyV-associated hemorrhagic cystitis with toxoplasmosis (p = 0.013). Additionally, there was a significant link of simultaneous BKPyV and JCPyV viruria with toxoplasmosis (p = 0.047). BKPyV and JCPyV were not associated with GvHD, relapse, or death. Conclusion: We found no association of BKPyV or JCPyV with viral infections or GvHD. Only the correlation of both polyomaviruses with toxoplasmosis was significant. This is a novel and interesting finding.
Hyperuricemia and its symptoms are becoming increasingly common worldwide. Elevated serum uric acid levels are caused by increased uric acid synthesis from food constituents and reduced renal excretion. Treatment in most cases involves reducing alcohol intake and consumption of meat and fish or treatment with pharmaceuticals. Another approach could be to reduce uric acid level in food, either during production or consumption. This work reports the production of recombinant urate oxidase by Arxula adeninivorans and its application to reduce uric acid in a food product. The A. adeninivorans urate oxidase amino acid sequence was found to be similar to urate oxidases from other fungi (61-65% identity). In media supplemented with adenine, hypoxanthine or uric acid, induction of the urate oxidase (AUOX) gene and intracellular accumulation of urate oxidase (Auoxp) was observed. The enzyme characteristics were analyzed from isolates of the wild-type strain A. adeninivorans LS3, as well as from those of transgenic strains expressing the AUOX gene under control of the strong constitutive TEF1 promoter or the inducible AYNI1 promoter. The enzyme showed high substrate specificity for uric acid, a broad temperature and pH range, high thermostability and the ability to reduce uric acid content in food.
A Metabolic Labeling Strategy for Relative Protein Quantification in Clostridioides difficile
(2018)
Clostridioides difficile is an intestinal human pathogen that uses the opportunity of a depleted microbiota to cause an infection. It is known, that the composition of the intestinal bile acid cocktail has a great impact on the susceptibility toward a C. difficile infection. However, the specific response of growing C. difficile cells to diverse bile acids on the molecular level has not been described yet. In this study, we recorded proteome signatures of shock and long-term (LT) stress with the four main bile acids cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and lithocholic acid (LCA). A general overlapping response to all tested bile acids could be determined particularly in shock experiments which appears plausible in the light of their common steroid structure. However, during LT stress several proteins showed an altered abundance in the presence of only a single or a few of the bile acids indicating the existence of specific adaptation mechanisms. Our results point at a differential induction of the groEL and dnaKJgrpE chaperone systems, both belonging to the class I heat shock genes. Additionally, central metabolic pathways involving butyrate fermentation and the reductive Stickland fermentation of leucine were effected, although CA caused a proteome signature different from the other three bile acids. Furthermore, quantitative proteomics revealed a loss of flagellar proteins in LT stress with LCA. The absence of flagella could be substantiated by electron microscopy which also indicated less flagellated cells in the presence of DCA and CDCA and no influence on flagella formation by CA. Our data break down the bile acid stress response of C. difficile into a general and a specific adaptation. The latter cannot simply be divided into a response to primary and secondary bile acids, but rather reflects a complex and variable adaptation process enabling C. difficile to survive and to cause an infection in the intestinal tract.
Die Maul- und Klauenseuche (MKS) stellt eine Tierseuche dar, die bei Ausbruch zu dramatischen wirtschaftlichen Verlusten durch Beeinträchtigung der anfälligen Tiere führt. Das verursachende Agens der Krankheit ist das Maul- und Klauenseuche Virus (MKSV), welches der Familie der Picornaviren und der Gattung der Aphthoviren angehört. Ausbrüche der MKS weltweit sind selten, jedoch sollte der Erreger weiterhin erforscht werden, um ablaufende Prozesse besser verstehen, sichere und effiziente Impfstoffe entwickeln und im Falle eines Ausbruches angemessene Gegenmaßnahmen ausüben zu können. Das aus in etwa 8500 Basenpaaren bestehende Genom des Virus codiert unter anderem für die Leader Protease, ein wichtiger Virulenzfaktor, welcher unter anderem die Expression der Wirtsproteine durch die Spaltung des eukaryotischen Initiationsfaktors 4G (eIF4G) beeinträchtigt und ebenfalls die Immunantwort des Wirtes beeinflusst. In dieser Arbeit sollten verschiedene Systeme zur Untersuchung und Differenzierung der Funktionen der Leader Protease analysiert werden. Unter Zuhilfenahme unterschiedlich komplexer Systeme (Infektionssystem, Replikonsystem und Einzelexpressionssystem) erfolgte die Untersuchung der Translationsinhibierung, vermittelt über die eIF4G-Spaltung und der damit einhergehende Einfluss auf die Analyse auf andere Funktionen der Leader Protease. Sowohl im Infektionssystem als auch im hier etablierten Replikonsystem konnte die MKSV-induzierte Spaltung des eukaryotischen Initiationsfaktors 4G verifiziert werden. Hingegen konnte im Einzelexpressionssystem die Spaltung erst nach Lyse der Zellen nachgewiesen werden. Diese bisher noch nicht beschriebene Problematik lässt die bisher veröffentlichten Resultate und Schlussfolgerungen aus Einzelexpressionssystemen in Frage stellen. Die mit Hilfe des Einzelexpressionssystems durchgeführten Studien dieser Arbeit weisen darauf hin, dass ein zusätzlicher translationsinhibierender Mechanismus der Leader Protease, unabhängig von der proteolytischen eIF4G-Spaltung, ausgeübt wird. Dementsprechend sind die Möglichkeiten der Untersuchung zur Leader Protease mittels Einzelexpressionssystem sehr eingeschränkt, da eine Analyse spezifischer Leader Protease-Effekte unabhängig von einer Translationsinhibierung, dem „host-shut-off“, experimentell kaum möglich ist. Dies betrifft insbesondere die durchgeführten InterferonReportergenversuche. Somit konnten unter Verwendung verschiedener Untersuchungssysteme experimentelle Möglichkeiten, aber auch entscheidende experimentelle Limitierungen für die proteinbiochemische Analyse der Leader Protease-vermittelten eIF4G-Spaltung aufgezeigt werden.
Microbial cell factories have been largely exploited for the controlled production of recombinant proteins, including industrial enzymes and biopharmaceuticals. The advent of high-throughput ‘-omics’ techniques have boosted the design of these production systems due to their valuable contribution to the field of systems metabolic engineering, a discipline integrating metabolic engineering with systems and synthetic biology. In order to thrive, the field of systems metabolic engineering needs absolute proteomics data to be generated, as proteins are the central players in the complex metabolic and adaptational networks. Due to advent of mass spectrometry-based proteomics, a substantial amount of absolute proteomic data became available in the past decade. However, membrane proteins remained inaccessible to these efforts.
Nonetheless, comparative studies targeting the membrane proteome have been quite successful in characterizing physiological processes. Hence, label-free proteomics was used in a study (Quesada-Ganuza et al, 2019 – Article I) to identify and optimize PrsA in Bacillus subtilis, for improved yield of amylase. Amylase is one of the most relevant enzymes in the biotechnological sector. By employing a label-free mass spectrometry approach targeting the membrane proteome of this bacterium, relative changes in heterologous and native levels of PrsA could be quantified. The results of this study evidenced that each PrsA shows different relative abundancies, but with no relevant impact in the yield of amylase.
Even though relative protein quantification can already provide a good visualization of the physiological changes occurring between different conditions, they are not sufficient to understand how resources are allocated in the cell under certain physiological conditions. Therefore, a global method for absolute membrane protein quantification remains the biggest requirement for systems metabolic engineering.
Hence, with this work, we successfully developed a mass spectrometry-based approach enabling the absolute quantification of membrane proteins (Antelo-Varela et al, 2019 – Article II). This study was also performed in the Gram-positive model organism Bacillus subtilis, regarded as a prolific microbial cell factory. The method developed in this work combines the comprehensiveness of shotgun proteomics with the sensitivity and accuracy of targeted mass spectrometry. Fundamental to the method is that it relies on the application of a correction and an enrichment factor to calibrate absolute membrane protein abundances derived from shotgun mass spectrometry. This has permitted, for the first time reported, the calculation of absolute membrane protein abundances in a living organism.
The newly developed approach enabled to accurately quantify ~40% of the predicted proteome of this bacterium, offering a clear visualization of the physiological rearrangements occurring upon the onset of osmotic stress. In addition, this work also provides evidence for new membrane protein stoichiometries.
Overall, this study enabled the development of a straightforward methodology long-needed in the scientific and biotechnological community and, for the first time reported, providing absolute abundances of one of the most puzzling fractions of the cell – the membrane proteome.
The next step of the work summarized here was to implement the afore described method to a biotechnological relevant strain, as absolute membrane protein abundances are essential to understand the fundamental principles of protein secretion and production stress. Hence, this work was applied in a genome-reduced B. subtilis strain, ‘midiBacillus’, expressing the major staphylococcal antigen IsaA (Antelo-Varela et al, submitted – Article III). The employed absolute membrane protein quantification methodology enabled the analysis of physiological rearrangements occurring upon the induction of heterologous protein production. This work showed that, even though IsaA was successfully secreted into the growth medium, one of the main requirements for the biotechnological sector, it was still partly accumulated in the cell membrane of this bacterium. This led to an exacerbated physiological response where membrane proteins involved in the management of secretion stress were activated. In addition, this study also showed that a rearrangement of the cell’s translocation machinery occurs upon induction of production, where a ‘game’ of in- and decrease of transporters takes place.
Anticipating the impact of genetic and environmental insults, such as the ones caused by production stress, is essential for the field of systems metabolic engineering. Thus, the highly accurate and comprehensive dataset generated during this work can be implemented in predictive mathematical models, thereby contributing in the rational design of next-generation secretion systems.
Escherichia coli has been commonly used as a platform for recombinant protein production and accounts for approximately 30% of current biopharmaceuticals on the market. Nowadays, many recombinant proteins require post-translational modifications which E. coli normally cannot facilitate. Therefore, novel technological advancements are unceasingly being developed to improve the E. coli expression system. In this work, some of the most recently engineered platforms for the production of disulfide bond-containing proteins were used to study the E. coli proteome under heterologous protein production stress. The effects of protein secretion via the Sec and Tat translocation pathways were examined using a comparative LC-MS/MS analysis. The E. coli proteome responds to foreign protein production by activation of several overlapping stress responses with a high degree of interaction. In consequence, a number of important cellular processes such as cellular metabolism, protein transport, redox state of the cytoplasm and membrane structure are altered by the production stress. These changes lead to the reduction of cellular growth and recombinant product yields. Resolving the identified bottlenecks will increase the efficiency of recombinant protein expression processes in E. coli.
Currently, plastic materials are an integral part of our lives, but their production mostly bases on fossil fuels or derivatives, which resources are decreasing. Extraction and processing of non-renewable resources have also negative impact on environment. One of the most promising and environmentally friendly approaches is use of microorganism. This PhD dissertation presents the non-conventional yeast Arxula adeninivorans as a host for production of bio-based and biodegradable poly(hydroxyalkanoates) plastics poly(hydroxybutyrate) and co-polymer poly(hydroxybutyrate-co-hydroxyvalerate). Additionally, the constructed yeast strain was able to secrete enantiomerically pure (R)-3-hydroxybutyric acid.
The production of PHAs requires three enzymes: β-ketothiolase, acetoacetyl-CoA reductase and PHA synthase. The strategy followed in this project was divided into two parts. While all three enzymes are responsible for intracellular production of PHA polymer, first two only lead to secretion of (R)-3-HB into culture media, which was used in a first stage of work to establish and optimize polymer production. Both, different bacterial strains and yeast A. adeninivorans were taken into account in screening of the genes encoding aforementioned enzymes. Bacterial genes were chemically synthesized using codon optimization pattern and endogenous genes were obtained using PCR and genomic DNA template from A. adeninivorans LS3 wild-type strain. Each gene was cloned into Xplor2 vector between TEF1 constitutive promoter and PHO5 terminator. Vector containing both thiolase and reductase genes was used for A. adeninivorans transformation.
The best combination of heterologous genes was overexpression of β-ketothiolase gene from Clostridium acetobutylicum and acetoacetyl-CoA reductase gene from Cupriavidus necator which led to secretion of 4.84 g L−1 (R)-3-HB, at a rate of 0.023 g L−1 h−1 over 214 h in shaking flask cultivation. Further optimization by fed-batch culturing with glucose as a carbon source did not improve (R)-3-HB secretion, but the rate of production was doubled to 0.043 g L−1 h−1 [3.78 g L−1 of (R)-3-HB at 89 h].
The product of acetoacetyl-CoA reductase is (R)-3-HB-CoA and further removing of CoA moiety is needed for acid secretion into culture media. A. adeninivorans is able to conduct this process without any additional modification but the conversion rate is unknown. Two thioesterases, cytosolic TesBp encoded by TesB gene from E. coli and mitochondrial ATes1p encoded by ATES1 gene from A. adeninivorans, were analysed to enhance secretion process. Additionally, a cytosolic version of ATES1 gene (ATES1cyt) was tested. All three genes were expressed in A. adeninivorans cells under TEF1 constitutive promoter together with thiolase and reductase genes. Despite detected enzymatic activity the yield of (R)-3-HB synthesis and secretion was not increased. Moreover, overexpressed thioesterases negatively influenced cell growth, indicating that they act on other metabolic components. The results provided two sets of information, first, the endogenous secretion system is sufficient for (R)-3-HB production; second, further screening of suitable genes needs to be performed.
Based on optimization of (R)-3-HB synthesis, thiolase gene (thl) from C. acetobutylicum and reductase gene (phaB) from C. necator were chosen to combine with PHA synthase gene (phaC) for creating the PHB-V producing strain. The PHA synthase expression module, containing TEF1 promoter and PHO5 terminator, was cloned into Xplor2 vector together with thiolase and reductase expression modules and used for A. adeninivorans transformation. The engineered strain accumulated up to 7.47% PHB of dcw. During the set of cells passaging A. adeninivorans lost the ability to accumulate polymer with maximal 23.1 % of primary accumulation level. Additionally, use of a vector including hygromycin B antibiotic resistance marker (instead of auxotrophic marker in Xplor2) did not improve polymer accumulation and stability.
To counteract the effect of loss of accumulation stability, phasin gene (phaP1), originated from C. necator, was introduce together with PHA pathway genes. First screening cultivations resulted in stabilizing of polymer production reaching 9.58 % PHB of dcw and only 12.0 % loss of production ability. Further experiments increased PHB content with 19.9% PHB of dcw (3.85 g L-1) after 180 h of cultivation using rich medium. Use of another thiolase gene, the second thiolase from C. necator (bktB), which theoretically should induce production of PHBV copolymer, led to accumulation only 11.4% PHB of dcw after 139 h and no PHV fraction was detected.
Variation of the ratio between flask volume and amount of media influences the level of aeration. Importantly, decrease of aeration level significantly increased polymer synthesis. Additionally, PHB-V copolymer accumulation has been induced by use of different carbon source co-substrates. Use of rich media supplemented with ethanol allow the strain with thl thiolase to accumulate up to 42.9 % PHB of dcw without PHV fraction and with bktB thiolase to 30.5 % PHB of dcw. Nevertheless, despite of lower total amount of polymer, supplementation with 1-propanol allow both strains to accumulate PHB-V copolymer with 7.30 %mol and 22.5 %mol of PHV for thl and bktB strains, respectively.
Optimization based on genetic engineering further enhanced polymer production yield led to exceeding of 50 % PHB-V of dcw. For doubling the gene dosage, PHA synthesizing strains of A. adeninivorans were again transformed with Xplor2 vector containing PHA pathway genes. Resulting strains exhibited twice the level of enzymatic activities of thiolase and reductase compared with strains transformed once with expression vector. In a shaking flask experiment the strain transformed twice with vector containing bktB thiolase reached after 240 h 52.1% PHB-V of dcw (10.8 g L-1) with 12.3 %mol of PHV fraction which is the highest level found in yeast. As another genetic approach, a fusion strain has been created. Two different strains have been established and merged using protoplast fusion technique. Doubling of genetic material resulted in similar level of copolymer produced by Arxula as in former experiments (50.2% of dcw, 10.7 g L-1).
Culture conditions were optimized in controllable cultivation using fed-batch mode. Although optimal oxygen and pH level and continuous carbon source and nitrogen feeding were maintained, final polymer level in % of dry mass was around three times lower than for shaking flask experiment. Nevertheless, efficient growth of Arxula in fed-batch mode led to increase of total copolymer level in g L-1 (16.5 g L-1 compare to 10.8 g L-1 for shaking flasks) showing the feasibility of using Arxula strain for up-scaling production of copolymer.
Acetyl-CoA is a main precursor in synthesis of PHB-V copolymer and change of its pool was investigated. ATP citrate lyase is a cytosolic enzyme converting citrate into oxaloacetate and acetyl-CoA, supporting the biosynthesis of fatty acids. Two genes encoding Acl subunits from Aspergillus nidulans (AnAcl1 and AnAcl2) were again cloned into Xplor2 vector and transformed into A. adeninivorans PHA producing strain. Despite of higher enzymatic activity of AnAclp, accumulation of polymer was around three times higher for control without expression of lyase genes. Expectedly, the strain expressing AnAcl1/2 genes accumulated larger amount of each stearic, palmitic and oleic acid in both standard and fatty acid inducing conditions (lower nitrogen level). Thus, overexpression of AnAcl1/2 genes in A. adeninevorans cells may improve biosynthesis of fatty acids but is ineffective for PHB polymer accumulation.
The aim of the project was use of starch-based media, manufactured as by-products, for polymer production. Genetically engineered Arxula strains were cultivated using these media instead of glucose-based media. Although yeast cells were both able to secrete (R)-3-HB and to accumulate PHB, the yield was lower than for previous media. Additionally, only trace of PHV was found at the end of cultivation time when 1-propanol was supplemented. Obtained results showed that use of cheaper media is a promising approach to decrease production costs but further optimization needs to be performed especially for extended scale of production.
Determination of produced copolymer has been done based on microscopic analysis and studies of physical and chemical properties. Results revealed that Arxula accumulated PHA polymer in cytosolic granules with a similar size range compared to the ones produced by bacteria. The physicochemical study showed that produced polymer exhibited slightly different properties in comparison to bacterial polymer with similar content of PHV, i.e. very-low molecular mass, higher melting and glass transition temperature.
All above results showed that A. adeninivorans is a promising host for PHB-V production. Expression of phasin greatly increased production and stability of polymer, which led to an accumulation level never found before in yeast. Further optimization in higher production scale using cheap starch-based media may establish Arxula strain as a valuable tool for industrial production of PHB-V copolymer.
Bacteria are exposed to oxidative stress as an unavoidable consequence of their aerobic lifestyle. Reactive oxygen species (ROS) are generated in the stepwise one-electron reduction of molecular oxygen during the respiration. Pathogens encounter ROS during the oxidative burst of macrophages as part of the host immune defense. Besides ROS, bacteria also have to cope with reactive chlorine, electrophilic and nitrogen species (RCS, RES, RNS). To cope with these reactive species, bacteria have evolved different defense and repair mechanisms. To maintain the reduced state of the cytoplasm, they utilize low molecular weight (LMW) thiols. LMW thiols are small thiol-containing compounds that can undergo post-translational thiolmodifications with protein thiols, termed as S-thiolations. S-thiolations function as major redox regulatory and thiol-protection mechanism under oxidative stress conditions. In eukaryotes and Gram-negative bacteria, the tripeptide glutathione (GSH) functions as major LMW thiol, which is present in millimolar concentrations. The Actinomycetes, such as Mycobacterium and Corynebacterium species do not produce GSH and utilize instead mycothiol (MSH) as their alternative LMW thiol. In Firmicutes, including Bacillus and Staphylococcus species, bacillithiol (BSH) functions as the major LMW thiol. LMW thiols protect protein thiols against the irreversible overoxidation of cystein residues to sulfinic and sulfonic acids. In addition, LMW thiols contribute to the virulence and survival of pathogens, function in metal homeostasis and serve as enzyme cofactors for detoxification of xenobiotics and antibiotics. In this doctoral thesis, we aimed to investigate the roles of MSH and BSH in redox regulation of main metabolic enzymes under oxidative stress in the pathogens Corynebacterium diphtheriae and Staphylococcus aureus. Previous redox proteomics studies identified the glyceraldehyde-3-phosphate dehydrogenase GapDH and the aldehyde dehydrogenase AldA as S-thiolated in S. aureus and C. diphtheriae. Thus, we aimed to study the redox regulation of the metabolic enzyme GapDH in C. diphtheriae in response to NaOCl and H2O2 stress by S-mycothiolation, which is described in chapter 1. Moreover, we studied the involvement of the mycoredoxin-1 (Mrx1) and thioredoxin (Trx) pathways in reactivation of S-mycothiolated GapDH in vitro. Using shotgun proteomics, 26 S-mycothiolated proteins were identified under NaOCl stress in C. diphtheriae. These are involved in energy metabolism (Ndh, GlpD) and in the biosynthesis of amino acids (ThrA, LeuB), purines (PurA) and cell wall metabolites (GlmS). The glycolytic GapDH was identified as conserved target for S-thiolation across Gram-positive bacteria. GapDH was the most abundant protein, contributing with 0.75 % to the total cystein proteome. Moreover, GapDH is a conserved target for redox regulation and S-glutathionylation in response to oxidative stress in several prokaryotic and eukaryotic organisms. Treatment of GapDH with NaOCl and H2O2 in the absence of MSH resulted in irreversible enzyme inactivation due to overoxidation. Pretreatment of GapDH with MSH prior to H2O2 or NaOCl exposure resulted in reversible inactivation due to S-mycothiolation of the active site Cys153. Since S-mycothiolation is faster compared to overoxidation, S-mycothiolation efficiently protects the GapDH active site against overoxidation. The activity of S-mycothiolated GapDH could be restored by both, the Mrx1 and Trx pathway in vitro. Interestingly, the recovery of Smycothiolated GapDH by Mrx1 was faster compared to its reduction by the Trx pathway. In previous studies, the reactivation of S-mycothiolated Mpx and MrsA by the mycoredoxin pathway occurred also faster compared to the Trx pathway, which is consistent with our results. We were further interested to analyze the redox regulation of the glyceraldehyde-3phosphate dehydrogenase Gap of S. aureus under NaOCl and H2O2 stress, which is described in chapter 2. Using the quantitative redox proteomic approach OxICAT, 58 NaOCl-sensitive cystein residues with >10% thiol oxidation under NaOCl stress were identified. Gap and AldA showed the highest oxidation increase of 29% under NaOCl stress at their active site cystein residues. Using shotgun proteomics, five S-bacillithiolated proteins were identified, including Gap, AldA, GuaB, RpmJ and PpaC. Gap contributed with 4 % as most abundant cystein protein to the total cystein proteome. Our activity assays demonstrated that Gap of S. aureus is highly sensitive to overoxidation by H2O2 and NaOCl in vitro in the absence of BSH. The active site Cys151 of Gap was oxidized to the BSH mixed disulfide under H2O2 and NaOCl stress in the presence of BSH in vitro, which resulted in the reversible Gap inactivation. Moreover, inactivation of Gap by NaOCl and H2O2 due to S-bacillithiolation was faster compared to overoxidation, indicating that S-bacillithiolation protects the Gap active site against overoxidation in vitro. We further showed that the bacilliredoxin Brx catalyzes the reduction of S-bacillithiolated Gap in vitro. Molecular docking of BSH into the Gap active site revealed that S-bacillithiolation does not require major structural changes. Apart from Gap, the aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus previously. Thus, the expression, function, redox regulation and structural changes of AldA were analysed under NaOCl and aldehyde stress in S. aureus as summarized in chapter 3. AldA was S-bacillithiolated in the presence of H2O2 and BSH as demonstrated in BSH-specific Western blots in vitro. The expression of aldA was previously shown to be regulated by the alternative sigma factor SigmaB in S. aureus. Transcription of aldA was strongly increased in a SigmaB-independent manner under formaldehyde, NaOCl and diamide stress in S. aureus. Using an aldA deletion mutant, we demonstrated that aldA is required for growth and survival under NaOCl stress in S. aureus. The purified AldA enzyme was shown to catalyze the oxidation of various aldehyde substrates, including formaldehyde, methylglyoxal, glycolaldehyde and acetaldehyde in vitro. In addition, the function of the conserved Cys279 for AldA activity was investigated in vivo and in vitro. The purified AldAC279S mutant was shown to be inactive for aldehyde oxidation in vitro. Moreover, the aldAC279S mutant was very sensitive under NaOCl stress in vivo, and this phenotype could be reversed using the aldA complemented strain. These experiments demonstrate the function of Cys279 for AldA activity both in vitro and in vivo. AldA activity assays showed that AldA is sensitive to overoxidation and irreversible inactivation by H2O2 alone in vitro. In the presence of BSH, AldA is protected against overoxidation by reversible Sbacillithiolation in vitro. Molecular docking and molecular dynamics simulations revealed that BSH occupies two different positions in the Cys279 active site, which depend on the NAD+ cofactor. In the apoenzyme, BSH forms the disulfide with Cys279 in the “resting” state position, while Cys279 is S-bacillithiolated in the “attacking” state position in the holoenzyme in the presence of the NAD+ cofactor.
The highly oncogenic alphaherpesvirus Marek’s disease virus (MDV) causes immense economic losses in the poultry industry. The main targets of in vivo MDV infection are primary B and T lymphocytes. The cytolytic infection of B cells leads to depletion of lymphoid cells results in severe immunosuppression. Infected B cells recruit and activate T cells. The close interaction between B cells and T cells enables efficient intercellular transfer of MDV. During infection of T cells, the virus enters a latent state. Infection of T cells can lead to transformation of these cells and formation of lymphoma, which manifest in various visceral organs. This study aimed at the characterization of the proteomes of MDV-infected lymphocytes during the lytic and latent phases of infection.
Previous in vitro studies concerning the MDV pathogenesis and host-virus interactions have been mainly conducted with primary fibroblasts or kidney cells, due to the short lifespan of primary lymphocytes in cell culture. Recently, a cultivation system has been established that extents the lifespan of primary lymphocytes through the addition of cytokines to the growth medium. This allowed the infection of B cells in vitro and to conduct quantitative proteomic analysis of primary lymphocytes. Infection with GFP labelled virus recombinants allowed the isolation of infected cells by FACS for the proteome analysis of MDV infected B lymphocytes. An efficient quantitative proteomic workflow was developed, which consisted of a filter-aided (FASP) digest of the extracted proteins, followed by differential dimethyl chemical labeling of the peptides for quantitative evaluation prior to LC-MALDI TOF/TOF mass spectrometry. Only few alterations of the protein and transcript expression profiles were observed after infection of primary B cells with the very virulent RB-1B and the live-attenuated vaccine strain CVI988/Rispens. Relevant changes in relative protein levels were found for only twelve and six interesting host proteins after RB1B and CVI988 infection, respectively. However, the regulations were confirmed by inspection of the spectra from all experiments. The identified candidates play a role in immune response, translation and inflammatory response.
To confirm the potential infection markers, RNA-seq analysis of three biological replicates of each RB-1B -, CVI988- and mock-infected B cells was performed. Eighty expressed MDV transcripts could be identified, which were associated with lytic infection. The same MDV proteins were identified after infection with RB-1B or CVI988. However, transcriptome and proteome analysis of MDV-infected primary B cells showed only poor correlation. This indicates that the changes in protein expression profiles are mostly due to posttranscriptional events. Infection marker candidates were identified by the RNA-seq analysis, for which the gene expression was altered by MDV infection. Although almost 12,000 transcripts were identified, only few transcript levels changed markedly after MDV infection. The biological processes immune response, apoptotic process, signal transduction, cell migration and response to virus were enriched after MDV infection. The RNA-seq results confirm the observation that alterations of protein levels early after MDV infection are rare.
Most notably, MDV induces transformation of lymphocytes leading to malignant T-cell lymphomas in visceral organs with mortalities of up to 100 %. While several factors involved in MDV tumorigenesis have been identified, the transformation process is not fully understood. Therefore, we set out to fill this knowledge gap using proteome analysis of transformed T-cells ex vivo. In addition, the role of the viral telomerase RNA during transformation was assessed by comparison of tumors that had formed after infection with WT-virus or a telomerase RNA negative mutant. A major obstacle for tumor proteome analyses is the preparation of sufficient amounts of homogenous tumor tissue, as tumors appear with a dispersed morphology in the affected organs. The quantitation of cell types within the tumors indicated varying portions of hepatocytes, connective tissue, and CD3+ lymphocytes even with the same virus strain in different animals. However, the ∆vTR-induced tumors contained lower levels of hepatocytes and higher levels of CD3+ lymphocytes compared to WT tumors in all tested tumor samples. Thus, ∆vTR tumors were chosen for determination of differences in protein expression profiles of tumors and naïve T cells for their lower content of liver cells. We developed a workflow for the proteome analysis of T cell tumors from livers of MDV-infected chickens. Samples included laser capture micro-dissected tissue cuts from tumors and surrounding healthy liver tissue as well as naïve T-cells prepared from thymus. To enable quantitative proteome analysis, samples were digested using the FASP protocol and peptides were isotope-coded by differential dimethyl labeling. To improve proteome analysis peptides were fractionated by preparative isoelectric focusing prior to nano-HPLC MALDI/TOF-TOF mass- spectrometric analysis.
Proteomic analyses of LCM dissected ΔvTR tumor compared to naïve T cells, the main targets of transformation, identified nineteen potential transformation markers but again only minor changes in relative levels were observed. Several of the identified markers could also be verified by RT-qPCR on transcript level. The identified transformation candidates were associated with nucleosome assembly, regulation of transcription, inflammatory response, immune response and oxidation-reduction process.
However, further functional analyses are necessary to fully elucidate the role of the identified markers during MDV infection and transformation.
Streptococcus pneumoniae (pneumococci) and Staphylococcus aureus (S. aureus) are human-specific commensals of the upper respiratory tract. Every individual is asymptomatically colonized with both bacteria at least once in their life-time. The opportunistic pathogens can affect further organs and invade into deeper tissue. The occupation of normally sterile niches of the human body with the bacteria can lead to local infections such as sinusitis, otitis media and abscesses, or to life-threatening diseases like pneumonia, meningitis or sepsis. A strong interaction between the bacterium and the respiratory epithelial cells is a prerequisite for a successful colonization. This interaction is ensured by bacterial surface proteins, so called adhesins. The binding of the adhesins to the epithelial lineage occurs predominantly indirectly via components of the extracellular matrix (ECM), but also directly to cellular receptors. Pneumococci and S. aureus bind to various ECM glycoproteins, amongst others: fibronectin, fibrinogen, vitronectin, and collagen. Also binding of both pathogens to human thrombospondin-1 has been described. Thrombospondin-1 is mainly stored in the α-granula of thrombocytes (platelets) and released into the circulation upon activation. However, thrombospondin-1 is also produced and secreted by other cell types like endothelial cells, macrophages, and fibroblasts, which gets subsequently incorporated as component into the ECM. So far, no thrombosponin-1-binding adhesins of pneumococci were identified. PspC, Hic, and PavB are important surface-localized virulence factors, which were shown to interact with human ECM and plasma proteins. PspC and Hic bind to vitronectin and factor H, which inhibits the complement cascade of the human immune system. PavB interacts with fibronectin and plasminogen, and a pavB-deficient mutant of S. pneumoniae showed diminished capacity in colonization in a mouse model. Among the surface proteins of S. aureus, only Eap was identified as thrombospondin-1-binding adhesin. Beyond colonization, pneumococci and S. aureus can enter the blood circulation, interact with platelets, and cause their activation. The aggregation of platelets, especially initiated by S. aureus, plays an important role in the clinic, because most of the septic patients develop thrombocytopenia. Surface localized factors of
S. pneumoniae triggering platelet activation are unknown to date. In contrast, few proteins of S. aureus with potential to activate platelets, including Eap, were identified previously.
This study identified the surface proteins PavB, PspC, and Hic of S. pneumoniae as specific ligands of the human thrombospondin-1. Flow cytometric, surface plasmon resonance spectroscopic and immunological analyses revealed interactions between the pneumococcal proteins and soluble as well as immobilized thrombospondin-1. The use of specific pneumococcal deletion mutants verified the importance of the three virulence factors as binding partners of soluble thrombospondin-1. The results suggest that pneumococci are capable of acquiring soluble thrombospondin-1 from blood as well as utilizing immobilized glycoprotein of the ECM as substrate for adhesion. Furthermore, the thrombospondin-1-binding domain within the pneumococcal proteins was analyzed by use of recombinant fragments of PavB, PspC, and Hic. The binding capacity of thrombospondin-1 increased proportionally with the amount of repetitive sequences in PavB and PspC, and the length of the α-helical region within the Hic molecule. The binding behavior of thrombospondin-1 towards PavB and PspC is comparable with that of the ECM proteins vitronectin and fibronectin, but is unique towards Hic.
The localization of the binding domain of the adhesins within the thrompospondin-1 molecule occurred via use of glycosaminoglycans as competitive inhibitors for the interaction. The results suggest that the pneumococcal proteins Hic and PspC target the identical binding region within thrombospondin-1, which differs from the binding domain for PavB. However, all three virulence factors seem to bind in the N-terminal part of thrombospondin-1.
Two-dimensional gel electrophoresis, thrombospondin-1 overlay assay and subsequent mass spectrometric analysis identified AtlA of S. aureus as a surface localized interaction partner of human thrombospondin-1. Moreover, a vitronectin binding activity for AtlA was determined. Immunological and surface plasmon resonance binding studies with recombinant AtlA fragments revealed that interactions with both matrix proteins is mediated via the C-terminal located repeats R1R2 of the AtlA amidase domain. Binding of thrombospondin-1 and vitronectin occurred not simultaneously, due to a competitive inhibition.
The second part of the study focused on the activation of human platelets by recombinant pneumococcal and staphylococcal proteins. In total, 28 proteins of S. pneumoniae and 52 proteins of S. aureus were incubated with human platelets. The activation of the cells was detected by flow cytometry using the activation markers P-selectin and the dimerization of the integrin αIIbβIII. The proteins CbpL, PsaA, PavA, and SP_0899 of S. pneumoniae induced platelet activation, however, the detailed mechanism has to be deciphered in further studies. Furthermore, the secreted proteins CHIPS, FLIPr, and AtlA of S. aureus were discovered as inductors for the activation of platelets. In addition, the domains of AtlA and Eap, crucial for platelet activation, were narrowed down. Interestingly, CHIPS, FLIPr, and Eap were described as inhibitors of neutrophil recruitment. Platelets are recently recognized as immune cells, due to the expression of immune receptors. The data obtained in this study highlight a comprehensive spectrum of effects of the S. aureus proteins towards different type of immune cells. Besides the activation of platelets in suspension buffer and plasma, the aggregation of platelets in whole blood was triggered by the proteins CHIPS, AtlA, and Eap. These results suggest a contribution of the proteins during the S. aureus-induced infectious endocarditis. Secretion of the platelet activating virulence factors, which were identified within this study, might represent a pathogenic strategy during S. aureus infection in which a direct contact between S. aureus and platelets is not required or even avoided.
In conclusion, PavB, PspC, and Hic of S. pneumoniae and AtlA of S. aureus were identified as interaction partners of human thrombospondin-1. Furthermore, CHIPS, FLIPr, AtlA, and Eap were characterized as platelet activators. This study provides candidates for the development of protein-based vaccines, to prevent bacterial colonization and to neutralize secreted pathogenic factors.
Natürliche Hormone und Substanzen mit einer hormonellen Wirkung werden als organischen Spurenstoffen oder Mikroschadstoffe bezeichnet und werden über verschiedene Quellen in die Umwelt eingetragen. Dies führt insbesondere bei aquatischen Lebewesen zu Veränderungen im endokrinen System. Um die Belastung der Gewässer mit hormonell aktiven Substanzen zu verringern und einen guten chemischen und ökologischen Status nach europäischer Wasserrahmenrichtlinie zu erreichen, wird eine Reduktion des Eintrags hormonell aktiver Substanzen angestrebt. Die meisten Abwässer werden in Kläranlagen gesammelt, die somit Punktquellen für den Eintrag von hormonell aktiven Substanzen in die Umwelt darstellen. Zur Untersuchung neuer Methoden zur Abwasserreinigung sind zuverlässige und sensitive analytische Messtechniken notwendig. Da aktuelle instrumentelle Messmethoden nicht in der Lage sind hormonell aktive Substanzen im wirkungsrelevanten Konzentrationsbereich zu messen, wurden Hefezellenassays zur Detektion der östrogenen (A-YES) und androgenen (A-YAS) Aktivitäten für eine Anwendung in Oberflächengewässern und Abwässern evaluiert. Im Anschluss wurden diese Assays zur Beurteilung und Optimierung der Eliminationsleistung einer großtechnischen Ozonung auf einer kommunalen und einer Krankenhaus Kläranlage eingesetzt. Die untersuchten Abwassermatrices zeigten keine Effekte auf die Enzym Substrat Reaktion und die optische Dichte der A-YES Hefezellensuspension. Proben eines Oberflächengewässers sowie von Kläranlagen Zuläufen verursachten im A-YAS eine erhöhte optische Dichte der Zellsuspension im Vergleich zur Referenz. Eine verringerte optische Dichte der A-YAS Hefezellsuspension konnte in Extrakten von Zulaufproben bestimmt werden. Durch die Dotierung unterschiedlicher Konzentrationen der Referenzsubstanzen zu Oberflächengewässer- und Abwasserproben konnten Dosis Wirkungskurven mittels A-YES und A-YAS Assays abgebildet werden. Dabei konnte gezeigt werden, dass insbesondere in Kläranlagen-Zulaufproben sowohl eine östrogene als auch eine androgene Aktivität bereits in der undotierten Ausgangsprobe vorhanden war. Des Weiteren konnten inhibierende Effekte in den Proben detektiert werden, die auf antagonistische Substanzen hindeuten. Die Analyse von Kläranlagen Abläufen zeigte östrogene Aktivitäten zwischen 0,035 und 5,5 ng EEQ/L sowie androgene Aktivitäten zwischen < 0,31 und 6,1 ng DHTEQ/L. Während der großtechnischen Ozonung konnte die östrogene Aktivität in einer kommunalen sowie einer Krankenhaus Kläranlage um bis zu 97% bzw. 83% reduziert werden. Die Reduktion der androgenen Aktivität lag bei 80% und 66%. Für zwei Verfahren zur bedarfsabhängigen Steuerung der Ozonung basierend auf der östrogenen Aktivität und auf dem DOC Gehalt konnte die Machbarkeit gezeigt werden. Allerdings stellten sich beide Methoden zum jetzigen Zeitpunkt als nicht wirtschaftlich heraus. Antagonistische Aktivitäten konnten in einem Konzentrationsbereich von 330 - 2.700 µg OHTEQ/L (anti-östrogene Aktivität) und 550 - 730 µg FEQ/L (anti-androgene Aktivität) mittels anti A-YES und anti A-YAS detektiert werden. Während der einzelnen Reinigungsstufen konnte keine Reduktion der antagonistischen Aktivitäten nachgewiesen werden. Sowohl A-YES als auch A-YAS sind für die Analyse von Abwasserproben geeignet und ermöglichen so erstmals die Beurteilung von Verfahren zur Abwasserreinigung im wirkungsrelevanten Konzentrationsbereich.
Streptococcus pneumoniae (pneumococci), a human pathobiont, express and expose several proteinaceous colonization and virulence factors on its surface to facilitate on the one hand colonization of the upper respiratory tract and on the other hand pathogenesis in the host. In this study the interaction of two of such factors referred to as pneumococcal virulence factor A (PavA) and pneumococcal virulence factor B (PavB) and acting as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), was delineated with the two host matricellular proteins fibronectin (Fn) and vitronectin (Vn). Despite similarity in nomenclature, PavA and PavB represent two diverse pneumococcal proteins with respect to their structure and association with the pneumococcal surface. PavA is a non-classical surface protein (NCSP) with an ambiguous mode of secretion and anchorage while PavB is a characteristic MSCRAMM, anchored via sortase A to pneumococcal peptidoglycan. PavB has a signature of repetitive modules termed as streptococcal surface repeats (SSURE). Pneumococci preferentially interact with immobilized human Fn. In vitro cell culture adherence assays demonstrated that cell bound Fn facilitates the adherence of pneumococci to the host cells and this particular interaction is indifferent to host cell type and is species non-specific. Flow cytometry and immunoblot analyses further indicated the ability of pneumococci to interact with the soluble form of Fn in a dose-dependent but species non-specific manner. The molecular interaction of PavA and PavB (via its SSURE domains) with Fn was delineated further in detail via several direct protein-protein interaction approaches. Ligand overlay assays, surface plasmon resonance studies and SPOT peptide arrays demonstrated that PavA and PavB target at least 13 out of the 15 type III fibronectin domains located in the C-terminal part of Fn. Strikingly, both pneumococcal fibronectin-binding proteins (FnBPs) recognize similar peptides in targeted type III repeats. Structural comparisons revealed that the targeted type III epitopes cluster on the inner strands of both β-sheets forming the fibronectin domains. Importantly, synthetic peptides of FnIII1, FnIII5 or FnIII15 bind directly to FnBPs PavA and PavB, respectively. Thus, analysis of interaction of pneumococcal FnBPs PavA and PavB revealed a probable conserved and/or common pattern of molecular interaction with human Fn. In addition to Fn, pneumococcal PavB interacts with other host matricellular proteins such as human plasminogen (Plg) and human thrombospondin-1 (hTSP-1). Pneumococcal proteins such as PspC and PspC-like Hic have earlier been demonstrated to interact with hTSP-1 as well as human Vn, thereby depicting a redundant function as MSCRAMMs. In this study the role of PavB as a pneumococcal vitronectin binding protein (VnBP) was assessed. Flow cytometric analysis suggested PavB as VnBP, because strains deficient for PavB exhibited a significantly decreased ability to acquire vitronectin compared to wild-type pneumococci. When using a double knockout, deficient in expression of PavB and the VnBP PspC, the pneumococcal interaction with vitronectin was completely abolished. The direct protein-protein interaction assays such as far western ligand overlay, ELISA, and surface plasmon resonance indicated the interaction of SSURE domains with both soluble and immobilized Vn. However, the binding activity depends on the number of SSURE domains with five SSURE showing the highest binding activity to Vn. The interaction of PavB with Vn was charge dependent and heparin sensitive as analyzed by ELISA. The importance of the heparin binding domains of Vn in this interaction was further analyzed via direct protein-protein interaction approaches. Binding studies (far western ligand overlay, ELISA, and surface plasmon resonance) with truncated recombinant Vn fragments indicated that PavB targets the C-terminal heparin-binding domain (HBD3) of vitronectin, a characteristic shared with PspC, hence, suggesting a conserved molecular interaction of pneumococci with Vn. In addition to its function as an MSCRAMM, PavB has the capability to interact directly with host epithelial cells via an unknown cellular receptor. Thus, this study aimed to identify cellular receptor(s) for PavB. In vitro cell culture adherence and invasion assays confirmed that pneumococcal PavB is involved in promoting pneumococcal adherence to respiratory epithelial cells without employing any molecular bridge. The direct interaction between PavB and host epithelial cells was further confirmed via direct binding assays when using Cy5-labeled PavB and flow cytometric analysis. Strikingly, exogenously added human vitronectin competitively inhibited binding of PavB to respiratory epithelial cells. This observation led us to hypothesize that the major vitronectin receptor αvβ3 integrin acts as a potential receptor for PavB. This hypothesis was supported by functional blocking assays with monoclonal antibodies recognizing specific integrin subunits. The results revealed reduced binding of PavB in the presence of bound antibodies recognizing αv integrin indicating that PavB employs αvβ3 integrin as its direct receptor on eukaryotic cells. This was further confirmed via a direct binding assay of PavB to mouse embryonic fibroblasts (MEFs) where cells lacking αvβ3 demonstrated a marked decrease in binding to PavB. Although functional blocking assay and direct binding assay with MEFs supported the role of αvβ3 integrin as a direct adhesin for PavB, RNA interference of αv integrin in epithelial cells did not impair the binding of PavB in αv-knocked down cells in comparison to non-transfected cells. Finally, surface plasmon resonance (SPR) analysis indicated the direct interaction between pneumococcal PavB and recombinant αvβ3 integrin. In this study we report for the first time the interaction of a Gram-positive extracellular pathogen, namely Streptococcus pneumoniae, with one of the host ICAMs, namely the αvβ3 integrin. In conclusion, the present study analysed some of the aspects of molecular interaction of pneumococcal MSCRAMMs PavA and PavB with hFn and hVn. The hot spots of interaction on C-terminal FnIII repeats were delineated for PavA and PavB. HBD3 was revealed to be pivotal for PavB-Vn interaction. In addition the redundant role of pneumococcal PavB as an MSCRAMM was demonstrated. Furthermore this study successfully identifies a direct receptor for pneumococcal PavB, namely αvβ3 integrin. The mechanism and biological rationale of this newly identified interaction is a matter of debate and awaits further scientific analyses.
Das Genus Pestivirus gehört zur Familie der Flaviviridae und enthält eine Reihe von tierpathogenen Erregern, welche (fast) ausschließlich Paarhufer befallen. Das bei Pestiviren vorkommende Strukturprotein ERNS ist einzigartig in der Familie Flaviviridae, es finden sich keine homologen Proteine in den anderen Genera dieser Familie. ERNS ist ein sehr ungewöhnliches Protein, da es für ein virales Strukturprotein verschiedene untypische Eigenschaften aufweist. Neben einer intrinsischen RNase-Aktivität findet sich am C Terminus eine sehr ungewöhnliche Signalpeptidase-Spaltstelle. Während die RNase Aktivität einen wichtigen Virulenzfaktor darstellt, sorgt die ungewöhnliche Spaltstelle mutmaßlich für die verlangsamte Prozessierung des ERNS-E1-Vorläuferproteins. Inwieweit die verlangsamte Spaltung des Vorläuferproteins für das Virus wichtig sein könnte, ist bis dato noch ungeklärt. Auch ist die Ausbildung von Dimeren wichtig für die Virulenz von ERNS. Darüber hinaus erfolgt eine partielle Sekretion von ERNS in den extrazellulären Raum, während ein Großteil in der Zelle verbleibt. Zusätzlich verfügt ERNS über eine untypische Membranverankerung, die durch eine lange, C-terminale amphipathische Helix vermittelt wird. Innerhalb dieser amphipathischen Helix findet sich eine Reihe geladener Aminosäuren, deren Lokalisation und Anordnung zu zwei spiegelsymmetrisch komplementären Gruppen bei Pestiviren konserviert ist. Es stellte sich die Frage, welche biologische Relevanz dieses Muster an geladenen Aminosäuren haben könnte. Ausgehend von der vorgeschlagenen Ausbildung eines „Charge Zippers“ – durch Rückfaltung und Ausbildung von Salzbrücken zwischen den komplementären Ladungen –, wurden mittels transienten Expressionsexperimenten die sechs hoch konservierten Ladungen im „Inneren“ des möglichen „Reißverschlusses“ untersucht, und es zeigte sich, dass der postulierte Charge-Zipper-Mechanismus bei ERNS vermutlich keine Rolle spielt. Für einige der betrachteten Aminosäuren konnten Hinweise erhalten werden, dass sie eine Rolle bei der Prozessierung, der Retention und bei der Dimerisierung von ERNS spielen. Vor allem ein Austausch der Ladung an der Position 194 im ERNS zeigte einen signifikanten Einfluss auf die Prozessierung und Retention von ERNS. Auch bei der Dimerisierung stach diese Position hervor, da entgegen anderer Mutationen ein Austausch hier zu einer vermehrten Dimerbildung führte. Weiterführend wurden diese Mutationen in rekombinante Viren eingeführt, und es zeigte sich, dass vor allem die spezifischen Ladungen an den Positionen 184 und 191 im ERNS wichtig für die effiziente Virusvermehrung sind. Ladungsaustausche an diesen Positionen sorgten für nicht lebensfähige Virusmutanten, während Alaninsubstitutionen im Lauf von Passagen zur ursprünglichen Ladung revertierten. Diese Ergebnisse zeigen die elementare Bedeutung der Ladungen für die Generierung von infektiösen Viren. Die molekularen Mechanismen, in denen diese Reste von Bedeutung sind, müssen in weiteren Arbeiten noch aufgeklärt werden.
Alcohol dehydrogenases as biocatalysts for the production of enantiomerically pure chiral alcohols
(2016)
Summary Enantiomerically pure chiral alcohols are key compounds in the production of certain chemicals including pharmaceuticals. Chemical synthesis allows to obtain maximal yield of 50% for one enantiomer ( >50% yield is achievable with chiral catalysts used in chemical synthesis), whereas biosynthesis leads to nearly 100% yield. Hence, expensive and time consuming resolution of racemic mixture can be avoided. Alcohol dehydrogenases are the most popular enzymes used in the chiral alcohols synthesis due to high activity with appropriate aldehydes or ketones. ADHs require a cofactor which has to be regenerated after the conversion of aldehyde/ketone to the respective alcohol. Thereby, different regeneration methods were used in the practical work to compare and choose the better one. R. erythropolis and C. hydrogenoformans alcohol dehydrogenases were chosen based on the literature screening. Each gene was cloned into Xplor2 vector and pFPMT vector. Xplor2 vector was used for the transformation of A. adeninivorans and pFPMT vector was used for the transformation of H. polymorpha. Chemically synthesized alcohol dehydrogenase sequences from R. erythropolis (ReADH) and C. hydrogenoformans (ChADH) were cloned between TEF1 promoter and PHO5 terminator which are components of Xplor2 vector or between FMD promoter and MOX terminator which are genetic elements of pFPMT vector. Moreover, ChADH and ReADH sequences with His-tag encoding sequence at the 5’ or 3’ end were constructed and the most active form of the protein was selected for further studies. ReADH-6H was used for the synthesis of 1-(S)-phenylethanol and ethyl (R)-4-chloro-3-hydroxybutanoate whereas ChADH-6H was used for the production of ethyl (R)-mandelate. ReADH-6H synthesized in A. adeninivorans and H. polymorpha was fully biochemically characterized. The enzymes from the two yeast species showed some differences in their pH and temperature optima, thermostability and activity levels. A-ReADH (A. adeninivorans) and H-ReADH (H. polymorpha) were highly active with the same substrates which were: acetophenone, 4-hydroxy-3-butanone and ethyl 4-chloroacetoacetate for reduction reaction along with 1-phenylethanol and 1,6-hexanediol for oxidation reaction. Recombinant A-ReADH-6H and H-ReADH-6H were synthesized in A. adeninivorans and H. polymorpha, respectively. Both enzymes were used for the synthesis of 1-(S)-phenylethanol and ethyl (R)-4-chloro-3-hydroxybutanoate with the use of substrate-coupled cofactor regeneration system. The enantiopurity of the products was >99%. Moreover, A. adeninivorans whole cell catalyst was also used for the synthesis of both chiral alcohols. BmGDH (Bacillus megaterium glucose dehydrogenase) was co-expressed with ReADH-6H for NADH cofactor regeneration. Comparison between isolated enzymes and permeabilized whole cell catalysts indicate that cell biocatalysts are more suitable for the production of 1-(S)-phenylethanol with 92% of acetophenone being converted in 60 min. However, cells did not show any significant advantage over isolated enzymes in the synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate although the velocity of the synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate was slightly improved using whole-cell catalysts, giving an 80% substrate conversion in 120 min. Recombinant C. hydrogenoformans alcohol dehydrogenase was synthesized in A. adeninivorans and biochemically characterized. Enzyme showed high activity only with one substrate, ethyl benzoylformate. The A. adeninivorans and H. polymorpha cell catalysts synthesizing ChADH and BmGDH (Bacillus megaterium glucose dehydrogenase) were constructed and used in the synthesis of ethyl (R)-mandelate (reduction product of ethyl benzoylformate) with the enantiopurity of the reaction product being >98%. H. polymorpha catalysts were more effective in the synthesis than A. adeninivorans cells. The first were able to convert 93% of ethyl benzoylformate within 180 min and the latter were converting 94% of the substrate within 360 min. Re-use of non-immobilized cells and catalysts entrapped in Lentikat® was performed and the improvement of the stability of immobilized catalysts was reported. Space time yield of 3.07 mmol l-1 h-1 and 6.07 mmol l-1 h-1 was achieved with A. adeninivorans and H. polymorpha cell catalysts, respectively. Alcohol dehydrogenase 1 from A. adeninivorans was analyzed concerning the synthesis of enantiomerically pure chiral alcohols. The enzyme did not synthesize industrially attractive products. However, based on biochemical characterization enzyme plays a role in the synthesis of 1-butanol or ethanol and thereby it is of biotechnological interest.
Die Hefe Saccharomyces cerevisiae reagiert auf die sich ständig ändernden Umweltbedingungen durch eine präzise Regulation der Genexpression. Möglich wird dies durch ein komplexes Netzwerk aus spezifischen Regulatoren und pleiotropen Faktoren. Aktivatorproteine binden an Aktivierungssequenzen (UAS-Elemente) in ihren Zielpromotoren und rekrutieren basale Transkriptionsfaktoren sowie Coaktiva¬toren. Dadurch erhöhen sich Wahrscheinlichkeit und Häufigkeit der Transkriptions¬initiation und die DNA im Promotorbereich wird durch die Aktivität von Komplexen der Chromatinremodellierung und -modifizierung für die Transkriptionsmaschinerie zugänglich gemacht. Dagegen binden spezifische Repressor¬proteine an ihre Regula¬tionssequenzen (URS-Elemente) oder an Aktivatorproteine, inhibieren deren Wirkung oder rekrutieren Histondeacetylase-Komplexe wie den Sin3-Corepressor, die eine Verdichtung des Chromatins bewirken. Der Sin3-Corepressorkomplex ist an einer Vielzahl von Regulationsprozessen beteiligt. In Hefe existieren zwei Sin3-Varianten, die als Rpd3L bzw. Rpd3S bezeichnet werden und sich in ihrer Zusammensetzung unterscheiden. Neben Sin3 als zentralem Gerüst¬protein in beiden Komplexen sind im Rpd3L strukturelle Untereinheiten wie Sds3, Sap30 und Pho23 sowie die Histondeacetylase (HDAC) Rpd3 als enzymatische Komponenten enthal¬ten. Durch Funktionsanalysen von Mutanten einzelner Unterein¬heiten wurde festge¬stellt, dass zusätzlich zu Rpd3 weitere HDACs an der Repression ICRE-abhängiger Gene der Phospholipid-biosynthese Gene beteiligt sind. Interaktionsstudien zeigten, dass auch die HDACs Hda1 und Hos1 an Sin3 binden. Die Bindung erfolgt über drei sogenannte HDAC-Interaktionsdomänen (HID1-3), wobei Hda1 und Hos1 an HID2 und HID3 binden, Rpd3 dagegen an HID1 und HID3. In dieser Arbeit konnte gezeigt werden, dass die HDACs direkt an ihre jeweiligen HIDs binden. Außerdem inter¬agieren Hda1 und Hos1 auch in vivo mit Sin3. Die HID1 wurde auf die Aminosäuren 801-950 verkürzt und es wurde nachge¬wiesen, dass eine funktionsfähige katalyti¬sche Domäne von Rpd3 nicht für die Wechselwirkung mit Sin3 notwendig ist. Außerdem wurden die Interaktionsdomänen von Sds3 und Sin3 kartiert. Die erhaltenen Befunde ergänzen die Daten zu Protein-Protein-Inter¬aktionen im Sin3-Corepressorkomplex und komplettieren funktionelle Aspekte der HDAC-Rekrutierung. Eine weitere Zielstellung dieser Arbeit war die Erstellung eines Interaktionsnetzwerks zwischen spezifischen Aktivatoren und allgemeinen Faktoren der Transkription. Eukaryotische Aktivatorproteine sind modular aufgebaut und besitzen voneinander separierbare Funktionsdomänen. Die Erkennung und Bindung von UAS-Elementen in den Zielpromotoren erfolgt über die DNA-Bindedomäne (DBD), während Tran¬skriptions¬¬aktivierungs¬domänen (TADs) basale Transkriptionsfaktoren und Co¬aktiva¬toren rekrutieren und somit die aktivierende Wirkung vermitteln. Im Gegensatz zu den DBDs folgen TADs meist keinen durch Sequenzanalysen vorhersagbaren Strukturmotiven und müssen manuell eingegrenzt werden. Für die Kartierung funktioneller TADs wurden Längenvarianten von über 30 Aktiva-toren aus verschiedenen Familien DNA-bindender Proteine an die Gal4DBD fusioniert und auf ihre Fähigkeit überprüft, ein UASGAL-abhängiges Reportergen zu aktivieren. Dabei konnten 15 neue TADs eingegrenzt werden. Weiterhin wurden die bisher nicht charakterisierten Zinkcluster¬proteine Yjl206c, Yer184c, Yll054c und Ylr278c als Aktivatoren bestätigt. Dadurch stand eine Samm¬lung aus 20 bekannten und neukartierten TADs zur Verfügung, die nach Konstruktion von GST-Fusionen für in vitro-Interaktionsexperimente mit Unter¬einheiten des Mediators, des TFIID- und des SWI/SNF-Komplexes eingesetzt wurden. Es konnten direkte Wechselwirkungen von Aktivatoren (u. a. Aft2, Aro80, Mac1 und Zap1) mit den TFIID-Komponenten TBP, Taf1, Taf4 und Taf5 detektiert werden. Die Bindung an Taf1 erfolgte im Bereich von aa 1-250, der zwei Aktivator¬interaktions-domänen (AID) enthält und in vorangegangenen Experimenten auch mit Ino2 und Adr1 interagierte. Die Rap1-Bindedomäne (RBD) von Taf4 (aa 253-344) interagierte auch mit Mac1, Aft2 und Ino2. Daher wurde dieser Bereich als allgemeine AID klassifiziert. Für die Aktivatorinteraktion essentielle Aminosäuren konnten allerdings nicht identi¬fiziert werden. 17 von 20 TADs interagierten direkt mit der Mediator-Untereinheit Med15, während für Med17 10 Kontakte zu Aktivatoren detektiert wurden, was die Relevanz des Mediators für die Aktivatorfunktion unterstreicht. Die katalytische Untereinheit des SWI/SNF-Komplexes Swi2 zeigte ähnlich viele TAD-Interaktionen wie Med15. Der N-terminale Bereich von Swi2 (aa 1-450) stellte sich als ausreichend für die Bindung der Aktivatoren heraus und enthält demnach eine oder mehrere AIDs. Damit konnte das Interaktionsnetzwerk zwischen Aktivatoren und allgemeinen transkriptionalen Cofaktoren substantiell erweitert werden.
In der Hefe S. cerevisiae erfolgt die Transkriptionsregulation der Strukturgene der Phospholipid-Biosynthese in Abhängigkeit der intrazellulären Konzentration der beiden Phospholipid¬vorstufen Inositol und Cholin (IC). Bei IC-Mangel kommt es zu einer Akkumulation des Signalmoleküls Phosphatidsäure, wodurch der Repressor Opi1 extranukleär am endoplasmatischen Retikulum (ER) verankert wird. Dadurch kann der heterodimere Aktivator Ino2/Ino4 an eine spezifische „upstream activation site” (UAS) in der Promotorregion, die als ICRE-Motiv („inositol/choline-responsive element“) bezeichnet wird, binden und die Initiation der Transkription vermitteln. Die aktivierende Wirkung geht dabei von zwei Transkriptions¬aktivierungsdomänen (TAD) im N-Terminus von Ino2 aus. Da bisher unbekannt war, wie die Ino2-vermittelte Genaktivierung erfolgt, bestand das Ziel dieser Arbeit in der Identifizierung der Coaktivatoren, die direkt an die TADs von Ino2 binden. Ferner sollten die für die Transkriptionsaktivierung wichtigen Wechselwirkungen innerhalb der Coaktivatoren präzise kartiert werden. Es konnte hier mit Hilfe der affinitätschromatographischen Methode des GST-„Pulldown“ gezeigt werden, dass TAD1 und TAD2 von Ino2 mit den generellen Transkriptionsfaktoren TFIID und TFIIA interagieren. Innerhalb des TFIID wurden die Untereinheiten Taf1, Taf4, Taf6, Taf10 und Taf12 in vitro als direkte Ino2-Interaktionspartner identifiziert. Dabei binden alle identifizierten Taf-Proteine an die starke TAD1, Taf10 zusätzlich an die TAD2. Frühere Untersuchungen hatten gezeigt, dass Mutationen innerhalb der TAD1 von Ino2 (D20K, F21R) zu einem vollständigen Verlust der Aktivierungsleistung führen. In dieser Arbeit wurde nachgewiesen, dass die gerichtete Mutation dieser Aminosäuren zu einem vollständigen Interaktionsverlust mit den Taf-Proteinen führt. Mit Hilfe von Interaktionsexperimenten wurden innerhalb von Taf1 zwei distinkte Aktivatorinteraktionsdomänen (AID1: AS 1-100; AID2: AS 182-250) kartiert, die die Bindung an Ino2 vermitteln. Mutationen hydrophober und basischer Aminosäure-Reste innerhalb der Taf1-AID2 hatten einen vollständigen Verlust der Interaktion mit Ino2 zur Folge. Möglicherweise sind also ionische und hydrophobe Wechselwirkungen an der Interaktion von Ino2 und Taf1 beteiligt. Mit Hilfe der Chromatin-Immunopräzipitation (ChIP) erfolgte der Nachweis, dass Taf1 in Abhängigkeit von Ino2 auch in vivo an den ICRE-haltigen Promotoren INO1 und CHO2 vorhanden ist. Im Folgenden wurden auch die Ino2-Interaktionsbereiche innerhalb der Proteine Taf6, Taf10 und Taf12 durch die Generierung sukzessiver GST-Verkürzungen eingegrenzt. Taf10 und Taf12 besitzen wie Taf1 zwei separate AIDs (Taf10: AID1 AS 1-100; AID2 AS 131-176; Taf12: AID1 AS 50-100; AID2 AS 100-178). Untersuchungen mit mutagenisierten Varianten, bei denen wie zuvor im Fall von Taf1 hydrophobe und basische Aminosäuren innerhalb der Taf12 AID2 ausgetauscht wurden, führten lediglich zu einer Verringerung der Bindungsintensität. Dies lässt vermuten, dass mehrere kleine Domänen innerhalb der AID2 existieren, die funktionell redundant sind. Mit Hilfe weiterer ChIP-Experimente konnte auch nachgewiesen werden, dass Taf6 und Taf12 abhängig von Ino2 an den untersuchten Promotoren INO1 und CHO2 vorhanden sind. Die Proteine Taf1 und Taf6 wurden exemplarisch für Genexpressionsstudien ausgewählt, um ihren Einfluss auf die Transkription des Gens INO1 unter in vivo Bedingungen nachzuweisen. Durch vergleichende Northernblot-Hybridisierungen mit temperatursensitiven (ts) taf-Mutanten wurde gezeigt, dass die INO1-Expression unter nichtpermissiven Bedingungen (37°C) auf 7% (taf1ts) bzw. 4% (taf6ts) abfällt. Diese Befunde belegen, dass INO1 zu den Taf-abhängigen Genen zählt. Der generelle Transkriptionsfaktor TFIIA wurde ebenfalls auf eine Interaktion mit Ino2 untersucht. Bekannt war bereits, dass der Aktivator Rap1, der ähnlich wie Ino2 mit mehreren TFIID-Untereinheiten interagiert, auch TFIIA kontaktiert. Durch GST-„Pulldown“-Studien konnte die Untereinheit Toa1 als direkter Ino2-Interaktionspartner identifiziert werden. Dabei zeigte sich, dass Toa1 sowohl mit der TAD1 als auch der TAD2 von Ino2 interagiert und die TAD1 Aminosäuresubstitutionen D20K und F21R zu einem vollständigen Interaktionsverlust führen. In dieser Arbeit konnte somit gezeigt werden, dass die generellen Transkriptionsfaktoren TFIID und TFIIA als Coaktivatoren des für die Transkription der Strukturgene der Phospholipid-Biosynthese essentiellen Aktivators Ino2 fungieren.
Die ADHs aus Rhodococcus ruber (RrADH) und Lactobacillus brevis (LbADH) wurden erstmals in der Hefe Arxula adeninivorans (Blastobotrys adeninivorans) hergestellt und zur Synthese von enantiomerenreinen 1-Phenylethanol eingesetzt. Die entsprechenden Gene wurden hierfür mit dem starken konstitutiven TEF1-Promotor und dem PHO5-Terminator flankiert und unter Nutzung der etablierten Xplor2®-Transformations-/Expressionsplattform in der Hefe exprimiert. Die erhaltenen selektierten Transformanden wiesen dabei ADH-Aktivitäten von 21 bzw. 320 U g-1 dcw für die Reduktion von Acetophenon zu 1-Phenylethanol in Schüttelkultur auf. RrADH und LbADH sind für die Reduktion von Acetophenon und Acetophenon-Derivaten, alpha-Ketoestern und aliphatischen Ketonen geeignet. Die RrADH synthetisiert (S)-konfigurierte Alkohole und ist NAD+/NADH-abhängig, während die LbADH die Reduktion von Acetophenon zu 1-(R)-Phenylethanol mithilfe des Cofaktors NADPH katalysiert. Rohextrakt des RrADH produzierenden Hefestamms konnte erfolgreich für die Synthese von enantiomerenreinem 1-(S)-Phenylethanol mit einer Ausbeute von 90 % und einem Enantiomerenüberschuss (ee) von >99 % über Substrat-gekoppelte Regeneration mit Isopropanol eingesetzt werden. Die Erhöhung der Ausbeute auf 100 % gelang durch Enzym-gekoppelte Regenerierung des Cofaktors NADH mit der GDH aus Bacillus megaterium (Bm) für RrADH bzw. NADPH mit der BmGDH und G6PDH aus Bacillus pumilus (Bp) für LbADH katalysierte Reaktionen. ADHs und Cofaktor-regenerierende Enzyme wurden simultan durch die konstitutive Coexpression der entsprechenden Gene in A. adeninivorans für die Synthese von enantiomerenreinem 1-Phenylethanol hergestellt. Die Enzymrohextrakte der RrADH-BmGDH, LbADH-BmGDH und LbADH-BpG6PDH produzierenden Hefestämme katalysieren ohne Ausnahme die Synthese des jeweiligen Enantiomers von 1-Phenylethanol mit ee >99 % und Ausbeuten von 100 % für Substratkonzentrationen bis 40 mM. Nach der Extraktion des 1-Phenylethanols liegt dieses chemisch rein vor, sodass aufwendige Aufarbeitungs- und Reinigungsschritte erspart bleiben. GDH bzw. G6PDH sind hervorragend für die Regeneration von NADH und NADPH bzw. ausschließlich letzterem geeignet. Dabei wurden standardmäßig 40 mol 1-Phenylethanol pro Mol NAD+ oder NADP+ erreicht. Auch intakte Hefezellen der rekombinanten ADH und BmGDH bzw. BpG6PDH synthetisierenden Stämme wurden für die Synthese von 1-(S)- bzw. 1-(R)-Phenylethanol verwendet. Nach Permeabilisierung mit Triton X-100 wiesen sie vergleichbare Aktivitäten zu den entsprechenden Rohextrakten auf. Der RrADH-BmGDH produzierende Stamm synthetisiert 1-(S)-Phenylethanol mit einer Aktivität von 20 U g-1 dcw, während die LbADH-BmGDH und LbADH-BpG6PDH Hefestämme sogar 45,6 und 87,9 U g-1 dcw lieferten. Die Ausbeuten und ee waren im Vergleich zu den Rohextrakten ähnlich. Die Erhöhung der Konzentration des Ausgangsstoffs Acetophenon reduzierte unabhängig von den verwendeten Enzymen die erhaltene Ausbeute. Die katalytische Produktivität der Biokatalysatoren wurde durch ihre Wiederverwendung erhöht. Hierfür wurden permeabilisierte Zellen, die einfach aus der Syntheselösung abzentrifugiert werden können, genutzt. Außerdem konnten der Rohextrakt und die Zellen nach ihrem Einschluss in unlösliches Calciumalginat in Form von kleinen Kügelchen aus der Synthese abfiltriert und wiederverwendet werden. Permeabilisierte Zellen und Immobilisate wurden wiederholt für die Reduktion von Acetophenon zu 1-Phenylethanol eingesetzt, wobei immobilisierter Rohextrakt und Zellen für drei bis maximal sechs Synthesezyklen verwendet werden konnten. Immobilisierte und permeabilisierte Zellen sind wesentlich stabiler. Sie können ohne erhebliche Aktivitätsverluste 14 (LbADH-BpG6PDH), 29 (RrADH-BmGDH) bzw. mehr als 50 Mal (LbADH-BmGDH) wiederholt zur Acetophenon-Reduktion eingesetzt werden. Auf ihrer Grundlage wurde ein erster Reaktor für die semi-kontinuierliche Synthese von 1-(R)-Phenylethanol im Labormaßstab konstruiert und in Betrieb genommen. Es konnten 206 mol 1-(R)-Phenylethanol pro Mol NADP+ und 12,78 g 1-(R)-Phenylethanol mit einem ee von 100 % und einer Raum-Zeit-Ausbeute von 9,74 g L-1 d-1 oder 406 g kg-1 dcw d-1 erhalten werden. Weitere Optimierungen der Hefestämme, Reaktionsbedingungen und Reaktionsführung sind zur Erhöhung der Ausbeute und zum Erreichen vergleichbarer Produktivität mit derzeitigen Syntheseprozessen für 1-Phenylethanol nötig. Der ee ist bereits optimal. Zusammenfassend ist A. adeninivorans ein hervorragender Wirt zur Herstellung von ADHs für die Synthese enantiomerenreiner Alkohole wie 1-(S)- und 1-(R)-Phenylethanol. Nach Extraktion liegt das Produkt rein und mit optimalen ee vor. Durch die in dieser Arbeit gezeigten Untersuchungen können bisher chemische Synthesen durch enzymatische Reaktionen unter Einsatz von ADHs, deren Produktion in A. adeninivorans erfolgte, ersetzt werden, was Kosten und natürlichen Ressourcen spart.
The influence of regulatory proteins on the physiology and virulence of Streptococcus pneumoniae
(2015)
In conclusion, this work identifies the regulator ArgR2 as activator of the S. pneumoniae TIGR4 arginine deiminase system and arginine-ornithine transporter ArcD, which is needed for uptake of the essential amino acid arginine. Although ArgR2 activates ArcD expression and uptake of arginine is required to maintain pneumococcal fitness, the deficiency of ArgR2 increases TIGR4 virulence under in vivo conditions, suggesting that other factors regulated by ArgR2 counterbalance the reduced uptake of arginine by ArcD. Thus this works illustrates that the physiological homeostasis of pneumococci is complex and that ArgR2 plays a key role in maintaining bacterial fitness. Moreover, Rex was identified as a regulator of housekeeping genes including genes encoding glycolytic enzymes. In vitro studies and gene expression analyses suggested that the regulator Rex does not have an influence on the physiology of S. pneumoniae. However, a co-infection experiment demonstrated that Rex is involved in maintaining pneumococcal fitness and robustness under in vivo conditions.
Streptococcus pneumoniae (pneumococci) are lancet-shaped, Gram-positive, alpha-hemolytic, facultative anaerobic human specific commensals of the upper and lower respiratory tract. Pneumococci may convert to pathogenic bacteria and spread to the lungs and blood. In different population groups, such as children, the elderly and immunocompromised individuals, pneumococci can cause local infections such as bronchitis, rhinitis, acute sinusitis, and otitis media as well as life-threatening invasive diseases such as community-acquired pneumonia, sepsis and meningitis. Pneumococci are surrounded by a rigid and complex exoskeleton, the peptidoglycan, also referred to as murein sacculus. The peptidoglycan (PNG) protects the cells from rupture by osmotic pressure and maintains their characteristic shape. The PNG is a heteropolymer made up of glycan strands that are cross-linked by short peptides and during growth the existing murein is continuously hydrolyzed by specific lytic enzymes to enable the insertion of new peptidoglycan. Bacterial cell-wall hydrolases are essential for peptidoglycan turnover and crucial to preserve cell shape. The D,D-carboxypeptidase DacA and L,D-carboxypeptidase DacB of Streptococcus pneumoniae function in a sequential manner. This study determined the crystal structure of the surface-exposed lipoprotein DacB, which differs considerably from the DacA structure. DacB contains a Zn2+ ion in its catalytic center located in the middle of a fully exposed, large groove. Two different conformations with differently arranged active site topology were identified. In addition the critical residues for catalysis and substrate specificity were identified. Deficiency in DacA or DacB resulted in a modified peptidoglycan peptide composition and led to an altered cell shape of the dac-mutants. In contrast, lgt-mutant lacking lipoprotein diacylglyceryl transferase activity required for proper lipoprotein maturation retained L,D-carboxypeptidase activity and showed an intact murein sacculus. Furthermore, this study demonstrated the pathophysiological effects of disordered DacA or DacB activities. Real-time bioimaging of intranasally infected mice indicated a substantially attenuated virulence of dacB- and dacAdacB-mutants pneumococci, while loss of function of DacA had no significant effect. In addition, uptake of these mutants by professional phagocytes was enhanced, while their adherence to lung epithelial cells was decreased. The second part of this study focused on the functional and structure determination of the soluble dimeric pneumococcal lipoprotein PccL. Because of its calycin fold and structural homology with the lipocalin YxeF from Bacillus subtilis, PccL was introduced as the first member of the lipocalin protein family in pneumococci and named “PccL” (Pneumococcal calycin fold containing Lipoprotein). Similar to other lipocalins, the distinct beta-barrel, which is open at one end, is significantly conserved in PccL. Moreover, the application of the in vivo acute pneumonia mouse infection model and the in vitro phagocytosis as well as adherence invasion studies revealed considerable differences in colonization and invasive infection between the wild-type D39 and the pccL-mutant. In conclusion, this study characterized the crucial role of pneumococcal carboxypeptidases DacA and DacB for PGN architecture, bacterial shape and pathogenesis. By applying in vivo and in vitro approaches, a close relationship between PGN metabolism and pathophysiological effects was discovered. In addition, the high resolution structure of DacB has been solved and analyzed and a structure model with a resolution of 2.0 Å is provided. Furthermore, analysis of the PGN composition was applied to indicate the impact of an impaired lipoprotein biogenesis pathway on localization and activity of DacB. The major impact of carboxypeptidases on cell shape and virulence proposes DacB as a promising target for the development of novel drugs or due to its surface exposition also as a promising vaccine candidate. PccL is the first pneumococcal lipocalin-like protein and this study indicated its contribution to pneumococcal virulence. However, the mechanism and the mode of action of PccL are still unknown and have to be deciphered in further studies.
Die chronische Herzinsuffizienz (HI) bezeichnet das Unvermögen des Herzens, die vom Körper benötigte Blutmenge bedarfsgerecht zu befördern und stellt in der Allgemeinbevölkerung das Endstadium vieler Herzerkrankungen dar. Trotz großer Fortschritte in der medikamentösen Therapie ist die Prognose der HI auch heute noch schlecht. Der progrediente Verlauf erstreckt sich von einer kompensierten Herzhypertrophie mit aufrechterhaltener Pumpfunktion bis hin zu einer massiven Ventrikeldilatation mit stark eingeschränkter Herzfunktion und weist dementsprechend eine schlechte Prognose auf. Die zellulären Veränderungen auf Protein- und Genexpressionsebene während der Progression einer HI sind sehr komplex und trotz ausgiebiger wissenschaftlicher Arbeiten nicht ausreichend geklärt. Dabei ist es von entscheidender Bedeutung, in welcher Phase der Erkrankung spezifische Änderungen in der Genregulation entstehen und inwiefern sich diese auf den Phänotyp auswirken. Auf Grund dessen beschäftigt sich die vorliegende Arbeit mit den zeitabhängigen Veränderungen auf mRNA-und Proteinebene während der Progression der HI. Um alle Stadien beginnend von einer subklinischen Organschädigung bis hin zur Ausbildung einer HI experimentell untersuchen zu können, wurde zunächst ein Mausmodell etabliert, welches durch eine chronische Nachlasterhöhung mittels Einengung des Aortenlumens eine Myokardschädigung durch eine arterielle Hypertonie simuliert (transverse aortic constriction, TAC). Die Herzfunktion der Mäuse wurde an den postoperativen Tagen 4, 14, 21, 28, 42, und 56 durch Messungen im Kleintier-MRT (Magnetresonanztomografie) evaluiert. Dabei konnte gezeigt werden, dass sich die linksventrikuläre Ejektionsfraktion (LVEF) TAC-operierter Mäuse vom postoperativen Tag 4 zu 14 verschlechtert, bis Tag 42 auf einem konstanten Niveau hält und bis Tag 56 nochmals stark absinkt. Im Gegensatz dazu zeigten Sham-operierte Mäuse über den gesamten Zeitraum eine stabile LVEF. Ein vergleichbarer stufenartiger Verlauf konnte bei den Parametern der linksventrikulären Masse und den endsystolischen bzw. enddiastolischen Volumina beobachtet werden. Zusätzlich konnte durch histologische Untersuchungen zu den verschiedenen postoperativen Zeitpunkten eine verstärkte Fibrosierung des Herzgewebes nach der TAC-OP aufgezeigt werden. Für die longitudinalen Transkriptom- und Proteomuntersuchungen wurden die Herzen (jeweils linke und rechte Ventrikel) nach den MRT-Messungen entnommen, gruppen- und zeitpunktspezifisch gepoolt und einer Microarray- bzw. massenspektrometrischen Analyse unterzogen. Auf Transkriptomebene zeigten sich vor allem an den Tagen 4 und 56 starke TAC-induzierte Veränderungen im Expressionsmuster, wohingegen der Zeitraum zwischen 14 und 42 Tagen weniger differenziell exprimierte Gene aufwies. Der Verlauf der Erkrankung konnte anhand bereits bekannter Hypertrophie- und HI-marker sehr gut charakterisiert werden. So zeigten Nppa (ANP) und Nppb (BNP) im linken Ventrikel bereits kurz nach Aortenstenose stark erhöhte Expressionslevel, die über die gesamte Versuchsdauer erhalten blieben. Weiterhin wurde die Expression von Genen reguliert, die an kardialen Remodelingprozessen maßgeblich beteiligt sind, wie beispielsweise Acta1 (a-Aktin), Myh7 (b-Myosin Heavy Chain) und Postn (Periostin). Im Vergleich beider Ventrikel zeigte der rechte Ventrikel bezüglich der Anzahl der regulierten Gene als auch bei der Expression HI-assoziierter Gene eine verzögerte und weniger stark ausgeprägte Reaktion. In den linken Ventrikeln wurden vor allem die Gene reguliert, deren Genprodukte der extrazelluären Matrix angehören. Eine Validierung der Microarray-Ergebnisse mittels realtime-PCR konnte die Richtigkeit der Analysemethode sehr präzise bestätigen. Da diese anhand ausgewählter Gene auf Einzeltierebene durchgeführt wurde, konnte zusätzlich auf Korrelation zwischen mRNA-Expression und den kardialen Funktionsparametern getestet werden. Wie erwartet spiegelten die Epressionslevel der HI-assozierten Markergene Nppa (ANP), Nppb (BNP) und Myh7 (b-Myosin Heavy Chain) die progressive Verschlechterung der Herzfunktion wider. Zusätzlich konnten durch die Validierung und Korrelationsanalysen weitere interessante Kandidatengene, wie beispielsweise Sfrp2 (Secreted frizzled-related protein 2) und Wisp2 (WNT1-inducible signaling pathway protein 2) für weiterführende Studien identifiziert werden. Auch auf Proteomebene konnten vergleichbare Ergebnisse erzielt werden. Auch hier zeigte der linke Ventrikel eine deutlich ausgeprägtere Reaktion auf die Drucküberlastung, der rechte Ventrikel antwortete deutlich schwächer und verzögert. Änderungen im Proteinmuster nach TAC waren in den linken Ventrikeln vor allem an den Tagen 14, 21 und 28 stark ausgeprägt. Ingenuity Pathway Analysen der veränderten Proteine weisen auf Veränderungen im Kalzium-, Rho A- und PKA-Signaling vor allem zu den frühen Zeitpunkten hin, wohingegen zu späteren Zeitpunkten hauptsächlich metabolische Prozesse betroffen waren.
Transcriptional repression of regulated structural genes in eukaryotes often depends on pleiotropic corepressor complexes. A well-known corepressor conserved from yeast to mammalian systems is Sin3. In addition to Sin3, yeast Cyc8/Tup1 corepressor complex also regulates a diverse set of genes. Both corepressors can be recruited to target genes via interaction with specific DNA-binding proteins, leading to down-regulation of a large number of unrelated structural genes by associated histone deacetylases (HDACs). In vitro interaction studies performed in this work by GST pull-down assays showed that various repressor proteins (such as Whi5, Stb1, Gal80, Rfx1, Ure2, Rdr1, Xbp1, Yhp1, Rox1, Yox1, Dal80 and Mot3) are indeed able to bind pleiotropic corepressors Sin3 and/or Cyc8/Tup1. All repressors interacting with Sin3 contact its paired amphipathic helix domains PAH1 and/or PAH2. Mapping experiments allowed the characterization of minimum repressor domains and to derive a sequence pattern which may be important for repressor interaction with Cyc8 or Sin3. Interactions for some pathway-specific repressors such as Cti6 and Fkh1 have been studied comprehensively; minimal domains of Cti6 and Fkh1 required for interaction with Sin3 have been mapped and subsequently investigated by mutational analysis. In vitro interaction studies could show that amino acids 350-506 of Cti6 bind PAH2 of Sin3. To analyze this Cti6-Sin3 interaction domain (CSID) in more detail, selected amino acids within CSID were replaced by alanine. It turned out that hydrophobic amino acids V467, L481 and L491 L492 L493 are important for Cti6-Sin3 binding. The results of this work also suggest that repression is not executed entirely via Sin3, but rather CSID is also important for contacting pleiotropic corepressor Cyc8. In addition to PAH2 of Sin3, CSID also binds to tetratricopeptide repeats (TPR) of Cyc8. Furthermore, in vitro mapping studies revealed that Fkh1 also binds PAH2 of corepressor Sin3 via its N-terminal domain (aa 51-125). Binding studies with mutagenized Fkh1-Sin3 interaction domain (FSID) showed that Fkh151-125 variants L74A and I78A were unable to bind PAH2 of Sin3. Confirming in vitro studies, Cti6350-506 and Fkh151-125 also displayed in vivo interaction with PAH2 of Sin3 by using the “yeast two -hybrid” system. Chromatin immunoprecipitation (ChIP) analyses have demonstrated Cti6 recruitment to promoters of genes such as RNR3 and SMF3 containing iron responsive elements (IRE). Importantly, Sin3 was also recruited to these promoters but only in the presence of functional Cti6. Similarly, recruitment of Fkh1 and Sin3 to promoters of cell-cycle regulated genes CLB2 and SWI5 was shown. Recruitment of Sin3 was completely Fkh1-dependent. Additional findings of this work shed light on the fact that not only repressor proteins may contact Sin3 but also activator proteins not yet considered for interaction, e. g. specific activators such as Pho4 and Ino2. These findings indicate that Sin3 may fulfill functions beyond acting as a corepressor. In vitro studies on Sin3-Pho4 interaction showed that aa 156-208 of Pho4 are able to bind both PAH1 and PAH2 of Sin3, while an internal region of Ino2 comprising amino acids 119-212 binds to both Sin3 and Cyc8.
Streptococcus pneumoniae (the pneumococcus) is a harmless resident of the human nasopharyngeal cavity, and, in general, every individual is likely to be colonized asymptomatically at least once during life. However, under certain conditions, the bacterium can spread to other tissues and organs causing local, non-invasive infections but also lifethreatening, invasive diseases. Pneumococcal carriage and infection is a highly regulated interplay between pathogen- and host-specific factors and the intimate contact of S. pneumoniae with the surface of the nasopharynx is the crucial step in pneumococcal pathogenesis. Pneumococcal adherence to the respiratory epithelium is mediated by surface-exposed adhesins. These adhesins engage host cell receptors either directly or indirectly by recognizing glycoproteins of the extracellular matrix (ECM) including structural components, such as collagens, laminins, and fibronectins, as well as plasma-derived ECM modulators, like vitronectin and Factor H. Pneumococcal surface protein C (PspC) is a surface-exposed protein and important virulence factor of S. pneumoniae. The multifunctional PspC protein promotes pneumococcal adherence to host cells by interacting with the secretory component of the human polymeric Immunoglobulin receptor of respiratory cells. In addition, PspC facilitates pneumococcal immune evasion by recruiting the complement inhibitor proteins C4b-binding protein (C4BP) and Factor H. Moreover, Factor H bound to the pneumococcal surface promotes bacterial adhesion to human epithelial and endothelial cells. S. pneumoniae also interacts with the human glycoprotein vitronectin. In plasma, monomeric vitronectin regulates thrombosis, fibrinolysis and the terminal complement cascade, while it additionally mediates cell-matrix interactions, cell adhesion and migration in the ECM. It was shown that multimeric, ECM-associated vitronectin facilitates pneumococcal adherence to respiratory epithelial cells. In addition, the interaction of pneumococci with vitronectin promotes their uptake by mucosal epithelial cells via the engagement of the integrin αvβ3 receptor and activation of intracellular signaling pathways culminating in cytoskeletal rearrangements. This study aims to identify and characterize the surface-exposed protein(s) that mediate binding of pneumococci to vitronectin and to elucidate the impact of vitronectin on pneumococcal pathogenesis beyond its function as molecular bridge between pneumococcus and host. Flow cytometric, immunosorbent and surface plasmon resonance experiments revealed that PspC is a vitronectin-binding protein of S. pneumoniae. The specificity of the interaction with vitronectin was confirmed using recombinant PspC proteins and Lactococcus lactis heterologously expressing PspC on their surface. Factor H did not hinder vitronectinbinding to PspC indicating that vitronectin recognizes the central part of PspC. Secretory IgA inhibited but not completely prevented vitronectin-binding to PspC, strongly suggesting that vitronectin binds near, but not directly to, the SC-binding region within the R domain(s) of PspC. In addition, PspC proteins comprising two R domains bound with higher affinity to vitronectin than PspC containing only one R domain, indicating that two interconnected R domains are required for efficient vitronectin-binding. Despite the sequential and structural differences to classical PspC, the PspC-like protein Hic specifically interacted with vitronectin with similar affinity than PspC containing two linked R domains. Binding studies confirmed that Factor H interacts with the very N-terminal region of Hic showing high sequence homology to classical PspC proteins, while vitronectin recognizes an adjacent region in the N-terminal region of Hic. The studied PspC proteins bound to both soluble and immobilized vitronectin, and the C-terminal heparin-binding domain (HBD3) was identified as PspC-binding motif in soluble vitronectin. However, in its immobilized form, vitronectin likely exposes additional binding sites for PspC since a region N-terminally to the identified HBD3 conferred binding of PspC. Vitronectin inhibits the terminal complement pathway, thereby preventing proinflammatory immune reactions and tissue damage. In general, pneumococci are protected from opsonization and MAC-dependent lysis by their capsule. However, pneumococci in close contact to human cells can become susceptible to complement attack due to reduced amounts of capsule. In addition, they can be severely affected by TCC-induced inflammatory responses. Vitronectin bound to PspC significantly inhibited the formation of terminal complement complexes. Thus, the interaction of PspC with vitronectin might aid in immune evasion of S. pneumoniae by inhibiting complement-mediated lysis and/or suppressing proinflammatory events. In conclusion, the results revealed the multifunctional PspC and Hic as vitronectin-binding proteins and proposed a novel role for the specific interaction of S. pneumoniae with vitronectin in regulating the complement cascade, beside its function as molecular bridge to the respiratory epithelium.
Gout was described by Hippocrates in the 5th century BC as a disease of rich people and linked with excess food and alcohol. It is caused by long-lasting hyperuricemia, which is a result of an imbalance between excretion and production of uric acid. The surplus of uric acid leads to deposition of monosodium urate crystals in the joints, which can initiate a painful inflammation called a gout attack. Despite various pharmacological treatments for this disease, a low purine diet remains the basis of all gout therapies. Since food is rich in purines, the aim of this project was to develop a novel enzyme system to decrease the purine content of food, what should result in reduced serum urate concentration in patients with hyperuricemia. The system consists of five degrading enzymes (adenine deaminase, guanine deaminase, xanthine oxidoreductase, urate oxidase and purine nucleoside phosphorylase) that combined in one product are able to hydrolyse all purines to a highly soluble allantoin, which can be easily removed from the body. This approach provides the patients a possibility to reduce the symptoms and frequency of gout attacks or even doses of prescribed drugs. In order to obtain necessary system components, yeast Arxula adeninivorans LS3 was screened for enzyme activities. A. adeninivorans is known to utilise various purines and this ability is a result of activity of desired enzymes, two of which, adenine deaminase and xanthine oxidoreductase, are in focus of this thesis. The analysis of growth of A. adeninivorans on various carbon and nitrogen sources gave the first insight into the cells’ nutrient preferences indicating the presence of purine degrading enzymes, such as adenine deaminase and xanthine oxidoreductase. Purines, such as adenine and hypoxanthine, could be utilised by this yeast as sole carbon and nitrogen sources and were shown to trigger the gene expression of the purine degradation pathway. Enzyme activity tests and quantitative real-time PCR method allowed for identification of the best inducers for adenine deaminase and xanthine oxidoreductase, as well as their concentration and time of induction. The adenine deaminase (AADA) and the xanthine oxidoreductase (AXOR) genes were isolated and subjected to homologous expression in A. adeninivorans cells using Xplor®2 transformation/expression platform. The selected transgenic strains accumulated the recombinant adenine deaminase in very high concentrations. The expression of AXOR gene posed difficulties and remained a challenge. Additional expression of both proteins in alternative E. coli system was undertaken but failed for AXOR gene. The recombinant adenine deaminase and wild-type xanthine oxidoreductase were purified and characterized biochemically. The characterization included determination of optimal pH and temperature, stability in different buffers and temperatures, molecular weight, substrate spectrum, enzyme activators and inhibitors, kinetics and intracellular localisation. The determination of these parameters was necessary to ensure optimal conditions for application of these enzymes in the industry. At the final stage, the enzymes were combined in one mix with provided guanine deaminase and urate oxidase and used to degrade purines in selected food constituents. The application was successful and demonstrated the potential of this approach for the production of food with lower purine concentration.
In der Hefe Saccharomyces cerevisiae werden die Strukturgene der Phospholipid-Biosynthese auf Transkriptionsebene in Abhängigkeit der Verfügbarkeit der Phospholipidvorstufen Inositol und Cholin (IC) über ein in der Promotorregion befindliches UAS-Element, genannt ICRE („inositol/choline-responsive element“), reguliert. Bei Mangel an IC kommt es zu einer Anhäufung des Intermediats Phosphatidsäure, wodurch der Repressor Opi1 außerhalb des Zellkerns am endoplasmatischen Reticulum verankert wird. Dadurch kann ein Heterodimer, bestehend aus den bHLH-Proteinen Ino2 und Ino4, an das ICRE-Motiv binden und die transkriptionelle Aktivierung vermitteln. Ist ausreichend IC vorhanden, gelangt der Repressor Opi1 in den Zellkern und bindet an Ino2. Dadurch ist eine Aktivierung nicht mehr möglich. Ferner kontaktiert Opi1 über seine Opi1-Sin3-Interaktionsdomäne (OSID) die Corepressor-Komplexe Sin3 und Cyc8/Tup1, die durch Rekrutierung von Histondeacetylasen (HDACs) zur Chromatinverdichtung und damit zur Genrepression führen. In einer früheren Arbeit wurde beobachtet, dass die regulierte Expression von Genen der Phospholipid-Biosynthese auch durch die Phosphatkonzentration beeinflusst wird. Es konnte festgestellt werden, dass bei Phosphatmangelbedingungen die Expression ICRE-abhängiger Gene auf 10 % reduziert ist. Eine Δopi1-Mutante zeigte dieses Expressionsmuster jedoch nicht mehr. Dieser Befund wies darauf hin, dass Opi1 seine Repressorfunktion sowohl bei IC-Überschuss als auch bei Phosphatmangel ausführt. Ein Protein, welches die Phosphatverfügbarkeit an Opi1 möglicherweise über eine Phosphorylierung vermitteln könnte, ist die cyclinabhängige Proteinkinase Pho85, für die eine in vitro Interaktion mit Opi1 gezeigt wurde. Um diese Hypothese zu überprüfen, wurden mittels gerichteter Mutagenese Aminosäurereste mutmaßlicher Pho85-Phosphorylierungsstellen im Opi1-Protein (S321, T51) gegen das nicht mehr phosphorylierbare Alanin ausgetauscht. Hefestämme, die solche Opi1-Protein-varianten (S321A, T51A) synthetisierten, zeigten jedoch weiterhin einen klaren Einfluss des Phosphatmangels auf die Expression eines ICRE-regulierten Reportergens. Dies lässt darauf schließen, dass die Repression unter Phosphatmangelbedingungen nicht über eine Phosphorylierung von Opi1 durch Pho85 zu Stande kommt. Parallel durchgeführte in vitro-Interaktionsstudien zeigten, dass die Bindung von Pho85 an Opi1 über zwei unabhängig voneinander funktionierende Interaktionsdomänen im Opi1-Protein (aa 30-70 und aa 321-350) erfolgt. Mit Hilfe des „Two-Hybrid“-Systems wurde festgestellt, dass die Opi1-Pho85 Wechselwirkung in vivo phosphatabhängig stattfindet. Die Befunde erlauben die Hypothese, dass Pho85 bei Phosphatüberschuss u. a. die OSID im Opi1 abdeckt, dadurch die Wechsel-wirkung mit Sin3/Cyc8 verhindert und eine gesteigerte Genexpression zulässt. Mittels Chromatin-Immunopräzipitation (ChIP) konnte gezeigt werden, dass Opi1, Co-Repressoren wie Sin3 und Cyc8 als auch die HDACs Hda1 und Hos1 an Promotoren ICRE-regulierter Gene Ino2-abhängig anwesend sind. Des Weiteren wurde festgestellt, dass sich Sin3 unabhängig von Opi1 an ICRE-haltigen Promotoren befindet. Dieses Ergebnis wider-sprach einer früheren Arbeitshypothese, konnte aber durch weitere Versuche, die eine direkte in vitro Interaktion von Sin3 mit dem Ino2-Aktivator zeigten, plausibel in ein neues Rekrutierungsmodell eingefügt werden. Abschließend wurden die am Beispiel von Opi1 gewonnenen Erkenntnisse durch in vitro Interaktionsanalysen diverser spezifischer Repressoren mit den pleiotropen Co-Repressoren Sin3 und Cyc8/Tup1 erweitert. Für zahlreiche Repressoren wurde gefunden, dass sie parallel mit Sin3 und Cyc8 interagieren (u. a. Rox1, Yox1, Dal80 und Mot3). Durch Kartierungsexperimente konnten minimale Repressordomänen charakterisiert werden, die die Interaktion zu Sin3 bzw. Cyc8 vermitteln, und sequenzhomologe Domänenstrukturen analysiert werden. Des Weiteren zeigte sich, dass alle Repressoren, die mit Sin3 wechselwirken, dessen Domänen PAH1 oder PAH2 („paired amphipathic helix“) kontaktieren.
Streptococcus pneumoniae (Pneumokokken) sind Gram-positive und Katalase-negative humanspezifische Kommensalen der oberen und unteren Atemwege. Diese Bakterien sind andererseits auch als schwere Krankheitserreger bekannt und verursachen bei verschiedenen Bevölkerungsgruppen, wie beispielsweise Kindern, Älteren und immungeschwächten Personen sowohl Atemwegs- als auch lebensbedrohliche invasive Erkrankungen wie eine ambulant erworbene Pneumonie, Meningitis und Sepsis. Pneumokokken haben aufgrund ihrer Besiedelung des Respirationstraktes effiziente Mechanismen entwickelt, um in einer sauerstoffreichen Nische überleben zu können. Dabei richten sich die Mechanismen vor allem gegen reaktive Sauerstoffspezies (Reactive Oxygen Spezies, ROS), die einerseits als Abwehrfunktion des Wirts (oxidative burst) vom angeborenen Immunsystem und andererseits von den Pneumokokken selbst produziert werden, um als chemische Waffe zur Bekämpfung bakterieller Konkurrenten in ihrem Habitat eingesetzt zu werden. In der vorliegenden Arbeit wurde ein hochkonserviertes Zwei-Operon-System, das für die extrazelluläre oxidative Stress-Resistenz in S. pneumoniae verantwortlich ist, identifiziert und auf pathophysiologischer sowie struktureller Ebene charakterisiert. Dieses komplexe System besteht aus zwei integralen Cytochrom C-ähnlichen Membranproteinen (CcdA1 und CcdA2), zwei Thioredoxin-ähnlichen Lipoproteinen (Etrx1 und Etrx2) und einer Methioninsulfoxid-Reduktase AB2 (MsrAB2). Die Etrx-Proteine werden zwar in zwei räumlich voneinander getrennten Operonen kodiert, sind aber funktionell miteinander verbunden. Der Einfluss des Systems auf die Pathogenese der Pneumokokken wurde in Maus-Virulenz-Studien und Untersuchungen der Phagozytose unter Verwendung von isogenen Mutanten gezeigt. Sowohl in den in vivo als auch den in vitro Experimenten konnte gezeigt werden, dass der Verlust der Funktion beider Etrx-Proteine beziehungsweise der Methioninsulfoxid-Reduktase MsrAB2 die Virulenz der Pneumokokken stark reduziert. Hieraus resultierte eine erheblich verringerte Letalität des Wirts, eine beschleunigte bakterielle Aufnahme durch die Makrophagen sowie ein schnelleres Abtöten der Pneumokokken durch eine oxidative Schädigung von Oberflächen-lokalisierten Proteinen mittels Wasserstoffperoxid. Die Ergebnisse deuten darauf hin, dass Etrx2 die Abwesenheit von Etrx1 und umgekehrt Etrx1 das Defizit von Etrx2 kompensieren kann. Durch Strukturaufklärung der beiden Thioredoxin-ähnlichen Proteine Etrx1 und Etrx2 sowie der Modellierung der beteiligten Komponenten CcdA und MsrAB2 konnte die Rolle jedes einzelnen Proteins dieses Systems (CcdA-Etrx-MsrAB2-System) bei der Reparatur beschädigter Oberflächen-lokalisierter Proteine in einem Modell dargestellt werden. Das postulierte Modell konnte über in vivo und in vitro Untersuchungen des Elektronentransfers innerhalb dieses Systems bestätigt werden. Mit der Bestimmung der Standardredoxpotentiale der rekombinanten Proteine Etrx1, Etrx2 und der Einzeldomänen MsrA2 und MsrB2 konnte in vitro gezeigt werden, dass der Elektronenfluss in Richtung von Etrx1 und Etrx2 zu MsrAB2 erfolgen muss. Die direkte Elektronenübertragung zwischen diesen Proteinen konnte in kinetischen Experimenten gezeigt werden. Die Messungen ergaben, dass Etrx1 bevorzugt mit der MsrA2-Untereinheit interagiert beziehungsweise Etrx2 sowohl mit der MsrA2-Untereinheit als auch mit der MsrB2-Untereinheit in Wechselwirkung treten kann. Der in vivo Redoxzustand von MsrAB2 wurde unter Verwendung der nicht-reduzierenden/reduzierenden „2D-Diagonal“-SDS-PAGE in den isogenen ccdA- und etrx-Mutanten bestimmt. Hierbei konnte ein Unterschied im Redoxzustand von MsrAB2 in den isogenen Einzelmutanten und Doppelmutanten von ccdA und etrx beobachtet werden. Während in den Einzelmutanten der Elektronenfluss innerhalb des CcdA-Etrx-MsrAB2-Systems unverändert war, zeigte sich in den Doppelmutanten ccdA1/ccdA2 und etrx1/etrx2 eine deutliche Beeinträchtigung der Elektronenübertragung auf MsrAB2, welche sich in der Zunahme der oxidierten Form von MsrAB2 deutlich machte. Somit konnte der Elektronenfluss von sowohl von CcdA1 über Etrx1 zu MsrAB2 als auch von CcdA2 über Etrx2 zu MsrAB2 in vivo betätigt werden. In Anbetracht der Ergebnisse dieser Arbeit könnte das hochkonservierte CcdA-Etrx-MsrAB2-System der extrazellulären oxidativen Stress-Resistenz von S. pneumoniae zur Entwicklung proteinbasierter Pneumokokken-Impfstoffe und zum Angriffspunkt für Behandlungen gegen diese wichtigen humanpathogenen Erreger beitragen.
Background: Hepatitis E virus (HEV) is the etiological agent of an acute self-limiting hepatitis in humans worldwide. The main route of infection is by ingestion of food or water contaminated with the virus. In Germany, several hundred human cases are reported each year, while preliminary studies suggest a high infestation rate of herds of domestic pig (Sus scrofa domesticus) and sounders of wild boar (Sus scrofa). Autochthonous cases are originating mainly from zoonotic transmission from domestic pig and wild boar, but other animals may also be involved. Recently, a novel strain of HEV (ratHEV) had been found in Norway rats (Rattus norvegicus) in Germany, that could contribute to human epidemiology. Therefore, the aim of this study was to assess the seroprevalence of both HEV and the novel ratHEV in human, domestic pig and rat. For each of the three mammal species, an indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) was established, that based on an Escherichia coli-expressed carboxy-terminal segment (GT3-Ctr, amino acid (aa) 326–608) of the capsid protein of the autochthonous genotype 3 (GT3), derived from a wild boar from Germany. In parallel, a segment from ratHEV homologous to GT3-Ctr was also expressed in E. coli (ratHEV-Ctr, aa315–599) and was used in the ELISA. Hence, the established tests detect antibodies directed against HEV GT3 when using GT3-Ctr as antigen and ratHEV when using ratHEV-Ctr. Results: The GT3-based in-house human IgG test was validated using a commercial assay and showed high specificity and sensitivity. The average human population (represented by a panel of blood donors from Berlin and Brandenburg) reached a seroprevalence of 12.3% (37/301) with the in-house ELISA. A panel of forestry workers from Brandenburg had an even higher seroprevalence of 21.4% (119/555). Furthermore, ratHEV-specific antibodies could be detected in several sera of forestry workers. The novel ratHEV-based rat IgG ELISA could not be compared to similar tests, however, parallel testing with GT3-Ctr and statistical inference allowed conclusion of a seroprevalence. Rats trapped from several sites in Germany had an overall seroprevalence of 24.5% (36/147). The sera were reactive exclusively with ratHEV-Ctr. As with the in-house ELISA for human sera, the porcine IgG test was validated using a commercial assay, yielding high specificity and sensitivity. A panel of domestic pigs from ten federal states of Germany showed a seroprevalence of 42.7% (383/898) when tested with the in-house ELISA. Reactivity with ratHEV was present, but seemed to be caused mostly by cross-reactivity to GT3-Ctr. Conclusion: The HEV seroprevalence observed for human sera of the average population of Germany is among the highest in Europe and has been confirmed recently by other authors. The high seroprevalence found in forestry workers suggests that they should be counted as a risk group for HEV infection. Populations of rats have been shown to be infested heavily with ratHEV, as rats from all trapping sites situated within cities had a high prevalence for ratHEV exclusively and no serum reacted exclusively with GT3-Ctr. Seroprevalence in domestic pigs was demonstrated to be distributed evenly across federal states and districts. However, a vast difference of infestation could be detected in different herds, suggesting either differences in husbandry conditions, or an external source of infection that acts locally only. The rare but exclusive reactivity of human sera with ratHEV as well as the high cross-reactivity of swine sera with ratHEV suggests that viral strains other than the ones already known may contribute to cases of hepatitis E.
Ziel dieses Projektes war die Entwicklung eines neuen Ansatzes zur Senkung der Harnsäurekonzentration im Blutserum von Patienten mit Hyperurikämie und der damit verbundenen Verringerung der Anzahl von schmerzhaften Gichtanfällen. Dafür sollten Purine in Lebensmitteln mit einem Gemisch aus purinabbauenden Enzymen zu dem gut löslichen Allantoin abgebaut werden. Durch diesen neuen Ansatz ist eine abwechslungsreiche Ernährung von Hyperurikämiepatienten ohne oder mit reduzierter zusätzlicher medikamentöser Behandlung zur Senkung der Harnsäurebildung, Erhöhung der Harnsäureausscheidung bzw. enzymatischen Reduktion von Harnsäure möglich. Die Analyse des Wachstumsverhaltens von Arxula adeninivorans LS3 zeigte die Vermehrung des Zellmaterials in einer Kultivierung mit Adenin als Kohlenstoff- und Stickstoffquelle bzw. mit Hypoxanthin und Harnsäure als alleiniger Stickstoffquelle. Die Fähigkeit des Wachstums mit Adenin, Hypoxanthin oder Harnsäure als alleiniger Stickstoffquelle bestätigte das Vorhandensein des Purinabbauweges in der nicht-konventionellen Hefe A. adeninivorans LS3. Das Guanin-Deaminase-Gen (AGDA) aus A. adeninivorans LS3 kodierte für ein Protein aus 475 Aminosäuren, das in der Zelle als Dimer vorlag (55 kDa je Untereinheit). Das Guanin-Deaminase-Protein (Agdap) zeigte eine Homologie auf Aminosäureebene zwischen 44 und 55 % zu anderen pilzlichen Guanin-Deaminasen. Beim Wachstum auf Medien mit Adenin, Hypoxanthin oder Guanin als alleiniger Stickstoffquelle erfolgten eine Induktion der Genexpression des AGDA-Gens sowie eine intrazelluläre Akkumulation des Guanin-Deaminase-Proteins in der Vakuole wie auch dem Zytoplasma der Hefezelle. Einen weiteren Schwerpunkt dieser Arbeit bildete die biochemische Charakterisierung der Uratoxidase. Das Uratoxidase-Gen (AUOX) aus A. adeninivorans LS3 lag auf Chromosom 4 und kodierte für das Uratoxidase-Protein (Auoxp) mit 306 Aminosäuren. Bei dem Auoxp handelte es sich um ein 35 kDa großes Protein, das als Dimer in der Zelle vorlag. Ein Vergleich mit anderen pilzlichen Uratoxidasen ergab eine Homologie von 61 bis 65 % auf der Ebene der Aminosäuresequenz. Das Enzym zeigte konservierte Sequenzmotive, die in den Uratoxidasen einer Vielzahl von Organismen beschrieben wurden. Die AUOX-mRNA-Konzentration stieg bei Wachstum auf Medien mit Harnsäure, Adenin und Hypoxanthin als alleiniger Stickstoffquelle. Die Akkumulation von Auoxp zeigte einen Maximalwert nach achtstündiger Kultivierung im Medium mit Harnsäure und zeitlich verschoben mit den Stickstoffquellen Adenin bzw. Hypoxanthin (nach 12 Stunden). Der biotechnologische Einsatz der purinabbauenden Enzyme der Hefe A. adeninivorans erforderte eine Überexpression der Uratoxidase- bzw. der Guanin-Deaminase-Gene in transgenen A. adeninivorans-Stämmen aufgrund zu niedriger, natürlicher Expressionshöhe im Wildtypstamm LS3. Als Transformations-/Expressionssystem fand das etablierte Xplor®2-Vektorsystem Verwendung. Diese Plattform bietet den Vorteil, dass keine Resistenzgene in die Hefe übertragen werden. Die Hefen wurden mit unterschiedlichen Expressionsmodulen transformiert, um die optimalen Expressionsbedingungen für die Guanin-Deaminase bzw. die Uratoxidase zu ermitteln. Vergleichende Untersuchungen bezüglich der Integrationshäufigkeit, dem Wirtsorganismus (homolog/heterolog) und der optimalen Expression (konstitutiv/induziert) zeigten, dass A. adeninivorans ein geeigneter Organismus für die Expression des Guanin-Deaminase- bzw. Uratoxidase-Gens darstellte. Für weiterführende Analysen erfolgte die nähere Untersuchung der Hefetransformanden mit der höchsten Guanin-Deaminase-Aktivität bzw. der über einen längeren Zeitraum konstant hohen Uratoxidase-Aktivität. Das über den C-terminalen His-Tag gereinigte rekombinante Protein zeigte eine hohe Übereinstimmung der biochemischen Eigenschaften (Substratspektrum, intrazelluläre Lokalisation, usw.) im Vergleich zum endogenen Protein der Hefe A. adeninivorans LS3 (nach induzierter Genexpression). Die rekombinanten Enzyme des Purinabbauweges (Uratoxidase, Guanin-Deaminase, Adenin-Deaminase und Xanthin-Oxidoreduktase) bewirkten nach deren Zugabe zu einem reinen Puringemisch aus Adenin, Guanin, Xanthin, Hypoxanthin und Harnsäure eine Reduktion der Konzentration sämtlicher Purine. Das Gemisch aus purinabbauenden Enzymen der Hefe A. adeninivorans belegte bei ersten Anwendungen in einem Lebensmittel (Rinderbrühe) die abbauende Wirkung auf sämtliche, im Lebensmittel befindlichen, Purine. Es gelang in dieser Arbeit, den Puringehalt eines Lebensmittels mit in transgenen A. adeninivorans-Stämmen hergestellten Proteinen enzymatisch abzubauen.
Hantaviruses (family Bunyaviridae) are enveloped viruses with a segmented RNA genome of negative polarity. They can cause two different diseases in humans, the hemorrhagic fever with renal syndrome in Europe and Asia and the hantavirus cardiopulmonary syndrome in America. The transmission to humans is mainly indirect by inhalation of aerosolized virus-contaminated rodent excreta. In contrast to the initial assumption that hantaviruses are mainly carried by rodents, during the last years many novel hantaviruses were detected in shrews, moles and recently in bats. These findings raise important questions about the evolutionary history of hantaviruses, their host association and adaptation, the role and frequency of spillover infections and host switch events. This study aims to prove the presence, geographical distribution and host association of the rodent-borne Tula virus (TULV) and the shrew-associated Seewis virus (SWSV) in Central Europe. For this purpose, novel laboratory techniques for molecular and serological hantavirus detection were developed. Initially, a broad-spectrum molecular assay to identify small mammal species from Central Europe was developed. This novel assay is based on PCR amplification using degenerated primers targeting the cytochrome b (cyt b) gene, nucleotide sequence analysis of the amplified cyt b gene portion and followed by pairwise sequence comparison to published sequences using the BLAST function of GenBank. Different small mammal species prevalent in Central Europe could be determined by this new approach, including not only representatives of various Rodentia and Soricomorpha, but also representatives of the orders Erinaceomorpha, Lagomorpha, Carnivora and Chiroptera. For characterization of insectivore-borne hantavirus Thottapalayam virus (TPMV), specific monoclonal antibodies were generated that detect native virus in infected mammalian cells. For the detection of TPMV-specific antibodies, Asian house shrew Suncus murinus immunoglobulin G (IgG)-specific antibodies were produced in laboratory mice and rabbit. Using this anti-shrew IgG and recombinant TPMV nucleocapsid (N) protein, an indirect enzyme-linked immunosorbent assay (ELISA) was developed allowing the detection of TPMV N protein-specific antibodies in immunized and experimentally TPMV infected shrews. A Pan-Hantavirus SYBR-Green RT-qPCR was developed for the search to novel hantaviruses. By this novel RT-qPCR and other conventional RT-PCR approaches, TULV infections were identified for the first time in the Eurasian water vole Arvicola amphibius from different regions in Germany and Switzerland. The phylogenetic analyses of the different partial TULV small (S)-, medium (M)- and large (L)-genome segment sequences from A. amphibius, with those of Microtus arvalis- and M. agrestis-derived TULV lineages, revealed a geographical, but host-independent clustering and may suggest multiple TULV spillover or a potential host switch from M. arvalis or M. agrestis to A. amphibius. In a further comprehensive study, different shrew species (Sorex araneus, S. minutus, S. coronatus, and S. alpinus) were collected in Germany, Czech Republic, and Slovakia and screened by another L-segment-targeting Pan-Hantavirus RT-PCR approach. This screening revealed hantavirus L-segment sequences in a large number of S. araneus and a few S. minutus indicating a broad geographical distribution of this hantavirus. For detailed analyses, S-segment sequences were obtained, from S. araneus and S. minutus. The sequences demonstrated their similarity to SWSV sequences from Hungary, Finland, Austria and Germany. A detailed phylogenetic analysis showed low intra-cluster sequence variability, but high inter-cluster divergence suggesting a long-term SWSV evolution in local shrew populations. In conclusion, the investigations demonstrated a broad geographical distribution and multiple spillover infections of rodent-borne TULV and shrew-borne SWSV in Europe. The finding of putative spillover transmissions described here and in other studies underline the current problem of the hantavirus reservoir host definition. In contrast to the hypothesis of a long-standing hantavirus–rodent (small mammal) host coevolution, the investigations support a more dynamic evolutionary history of hantavirus diversification including spillover infections and host-switch events. In future in vitro and in vivo infection studies as well as field studies has to define factors determining the host specificity of these hantaviruses.
Staphylococcus aureus (S. aureus) ist einer der meist gefürchtetsten pathogenen Mikroorganismen, der verantwortlich ist für eine Vielzahl von nosokomialen Infektionen und Krankheiten. S. aureus ist in der Lage, sich an verändernde Umweltbedingungen auf Ebene der Genexpression anzupassen, was zu unterschiedlichen Proteinzusammensetzungen und somit zu Veränderungen in der Metabolitenkomposition und metabolischen Aktivität führt. Außerdem stellt die Fähigkeit, Resistenzen gegen gegenwärtig genutzte Antibiotika zu entwickeln, eine Gefahr dar und macht diesen Keim in seiner Behandlung so schwierig. Für ein vollständiges Verstehen der Proteom-, Transkriptom- und Metabolomdaten ist die Untersuchung der Enzymaktivitäten ein entscheidendes Hilfsmittel. In der vorliegenden Arbeit wurden die enzymkatalytischen Eigenschaften sowie die spezifischen Enzymaktivitäten der Enzyme des Intermediär- und Fermentationsstoffwechsels untersucht. Aus Zellen der logarithmischen, transienten und stationären Wachstumsphase unter aeroben wie auch anaeroben Bedingungen wurden für die Enzyme das pH-Optimum, die maximale Reaktionsgeschwindigkeit (vmax) und die Substratkonzentration der halbmaximalen Reaktionsgeschwindigkeit (Km) bestimmt. In S. aureus COL wird die Glucose unter aeroben Bedingungen hauptsächlich über die Glycolyse metabolisiert. Glucose-6-phosphat wird weiter zu Pyruvat umgesetzt, welches wiederum durch die Pyruvat-Oxidase zu Acetylphosphat oder durch den Pyruvat-Dehydrogenase-Komplex zu Acetyl-CoA verstoffwechselt wird. Durch die Phosphatacetyl-Transferase wird das Acetyl-CoA im Folgenden ebenfalls zu Acetylphosphat umgesetzt und nicht dem Citrat-Zyklus zugeführt. Die Acetat-Kinase nutzt das Acetylphosphat zur Generierung von ATP. Geringe extrazelluläre Lactat-Konzentrationen weisen auf eine geringere Bedeutung der Lactat-Dehydrogenase unter aeroben Wachstumsbedingungen hin. Gleichwohl wird ein kleiner Teil des Pyruvates zur Regeneration von NAD+ durch die Lactat-Dehydrogenase genutzt. In der transienten und stationären Wachstumsphase werden die Gene der Enzyme für Gluconeogenese und Citrat-Zyklus vermehrt exprimiert. Lactat und Acetat werden als Kohlenstoff- und Energiequelle wieder aufgenommen und dienen der Bildung unterschiedlicher Intermediate, wie beispielsweise der Bildung von NADPH über Glucose-6-phosphat im Pentose-Phosphat-Weg. Lediglich die Citrat-Synthase, Isocitrat-Dehydrogenase und Fumarat-Hydratase des Citrat-Zyklus konnten enzymologisch untersucht werden, was auf eine geringe metabolische Aktivität im Citrat-Zyklus hinweist. Möglicherweise dient der erste Teil des Citrat-Zyklus nur der Einführung von Aminosäuren als Kohlen- und Stickstoffquelle in den Metabolismus. Unter anaeroben Bedingungen wird die Glucose in der Glycolyse und der gemischten Säuregärung zu Lactat und Ethanol umgesetzt. Hohe spezifische Enzymaktivitäten der Lactat- und Alkohol-Dehydrogenase konnten nachgewiesen werden. Die Energie in Form von ATP wird auch in dieser Phase des Wachstums durch Substratkettenphosphorylierung generiert. Bacillus subtilis 168 (B. subtilis 168) ist ein grampositives apathogenes Bakterium, das durch die Zugabe von Pyruvat auch zum Wachstum unter sauerstofffreien Bedingungen befähigt ist. Es exprimiert Enzyme der 2,3-Butandiol- und Lactatfermentation. In der hier vorliegenden Arbeit wurden die enzymkatalytischen Eigenschaften von Enzymen des Intermediär- und Fermentationsstoffwechsels untersucht. In der logarithmischen Wachstumsphase wird die Glucose über die Glycolyse verstoffwechselt. Wie bei S. aureus COL ist der Eintritt des Glucose-6-phosphates in den Pentose-Phosphat-Weg aufgrund einer höheren spezifischen Enzymaktivität der Glucose-6-phosphat-Isomerase limitiert. Die Energie in Form von ATP wird auch hier hauptsächlich über Substratkettenphosphorylierungsreaktionen generiert. Die Bedeutung der Lactat-Dehydrogenase-Aktivität unter aeroben Bedingungen ist noch nicht eindeutig geklärt, jedoch kann davon ausgegangen werden, dass auch hier ein Teil des Pyruvates zur Regeneration von NAD+ durch die Lactat-Dehydrogenase umgesetzt wird. Unter anaeroben Bedingungen wurden hohe Lactat-Dehydrogenasen-Aktivitäten gemessen. Außerdem wird die Glucose zur Regeneration von NAD+ zu D-2,3-Butandiol fermentiert. Zusammenfassend ist zu sagen, dass enzymologische Untersuchungen und die Erforschung der spezifischen Enzymaktivitäten unter bestimmten Bedingungen ein gutes Hilfsmittel für metabolische Studien ist und diese gut mit vorhandenen Proteom- und Metabolomdaten verglichen werden können. Enzymanalysen sind nicht einfach handhabbar, bieten aber die Möglichkeit, einen Blick in die Physiologie von Mikroorganismen zu werfen. Für ein allumfassendes Verständnis ist es wichtig, Enzymaktivitäten zu untersuchen.
Streptococcus pneumoniae (pneumococci) are Gram-positive cocci and commensals of the human upper respiratory tract. Pneumococcal pathogenesis requires adherence to host cells and dissemination through cellular barriers and to evade host defense mechanisms. The Pneumococcal surface protein C (PspC) is an important virulence factor which has a crucial role in pneumococcal adhesion to host cells and immune evasion by manipulating the host complement system. To elucidate the pneumococcal adherence and uptake mechanism via factor H glycosaminoglycans (dermatan sulfate and heparin) were employed as competitive inhibitors in infection experiments with epithelial cells or human polymorphonuclear leukocytes (PMNs). Glycosaminoglycans significantly inhibited the FH mediated pneumococcal adherence and subsequent invasion to host epithelial cells. Furthermore, the short consensus repeats of FH which promotes the adhesion of pneumococci to host cells were identified by blocking experiments with domain mapped antibodies for specific regions of FH. Moreover, this study indicates that FH acts as adhesion molecule via cellular receptors recognized as integrin CR3 on human PMNs. Binding of Factor H loaded pneumococci to integrins CR3 was assessed by flow cytometry. Pneumococci coated with Factor H showed a significantly increased association with PMNs. This interaction was blocked by anti-CR3 antibodies and Pra1. This project further aims to study mechanisms of pneumococcal endocytosis by host cells, their intracellular fate, and the pathogen induced host cell signal transduction cascades including the calcium signaling upon pneumococcal infection of host cells via the PspC-hpIgR interaction. To assess now the role of protein tyrosine kinases (PTKs) during pneumococcal infection via PspC, cell culture infections were performed in presence of pharmacological inhibitors of PTKs and MAPKs or by employing genetic interference techniques. Blocking the function of Src or ER1/2 and JNK and genetic-knock down of Src and FAK reduced significantly internalization of pneumococci. These data indicated the importance of a coordinated signaling between Src PTKs, ERK1/2, and JNK during PspC-pIgR-mediated uptake of pneumococci by host epithelial cells. The impact of host cells intracellular calcium concentrations on pneumococcal PspC-hpIgR mediated internalization was studied. Intracellular calcium measurement of epithelial cells performed in the presence of pneumococci suggested a calcium influx in host epithelial cells and importantly this calcium influx was PspC- hpIgR specific as pspC-deficient pneumococci were unable to mediate calcium mobilization in host cells. The increase in intracellular calcium [Ca2+]i was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor abolished the increase in [Ca2+]i. Furthermore, role of host intracellular calcium concentrations during pneumococcal internalization was demonstrated by employing specific pharmacological inhibitors and calcium chelators in epithelial cell culture infection assays. The results revealed that elevated host cells calcium concentrations diminished pneumococcal internalization while lower calcium concentration in host epithelial cells promoted pneumococcal uptake. This study further demonstrates that dynamin, clathrin and caveolin play a key role during pneumococcal endocytosis into host cells via PspC-hpIgR. The use of specific pharmacological inhibitors or genetic interference approaches against dynamin, clathrin and caveolin in epithelial cell culture infection assays significantly blocked pneumococcal uptake. Furthermore, confocal microscopy revealed that pneumococci co-localize with clathrin. At later stages of the infection the pathogen is sorted to early, late and recycling endosomes as indicated by co-localization of pneumococci with endosomal markers such as Rab5, Rab4, Rab 7, and Lamp1. In order to get further insights into PspC-hpIgR mediated uptake mechanisms, a chimeric PspC was constructed and expressed heterologously on the surface of Lactococcus lactis. Immunofluorescence staining, immunoblot and flow cytometric analysis of L. lactis confirmed the expression of PspC on the bacterial surface. Moreover the ability of recombinant lactococci expressing PspC to adhere to and to invade pIgR-expressing epithelial cells confirmed the functional activity of PspC when exposed on the lactococcal surface. PspC expressing lactococci confirmed the specificity of PspC-hpIgR mediated endocytosis in host epithelial cells as PspC deficient lactococci were not taken up by these host cells. Confocal microscopic analysis demonstrated that only PspC expressing lactococci were sorted to early, late and recycling endosomes, similar to the intracellular fate of S. pneumoniae.
The leading hypothesis of why organisms age is the “Free Radical Theory of Aging”, which states that the accumulation of reactive oxygen species (ROS), such as superoxide (O2•-) and hydrogen peroxide (H2O2), causes protein, lipid and DNA damage and leads to the observed age-related decline of cells and tissues. A major obstacle in analyzing the role of oxidative stress in aging organisms is the inability to precisely localize and quantify the oxidants, to identify proteins and pathways that might be affected, and ultimately, to correlate changes in oxidant levels with the lifespan of the organism. To directly monitor the onset and extent of oxidative stress during the lifespan of Caenorhabditis elegans, we utilized the fluorescent H2O2 sensor protein HyPer, which enabled us to quantify endogenous peroxide levels in different tissues of living animals in real time. We made the surprising observation that wildtype C. elegans is exposed to very high peroxide levels during development. Peroxide levels drop rapidly as the animals mature, and low peroxide levels then prevail throughout the reproductive age, after which an age-accompanying increase of peroxide level is observed. These results were in excellent agreement with findings obtained by using the highly quantitative redox proteomic technique OxICAT, which monitors the oxidation status of redox-sensitive proteins as read-out for onset, localization, and protein targets of oxidative stress. By using OxICAT, we detected increased protein thiol oxidation during the development of C. elegans and in aging animals. Many processes in C. elegans might potentially contribute to the elevated peroxide levels observed during development, including cuticle formation, apoptosis, proliferation, gametogenesis, or ROS signaling. The finding that all investigated C. elegans mutants regardless of their lifespan are exposed to high developmental peroxide levels argues for ROS accumulation to be a universal and necessary event. Yet, recovery from the early oxidative boost might determine the subsequent adult lifespan, as we found that long-lived daf-2 mutants transition faster to reducing conditions than short-lived daf-16 mutants, which retain higher peroxide levels throughout their mature life. These results suggest that changes in the cellular oxidant homeostasis, encountered at a very early stage in life, might determine subsequent redox levels and potentially the lifespan of organisms. Manipulation of developmental oxidant levels using glucose restriction or a short bolus of superoxide caused a disruption in developmental growth, a delay in reproduction, and a shortened lifespan. These results suggest that developmental oxidant levels are fine-tuned and optimized. Future experiments are aimed to investigate the sources of developmental hydrogen peroxide, and to elucidate whether active down-regulation of antioxidant enzymes during the larval period might foster peroxide accumulation. Preliminary results indicate that this might indeed be the case for peroxiredoxin 2, whose expression was significantly lower during development than at later stages in life. Finally, we investigated whether the observed variances in the developmental peroxide levels of individual worms within a synchronized wildtype population might be responsible for the observed significant variances in lifespan, and hence could serve as a predictor for adult lifespan. Preliminary results revealed that neither too low nor too high peroxide levels during development are beneficial for the lifespan of wildtype worms, suggesting that ROS level during development might be optimized for maximized lifespan. Future experiments aim to reveal the processes that are affected by ROS and which might influence the individual’s lifespan early in life.
Coenzym A ist ein essentieller und ubiquitärer Cofaktor, dessen zentrale Bedeutung für den Stoffwechsel aus der Aktivierung und Übertragung von Acylgruppen resultiert. Der Biosyn-theseweg von Coenzym A (CoA) ausgehend von Pantothenat (Pan) umfasst fünf enzymatische Schritte, die in Pro- und Eukaryoten konserviert sind. Die Hefe S. cere¬visiae ist in der Lage, sowohl eine de novo Pantothenat-Synthese durchzuführen als auch mittels Fen2-Transporter dieses Intermediat aufzunehmen. Die Phosphorylierung von Pan durch die Pantothenat Kinase (PanK) stellt vermutlich den geschwindigkeitsbestimmenden Schritt dar, der in Form einer Inhibition durch das Endprodukt bzw. dessen Derivate erfolgt. Ziel dieser Arbeit sollte es sein, grundlegende Erkenntnisse zu den Enzymen des CoA-Biosyntheseweges, deren Organisation und Regulation in der Hefe zu bekommen. Durch „metabolic engineering“ sollte versucht werden, einen Stamm zu konstruieren, der im Vergleich zu einem Wildtyp einen erhöhten CoA-Gehalt aufweist. Für das Genprodukt von YDR531W in S. cerevisiae konnte aufgrund der Verwertbarkeit von 14C-Pantothenat als Substrat die Vermutung bestätigt werden, dass es sich um eine PanK handelt, so dass dieses Gen die neue Bezeichnung CAB1 („Coenzym A Biosynthese“) erhielt. Es erfolgt eine „Feedback“-Inhibition durch CoA und in stärkerem Maße durch dessen Thioester Acetyl-CoA. Der Einfluss von Malonyl-CoA und Palmitoyl-CoA auf die Aktivität der PanK ist vernachlässigbar. Durch gerichtete Mutagenese konnte eine Acetyl-CoA insensitive deregulierte PanK-Variante CAB1W331R erzeugt werden, die, verglichen mit dem Wildtyp, eine etwa vierfach gesteigerte Aktivität aufweist. Für die vier weiteren Gene YIL083C, YKL088W, YGR277C und YDR196C, die aufgrund von Ähnlichkeiten zu humanen CoA-Genen identifiziert wurden, konnte der Nachweis erbracht werden, dass es sich um CoA-Biosynthesegene handelt. Eine Nullmutation in jedem dieser essentiellen Gene ließ sich durch das entsprechende E. coli Gen, für die der enzymatische Nachweis der Genprodukte vorliegt, heterolog komplementieren. Folgende neue Genbe-zeichnungen wurden aufgrund der Abfolge der Reaktionsschritte vergeben: YIL083C = CAB2 (codiert für die Phosphopantothenyl Cystein Synthetase, PPCS), YKL088W = CAB3 (Phosphopantothenylcystein Decarboxylase, PPCDC), YGR277C = CAB4 (Phosphopante-thein Adenyltransferase, PPAT) und YDR196C = CAB5 (Dephospho-CoA.Kinase, DPCK). Für CAB1, CAB2 und CAB5 war ein moderater Anstieg der Genexpression zu beobachten, wenn Glucose durch Ethanol als C-Quelle ersetzt wurde. Die Abwesenheit von Aminosäuren beeinflusste die Expression der CAB Gene kaum. Mit Hilfe chromatographischer Reinigungsschritte war eine Cofraktionierung der epitopmar-kierten Proteine Cab3 und Cab5 möglich, die einen ersten Hinweis auf die Existenz eines CoA-synthetisierenden Enzymkomplexes (CoA-SPC) lieferten. Dessen durch Gelfiltration bestimmte Größe beträgt ungefähr 327 kDa. In vitro-Interaktionsstudien ergaben, dass Cab1 (PanK) nicht an der Bildung dieses Komplexes beteiligt ist und dass Cab2, Cab3, Cab4 und Cab5 mit Cab3 interagieren. Weiterhin konnten Wechselwirkungen zwischen Cab4 und Cab5 nachgewiesen werden. Durch Konstruktion von Längenvarianten der genannten Proteine wurden die für die Interaktionen jeweils verantwortlichen Proteinabschnitte kartiert. Vermutlich dient Cab3 als zentrales „Gerüstprotein“ des gesamten CoA-SPC-Komplexes. Mit ausschließlich bakteriell synthetisierten Proteinen konnte zumindest für Cab3 gezeigt werden, dass die Interaktionen direkt erfolgen. In einem weiteren Teil dieser Arbeit wurde versucht, durch Überexpression der CoA-Bio-synthesegene die zelluläre CoA-Synthese zu beeinflussen. Mit Hilfe integrativer Plasmide wurden MET25-Promotor-kontrollierte Überexpressionskassetten aller CAB-Gene sukzes¬sive in einen Wildtypstamm eingeführt. Für das Gen der PanK wurde das Wildtyp-Allel CAB1 bzw. die deregulierte Variante CAB1W331R verwendet. Einen Unterschied zwischen den Stämmen konnte für den Acetyl-CoA-, allerdings nicht für den CoA-Gehalt gemessen werden. Überexpressionsstämme mit der regulierten PanK bzw. der deregulierten PanK-Variante enthielten im Vergleich zum Wildtyp die 3-fache bzw. sogar die 6-fache Menge an Acetyl-CoA. Dieser Befund belegt die Schrittmacherfunktion der PanK für den gesamten CoA-Biosyntheseweg.
A molecular approach to characterize the arbuscular mycorrhizal fungus, Glomus sp. AMykor isolate
(2012)
The arbuscular mycorrhizal fungi (AMF) interaction with plants has a major impact on the soil ecosystem. However, so far, only a few studies on AMF genetics have been performed and molecular information on the genetic diversity of AMF is limited. In this study a fundamental genetic characterization of the industrial isolate, Glomus sp. AMykor (AMykor GmbH, Bitterfeld, Germany) has been undertaken to increase the understanding of AMF genetic diversity. Based on phylogenetic analysis of partial rDNA sequences, Glomus sp. AMykor isolate was proposed to belong to the G. irregulare species together with the reference isolate, DAOM197198. To investigate if both isolates differ in their ploidy level, fluorescence in situ hybridization (FISH) was performed and mainly one or two hybridization signals per nucleus were observed in both isolates. It is suggested that they harbour at least two major rDNA sites and possibly two minor sites. The DNA content was estimated by means of flow cytometry (FC) and confirmed by Feulgen densitometry (FD). The calculated average DNA content per nucleus is 153.0 ± 3.6 Mb for the G. irregulare AMykor isolate and 154.8 ± 6.2 Mb for the DAOM197198 isolate. Since there are plenty criticisms coming recently of using rDNA sequence for fungal barcoding there is necessity of development other system for the identification to species level of Glomeromycotan fungi. The focus of this part of the study was the GiFRD gene encoding fumarate reductase enzyme for use as a potential candidate for AMP species determination. Unfortunately, observed sequence variations do not allow the discrimination of Glomeromycotan species. However, further analysis of enzyme encoded by GiFRD showed a possible role of fumarate reductase in AMF redox balance maintaining under oxygen deficient conditions. Using a yeast expression system, it has been demonstrated that the protein encoded by GiFRD has fumarate reductase activity. The functional expression of GiFRD in the S. cerevisiae fumarate reductase deletion mutant restored the ability of growth under anaerobiosis which indicated that Gifrdp is able to functionally complement the S. cerevisiae missing genes. The fact that GiFRD expression was present only in the asymbiotic stage confirmed existence of at least one metabolic pathway involved in anaerobic metabolism and suggested that AMF behave as a facultative anaerobe in asymbiotic stage.
Die Regulation der Phospholipid-Biosynthesegene in der Hefe Saccharomyces cerevisiae erfolgt über die Verfügbarkeit der Phospholipid-Vorstufen Inositol und Cholin (IC). Bei ICMangelbedingungen wird die Transkription der Strukturgene stimuliert und bei IC-Überschuss im Medium reprimiert. Im Promotorbereich dieser Gene befinden sich spezifische UAS-Elemente („inositol/choline-responsive element“, ICRE-Motive), welche von den Aktivatoren Ino2 und Ino4 gebunden werden. Bei IC-Mangel kommt es zu einer Anhäufung des Intermediats Phosphatidsäure, wodurch der Repressor Opi1 durch die Interaktion mit Scs2 außerhalb des Zellkerns am endoplasmatischen Reticulum gebunden wird. Wenn ausreichend IC im Medium vorhanden ist, kann der Repressor Opi1 in den Zellkern einwandern und den Aktivator Ino2 binden. Ferner kann Opi1 über seine Opi1-Sin3-Interaktionsdomäne (OSID) mit der PAH1 („paired amphipathic helix“) des Corepressors Sin3 interagieren. Ein Ziel dieser Arbeit war es, ausgewählte Aminosäuren in der OSID durch gerichtete Mutagenese gegen Alanin auszutauschen und die erhaltenen Opi1-Varianten auf ihre Repressorfunktion hin zu untersuchen. Die Substitution einzelner Aminosäuren innerhalb der OSID offenbarte die Notwendigkeit der Aminosäuren L56, V59 und V67 für die Opi1-Sin3 Bindung. Die Ergebnisse legten außerdem nahe, dass die Repression nicht allein über Sin3 vermittelt wird. Tatsächlich konnte gezeigt werden, dass die innerhalb der OSID von Opi1 kritischen Aminosäuren der Opi1-Sin3 Bindung (L56, V59 und V67) auch für die Interaktion von Opi1 mit Cyc8 wichtig sind. Dementsprechend rekrutiert Opi1 mit Hilfe der OSID zwei pleiotrope Corepressoren. Sin3 bindet über die PAH1 an die OSID, während die Opi1-Cyc8- Bindung über die TPR-Motive im Cyc8 vermittelt wird. Desweiteren zeigte sich, dass die sin3 cyc8 Doppelmutante synthetisch letal ist. Sin3 ist eine Untereinheit in mehreren Komplexen der Histondeacetylase (HDAC) Rpd3 und fungiert als Plattform für viele Protein-Protein Wechselwirkungen. Innerhalb des Sin3/Rpd3LKomplexes wurde der Einfluss mehrerer Untereinheiten (Pho23, Sap30, Sds3, Ume1 und Dep1) untersucht. Hier zeigte sich, dass Pho23 einen entscheidenden Einfluss auf die Regulation ICRE-abhängiger Gene hat. In den sich anschließenden Interaktionsanalysen konnte eine Bindung von Pho23, Sds3 und Sap30 an Sin3 gezeigt werden. Eine genauere Kartierung der Pho23-Sin3 Bindung zeigte, dass Pho23 über zwei voneinander unabhängige Domänen (Pho23-Sin3-Interaktionsdomäne; PSID1 und PSID2) mit Sin3 wechselwirkt, wobei die Interaktion der PSID1 und der PSID2 mit der HID (HDAC-Interaktionsdomäne) im Sin3 erfolgt. Die katalytische Aktivität innerhalb der Sin3/Rpd3-Komplexe ist durch die HDAC Rpd3 gegeben. Durch Untersuchungen der HDACs der Klasse I (Rpd3, Hos1 und Hos2) bzw. der Klasse II (Hda1 und Hos3) konnte für ICRE-abhängige Genorte gezeigt werden, dass eine rpd3 hda1 hos1 Dreifachmutante ähnlich dereguliert ist wie eine sin3 Mutante. Bei Interaktionsstudien der HDACs Rpd3, Hda1 und Hos1 mit Sin3 konnten neben der bereits bekannten HID im Sin3 (aa 801-1100) zwei neue HIDs (HID2: aa 473-600, HID3: aa 1100- 1210) identifiziert werden. Die Histondeacetylase Rpd3 bindet an die HID1 und an die HID3, während Hda1 und Hos1 jeweils an HID2 und HID3 binden. Interessanterweise stellte sich heraus, dass die Bindedomäne für die Sin3-Bindung innerhalb der Deacetylase-Domäne (DAC) aller drei HDACs liegt. Für Hos1 konnte die Sin3 Bindedomäne auf einen Aminosäurebereich von 236-400 eingegrenzt werden. Für die Hda1- Sin3 Bindung konnten zwei voneinander unabhängig interagierende Bereiche im Hda1 (aa 201-250 und aa 251-300) beschrieben werden. Neben der Deacetylierung wurde der regulative Einfluss einer weiteren kovalenten Histonmodifizierung, nämlich der der Methylierung durch Histonmethyltransferasen (HMT; Set1, Set2 und Dot1) und der Demethylierung durch Histondemethylasen (HDM; Jhd1, Jhd2, Ecm5, Gis1 und Rph1) auf die Genexpression der Phospholipid-Biosynthesegene untersucht. Hier konnte für die HMT Set2 (spezifisch für Lysin-36 im Histon H3) ein großer Einfluss auf die ICRE-abhängige Genexpression gezeigt werden. Desweiteren konnte gezeigt werden, das Set2 direkt an Ino2 bindet. Die Kartierung der Interaktionsdomäne offenbarte, dass die katalytische SET Domäne im Set2 mit der DNA-bindenden bHLHDomäne von Ino2 wechselwirkt.
Streptococcus pneumoniae, more commonly known as the pneumococcus, is a Gram-positive bacterium colonizing the human upper respiratory tract as a commensal. However, these apparently harmless bacteria have also a high virulence potential and are known as the etiologic agent of respiratory and life-threatening invasive diseases. Dissemination of pneumococci from the nasopharynx into the lungs or bloodstream leads to community-acquired pneumonia, septicaemia and meningitis. Pneumococcal diseases are treated with antibiotics and prevented with polysaccharide-based vaccines. However, due to the increase of antibiotic resistance and limitations of the current vaccines, the burden of diseases remains high. Interactions of pneumococci with soluble host proteins or cellular receptors are crucial for adherence, colonization, transmigration of host barriers and immune evasion. The pneumococcal surface-exposed proteins are the main players involved in this host-pathogen interaction. Therefore, combating pneumococcal transmission and infections has emphasized the need for a new generation of immunogenic and highly protective pneumococcal vaccines, based on surface-exposed adhesins virtually expressed by all pneumococcal strains and serotypes. The genomic analysis of S. pneumoniae strains helped to identify pneumococcal virulence factors such as pili, PsrP and PavB, which have been demonstrated to interact with human proteins playing an important role during the pathogenic process of pneumococci, and are currently considered as new potential vaccine candidates against S. pneumoniae. A subclass of pneumococcal strains produces pili that are encoded by the pathogenicity islet pilus islet-1 (rlrA islet) and/or the pilus islet-2. Both types of pili are implicated in bacterial adherence to host cells. A further pathogenicity islet encoded protein is PsrP. The presence of the psrP-secY2A2 islet correlated positively with the ability of pneumococci to cause invasive pneumococcal diseases. Recent studies indicated that PsrP is a protective adhesin interacting with keratin 10 on lung epithelial cells. In this study, the genomic loci of the pneumococcal virulence factors pili, PsrP and PavB were molecularly analyzed and used as molecular markers for molecular epidemiology studies of S. pneumoniae. The genotyping results obtained here showed the impact of the PCV7 immunization of children, started in July 2006, on the distribution of these pneumococcal virulence factors among clinical isolates in Germany. These findings gave more insights into the role of pili, PsrP and PavB in pneumococcal pathogenesis and may strongly support the idea of including these pneumococcal constituents in a broad coverage protein-based vaccine against pneumococcal infections produced by invasive serotypes in the future. The mature PavB protein contains a variable number of repetitive sequences referred to as the Streptococcal Surface Repeats (SSURE). PavB has been demonstrated to interact with fibronectin and plasminogen in a dose-dependent manner and it was identified as a surface-exposed adhesin with immunogenic properties, which contributes to pneumococcal colonization and respiratory airways infections. The complete molecular analysis performed here for PavB, allowed to know more accurately its structure and to estimate the real number of SSURE units in different pneumococcal strains. With these findings, a new primary sequence-based structural model was constructed for the PavB protein and its SSURE domain, and, at least for TIGR4, the complete pavB gene and PavB protein sequences with five SSURE units was reported in the GenBank database of the NCBI website. Due to its immediate neighborhood on the pneumococcal genome with the tcs08 genes, PavB is likely linked with this pneumococcal TCS. Here, a significant reduction of the PavB protein expression was observed in delta-tcs08-mutant strains, which may strongly suggest that the TCS08 does play a role in pneumococcal virulence and metabolisme, as further observed in growth behaviour experiments carried out with the TCS08-deficient mutants, cultured in chemically defined medium. Despite several studies suggest that the molecular mechanism underlying the bacterial signal transduction is very sophisticated, the majority of reports in prokaryotic TCS, including those for S. pneumoniae, are still focused in single cognate pairs. The pneumococcal genome encodes 14 TCSs and an orphan response regulator. It is obvious that TCS pathways are often arranged into complex circuits with extensive cross-regulation at a variety of levels, thereby endowing cells with the ability to perform sophisticated information processing tasks. This study established also the experimental and molecular bases for the construction of a comprehensive genome-wide interaction map of the complex TCS pathways for its application in the gene regulation of pneumococcal virulence factors.
Als Mitglieder der Ordnung Lactobacillales ist das Hauptkatabolit der Pneumokokken sowohl unter aerober wie auch microaerophiler Atmosphäre Lactat. Des Weiteren synthetisiert S. pneumoniae eine große Bandbreite an ABC-Transportersystemen, die an der Assimilation und an dem Stoffwechsel von Kohlenhydraten, löslichen Verbindungen und Aminosäuren beteiligt sind. In dieser Arbeit wurde der Kohlenstoffmetabolismus mittels 13C-Isotopologen Verteilung nach Wachstum der Pneumokokkenkultur in chemisch definiertem Medium (CDM) mit [U-13C6]Glucose, [1,2-13C2]Glucose oder [U-13C2]Glycin analysiert. GC/MS-Analysen zeigten ein Muster an schwer-markierten und unmarkierten Kohlenstoffatomen in den Aminosäuren. Die Ergebnisse ließen den Schluss zu, dass Pneumokokken sowohl einzelne Aminosäuren aufnehmen, wie auch über klassische oder nicht-klassische Biosynthesewege de novo synthetisieren können. His, Glu, Ile, Leu, Val, Pro und Gly blieben im Isotopolog Profiling unmarkiert, was ein Hinweis auf das Fehlen von Biosynthesewegen oder ihrer Regulation unter bestimmten Umweltbedingungen sein könnte. Obwohl die genetische Information für die Biosynthese der essentiellen verzweigtkettigen Aminosäuren (BAA; Ile, Leu und Val) in S. pneumoniae vorhanden ist, ergaben die 13C-Markierungsversuche keine de novo Synthese. Jedoch konnte durch Langzeit-1H-NMR (LT-NMR) Analysen eine aktive Aufnahme dieser Aminosäuren nachgewiesen werden. Darüber hinaus wird Aspartat nicht über den allgemeinen Stoffwechselweg mit Pyruvat und Acetyl-CoA synthetisiert. Die Aspartat-Synthese erfolgt im ersten Schritt durch die Umwandlung von Phosphoenolpyruvat (PEP) und CO2 zu Oxalacetat. Im zweiten Schritt wird Oxalacetat dann in Aspartat mit der Nebenreaktion Glutamat zu alpha-Ketoglutarat durch die Aspartat-Transaminase metabolisiert. GC/MS Analysen ergaben weiterhin, dass komplett markierte aromatische Aminosäuren aus Erythrose-4-Phosphat und zwei Molekülen PEP über das Intermediat Chorismat synthetisiert wurden. Es zeigte sich außerdem, dass [M+1] markiertes Serin durch die Hydroxymethylierung von unmarkiertem Glycin über 5,10-Methylentetrahydrofolat als Teil des C1-Pools hergestellt wurde. Weiterhin wurden In LT-NMR-Untersuchungen Konzentrationsänderungen der extrazellulären Metabolite quantifizert. Die homofermentative Milchsäuregärung konnte in Pneumokokken durch einen extrazellulären Anstieg der Lactatkonzentration nachgewiesen werden. Als essentielle Kandidaten wurden Glutamin und Uracil identifiziert, die das Pneumokokkenwachstum bei Mangel einschränken. Diese Ergebnisse zeigen die Vielzahl von Aminosäuren-Synthesewegen in Pneumkokken und die notwendige Rolle der Transportersysteme in Pneumokokken für die bakterielle Fitness und für die Adaption an verschiedene Wirtsnischen. Sechs mögliche Glutamin-Aufnahmesysteme konnten durch Genomanalysen von Streptococcus pneumoniae Stämmen identifiziert werden. Die Reverse Transkriptions-PCR haben gezeigt, dass die sechs gln-Operons unter in vitro Bedingungen exprimiert werden. Vier der gln-Gencluster bestehen aus den Genen glnQPH, während in zwei Regionen das Gen glnH, welches für eine lösliche Glutamin-Bindungsdomäne kodiert, fehlt. In dieser Arbeit wurde der Einfluss zwei dieser Glutamin-ABC-Transporter, mit den Operons glnQPH0411/0412 und glnQPH1098/1099, in S. pneumoniae D39 auf Virulenz und Phagozytose untersucht. Die zwei charakterisierten Transportersysteme bestehen jeweils aus der ATPase GlnQ und einem translatorischem Fusionsprotein aus der Permease GlnP und dem Bindungsprotein GlnH. Für die Untersuchungen wurden diese beiden Transporter mittels Insertations-Deletions-Mutagenese inaktiviert. CD-1 Mäuse, die intranasal mit biolumineszierenden D39delgln0411/0412 infiziert wurden, zeigten in Echtzeit eine signifikant erhöhte Überlebenszeit und eine Attenuierung bei der Ausprägung einer Pneumonie im Vergleich zu biolumineszierenden Wildtyp D39 Pneumokokken. Im murinen Sepsismodell mit der D39delgln0411/0412-Mutante zeigte sich eine gemäßigte, aber signifikante Abschwächung der Pathogenese. Im Gegensatz dazu war die D39delgln1098/1099 Mutante sowohl im murinen Pneumonie- wie auch Sepsismodell massiv attenuiert. Es war eine 100- bis 10000- fach höhere Infektionsdosis erforderlich, um mit der D39delgln1098/1099-Mutante eine vergleichbare Pathogenese der Pneumonie oder Sepsis wie beim Wildtypstamm D39 hervorzurufen. Im experimentellen Meningitismodell zeigten sich bei der D39delgln1098/1099-Mutante eine erniedrigte Anzahl an Leukozyten im Liquor und ein reduzierter Bakterientiter im Blut im Vergleich zu D39 und D39delgln0411/0412. Auch die Phagozytose-Experimente bestätigten eine signifikante verminderte Überlebensrate der beiden gln-Mutanten im Vergleich zum Wildtyp S. pneumoniae D39, was auf den Einfluss der bakteriellen Fitness auf den Schutz gegen oxidativen Stress hinweist. Diese Ergebnisse demonstrierten, dass beide Glutamin-Aufnahmesysteme für die vollständige Virulenz der Pneumokokken essentiell sind, aber verschiedene Auswirkungen auf die Pathogenese der Bakterien unter in vivo Bedingungen haben. Das Zelloberflächenprotein PavA der Pneumokokken ist ein Virulenzfaktor, der für invasive Erkrankungen wichtig ist. In dieser Arbeit wurde gezeigt, dass PavA essentiell für die in vivo Besiedlung von Streptococcus pneumoniae D39 in den oberen Atemwegen von Mäusen ist. In dem murinen Pneumoniemodell wurden pavA-Mutanten nicht aus den infizierten Mauslungen eliminiert, sondern persistierten und lösten somit eine chronische Infektion aus, während Wildtyp-Pneumokokken systemische Erkrankungen verursachten. PavA-defiziente Pneumokokken konnten unter experimentellen Bedingungen nicht aus der Lunge in die Blutbahn streuen. Diese Ergebnisse ließen den Schluss zu, dass PavA an der erfolgreichen Kolonisation der Schleimhautoberflächen und an der Translokation der Pneumokokken durch Wirtsbarrieren beteiligt ist.
Im Rahmen dieser Arbeit wurde ausgehend vom nicht zytopathogenen (nzp) Wildtypvirus BVDV-2 Stamm 890 (v890WT) erstmalig ein infektiöser cDNA Volllängenklon (p890FL) konstruiert. In vitro synthetisierte RNA des Volllängenklons p890FL replizierte nach Transfektion in bovine Zellen autonom und aus dem Überstand transfizierter Zellkulturen konnte infektiöses Virus (v890FL) isoliert werden. Die in vitro Charakterisierung ergab ein ähnliches Wachstumsverhalten des rekombinanten Virus v890FL im Vergleich zum Wildtypvirus v890WT. Im Tierexperiment zeigte v890FL jedoch einen geringfügig attenuierter Phänotyp gegenüber dem Wildtypvirus v890WT. Mit Hilfe des nzp Volllängenklons p890FL konnte zudem gezeigt werden, dass auch ein nzp BVDV-2 -Stamm stabil messbare Mengen an freiem NS3-Proteins bilden kann, wie es bisher nur für zytopathogene (zp) BVDV Stämme beschrieben worden ist. Der Volllängenklon p890FL diente weiterhin als Basis für die Etablierung zweier Deletionsmutanten, p890dNpro und p890dC, welche sich jeweils durch eine partielle Deletion des Nichtstrukturproteins Npro bzw. durch eine partielle Deletion des Kapsidproteins C auszeichnen. Die Deletion der Autoprotease Npro resultierte in einem verminderten viralen Wachstum auf Interferon-kompetenten bovinen Zellen, auf Interferon-inkompetenten Zellen können jedoch mit dem rekombinanten Virus v890FL vergleichbare Titer erreicht werden. Die Deletion des Strukturproteins C resultierte in der Bildung eines sogenannten Replikons, die in vitro synthetisierte virale RNA von p890dC war zwar in der Lage nach Transfektion in bovinen Zellen autonom zu replizieren, jedoch können keine Virusnachkommen isoliert werden. Für die Generierung infektiöser Virusnachkommen (sogenannter „Pseudovirionen“) wurde das Replikon p890dC unter Verwendung der Helferzelllinie WT-R2 in trans komplementiert und zu (einmal infektiösen) Pseudovirionen verpackt. Beide Deletionsmutanten offerieren einen neuartigen Ansatz in der Etablierung von sicheren und effizienten BVDV-2 Vakzinen und stellen einen wichtigen Schritt bei der Entwicklung neuer BVDV-Impfstoffe dar. Der infektiöse cDNA Volllängenklon p890FL ist mit seiner 228 nt großen Insertion im NS2-kodierenden Bereich zudem ein wichtiges Werkzeug für die Untersuchung von Insertionen im NS2/3 und dem Verständnis für die Ursachen der Zytopathogenität von Pestiviren.
Hantaviren gehören zu den „Emerging Viruses“ mit einer weltweiten Verbreitung. Sie sind Erreger von Zooanthroponosen und werden von Nagetieren auf den Menschen übertragen. Humane Hantavirusinfektionen können je nach Erreger schwerwiegende Erkrankungen mit einer Letalitätsrate von bis zu 50 % hervorrufen. In den Jahren 2004/2005, 2007 und auch in diesem Jahr wurde in einer Reihe europäischer Staaten, einschließlich Deutschland, ein deutlicher Anstieg der Zahl der humanen Hantavirusinfektionen beobachtet. In Deutschland waren hauptsächlich Baden-Württemberg, Bayern, Niedersachsen und Nordrhein-Westfalen betroffen. Zu den Risikogruppen zählen Personen, welche aufgrund ihres Berufes in engen Kontakt zu dem Reservoirwirt und dessen Ausscheidungs¬produkten kommen und somit auch gegenüber den Viren besonders exponiert sind. Die Hanta¬virus¬diagnostik basiert größtenteils auf serologischen Nachweismethoden wie Enzyme-linked immunosorbent assays (ELISA) und Western Blot-Tests. Um humane Hantavirusinfektionen in Deutschland mit hoher Sensitivität und Spezifität zu diagnostizieren, wurden in dieser Arbeit serologische Testverfahren für die in Europa vorkommenden Hantaviren Dobrava-Belgrad-Virus (DOBV), Puumalavirus (PUUV) und Tulavirus (TULV) etabliert und validiert. Weiterhin wurden Protokolle zur Durchführung seroepidemiologischer Studien und für den Einsatz der neuen Testsysteme in der Diagnostik entwickelt. Gemäß dieser Protokolle wurden die Tests bei seroepidemiologischen Untersuchungen eingesetzt und lieferten Auf¬schluss über die Hantavirusprävalenz in verschiedenen Bevölkerungsgruppen in unter¬schiedlichen Gebieten Deutschlands. Auf der Basis Hefe exprimierter Nukleokapsidproteine (N-Proteine) von PUUV, Stamm Vranica-Hällnäs (PUUV-Vra) und Stamm Niederbayern (PUUV-Bava), DOBV, Stamm Slovenia (DOBV-Slo), und TULV, Stamm Moravia wurden ELISA und Western Blot-Tests zum Nachweis von humanen IgM- und IgG-Antikörpern entwickelt. Die Validierung mit deutschen und internationalen Seren ergab für die neuen Tests eine Sensitivität zwischen 94 % und 100 % und eine Spezifität von 96-100 %. Bei der Validierung der Tests mit Seren aus Finnland erreichte die Sensitivität 89-100 % und die Spezifität 95-100 %. Der Anteil an Seren, bei denen keine eindeutige Einteilung in „reaktiv“ oder „nicht reaktiv“ erfolgen konnte, lag bei maximal 2,7 %. Die indirekten DOBV-Slo- und PUUV-Vra-IgG/IgM-ELISA und Western Blot-Tests wurden durch INSTAND e.V. im März, September 2009 und April, September 2010 zertifiziert. Die TULV spezifischen Tests konnten aus Mangel an Referenztests und damit fehlender Referenzseren nicht validiert werden. Für die epidemiologischen Studien wurde das indirekte ELISA-Format eingesetzt, da das capture ELISA-Format in seiner diagnostischen Sensitivität schlechter als das indirekte Format abgeschnitten hatte. Die jeweiligen Western Blot-Tests und Immunfluoreszenztests dienten als Bestätigungstest. Die seroepidemiologische Studie bei 484 humanen Serumproben aus einem PUUV-Endemiegebiet in Niedersachsen zeigte eine Hanta-virusprävalenz von 7 %. Dieser Wert entspricht etwa dem Vierfachen der durchschnitt¬lichen Prävalenz des gesamten Bundesgebietes (1-2 %). Die Untersuchung von 178 Personen aus einem PUUV-Ausbruchsgebiet in Bayern ergab eine Hantavirusseroprävalenz von etwa 11 %. Interessanterweise waren 40 % der positiv getesteten Seren aus¬schließlich mit dem TULV-Antigen reaktiv. Es wurden auch die Seren von 208 in Bayern statio¬nierten Soldaten untersucht. Obwohl diese zu einer der Risikogruppen gehören, lag die Hantavirusprävalenz lediglich bei 2 %. Dagegen ergab eine Studie bei Wald¬arbeitern aus Branden¬burg dass 9 % der 563 ge¬testeten Personen Hantavirus spezifische Antikörper besaßen. Von diesen waren 43 % aus¬schließlich in den TULV-Tests reaktiv und 33 % reagierten exklusiv mit dem DOBV-Slo-Antigen. Eine ¬epidemiologische Studie bei Primaten aus dem deutschen Primatenzentrum in Göttingen zeigte, dass 12 % von den 251 getesteten Tieren mit mindestens einem der verwen¬deten Antigene reagierten. Dies stellt den ersten Nachweis von natürlichen Hantavirusinfektionen bei Primaten dar. Die Ergebnisse der epidemiologischen Studien zeigen die Bedeutung der Verwendung „homologer“ Antigene für eine hochsensitive serologische Diagnostik. Aus diesem Grund sollte zukünftig das PUUV-Bava Antigen für den serologischen Nachweis von Hantavirusinfektionen in Deutschland eingesetzt werden. Die epidemiologische Bedeutung des TULV muss weiter erforscht werden. Daher sollten bei zukünftigen epidemiologischen Studien die jeweiligen Serumproben auch auf TULV reaktive Antikörper untersucht werden. Mit den hier entwickelten serologischen Testverfahren wird es zukünftig möglich sein, Hantavirusinfek¬tionen mit hoher Sensitivität und Spezifität zu diagnostizieren.
Die Transkription von Genen der Phospholipidbiosynthese in S. cerevisiae wird durch ein ICRE (inositol/choline responsive element) genanntes UAS-Element aktiviert, welches durch die Phospholipid-Vorstufen Inositol und Cholin (IC) gesteuert wird. ICRE-Motive werden durch ein Heterodimer der bHLH-Proteine Ino2 und Ino4 erkannt, wobei Ino2 über zwei Transkriptionsaktivierungsdomänen (TAD) die Expression vermittelt, während Ino4 dem Kernimport des Komplexes dient. Negativer Regulator ist Opi1, der mit Ino2 interagiert. SUA7 (TFIIB) wird durch die Interaktion mit Ino2 an den Promotor rekrutiert. Im Rahmen dieser Arbeit wurden Untersuchungen durchgeführt, um ein Heterodimer aus heterolog exprimiertem Ino2 und Ino4 über chromatographische Methoden zu reinigen. Es wurde eine affinitätschromatographische Strategie entwickelt, die es gestattet, epitopmarkiertes Ino2 und Ino4 von einem Großteil der Fremdproteine abzutrennen. Mit größeren Zellmengen könnte es künftig gelingen, ein Ino2/Ino4-Heterodimer zu reinigen und es nach Kristallisierung zusammen mit einem ICRE-Motiv einer Röntgenstrukturanalyse zugänglich zu machen. Unter Verwendung genomischer Sequenzdaten von S. cerevisiae wurden in dieser Arbeit weitere Gene identifiziert, die ICRE-Motive in ihrer Promotorregion tragen, aber keine offensichtliche Rolle bei der Phospholipidbiosynthese spielen. Untersuchungen zeigten, dass die ICRE-tragenden Gene FAR8, RSF1, YEL073C und URA8 relativ stark, die Gene ARG4, ERG20, GPD2 und VHT1 nur moderat durch IC beeinflusst werden. Für das in S. cerevisiae stark IC-abhängige INO1 Gen (50-fache Derepression bei IC-Mangel) wurde gezeigt, dass drei distinkte ICRE-Motive für diese Regulation verantwortlich sind. Die Ergebnisse dieser Arbeit wurden mit Transkriptomanalysen anderer Gruppen verglichen und die Aussagekraft von in silico-Recherchen bewertet. Candida albicans ist eine opportunistisch pathogene Hefe. Auch C. albicans ist in der Lage, Inositol, Cholin und Fettsäuren de novo zu synthetisieren. Ein Funktionshomolog zu INO1, das CaINO1, vermag eine entsprechende Nullmutation in S. cerevisiae zu komplementieren. Ebenso wurden in C. albicans die Gene CaCHO1, CaFAS1 und CaFAS2 für die Synthese von Cholin bzw. Fettsäuren identifiziert. Ferner besitzt C. albicans das dem Opi1-Protein strukturell und funktionell ähnelnde CaOpi1, welches ebenfalls in der Lage ist, eine IC-abhängige Genregulation in S. cerevisiae zu vermitteln. Die in silico Identifikation potentieller C. albicans Orthologer zu INO2 sowie zu INO4 gab Anlass zu der Annahme, dass die Regulation der Phospholipidbiosynthese in S. cerevisiae und C. albicans konserviert vorliegt. Im Rahmen dieser Arbeit wurde ein unkonventionelles Intron im mutmaßlichen CaINO4 Gen identifiziert und durch RT-PCR eine intronfreie cDNA des CaINO4 Gens erhalten. Mit den Produkten der mu tmaßlichen Gene CaINO2 und CaINO4 wurden Protein/DNA- und Protein/Protein-Interaktionen untersucht und mit der Situation in S. cerevisiae verglichen. CaIno2 und CaIno4 sind in der Lage zu heterodimerisieren und an ICRE-Motive aus S. cerevisiae zu binden, jedoch konnte keine Bindung an den CaINO1 Promotor gezeigt werden. Weiterhin ist das Heterodimer der C. albicans-Proteine in der Lage, einer S. cerevisiae ino2 ino4 Doppelmutante ein Wachstum auf IC-freiem Medium zu ermöglichen. Keines der Gene kann jedoch allein die jeweils entsprechende ino2 oder ino4 Einfachmutation komplementieren. Weder CaIno2 noch CaIno4 interagieren mit CaOpi1, hingegen interagiert CaIno2 mit Opi1, ebenso CaOpi1 mit Ino2. Ferner interagiert CaIno2 wie auch CaIno4 mit CaSua7, nicht jedoch mit Sua7. Es konnte keine Interaktion zwischen Ino2 bzw. Ino4 mit CaIno4 bzw. CaIno2 festgestellt werden, ebensowenig eine Homodimerisierung der Proteine. Ähnlich wie Ino2 enthält auch CaIno2 zwei Transkriptionsaktivi erungsdomänen an entsprechenden Positionen und vergleichbarer Aktivierungsleistung. Es gelang im Rahmen dieser Arbeit nicht, homozygote Mutationen der Gene CaINO2 und CaINO4 durch Gendisruption in die diploide Hefe C. albicans einzuführen, es konnten lediglich heteroallele Mutanten hergestellt werden. Dieser Befund ist ein Hinweis auf eine Rolle von CaIno2 und CaIno4 bei der Aktivierung essentieller Gene in C. albicans. Daher wurde mit Genaktivierungstests nach der CaIno2/CaIno4-Konsensusbindesequenz gesucht und diese dann verwendet, um potentielle Zielgene in silico zu identifizieren. Als Konsensussequenz wurde das Motiv BWTCASRTG erhalten. Dieses Motiv wurde weder vor CaINO1, CaFAS1 oder CaCHO1 gefunden, jedoch zeigte sich eine deutliche Häufung des UAS-Elements vor mitochondrialen Genen, vor Genen der Ergosterolbiosynthese und besonders vor einer Vielzahl von Genen ribosomaler Proteine. Es kann aus diesen Daten gefolgert werden, dass CaIno2 und CaIno4 für die Aktivierung anderer, vermutlich essentieller Zielgene erforderlich sind als ihre Orthologen aus S. cerevisiae, während CaINO1 durch bisher unbekannte Faktoren reguliert wird.
Influence of single amino acid polymorphisms on the in vitro convertibility of goat prion protein
(2010)
Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders which include, among others, scrapie and bovine spongiform encephalopathy (BSE). The causative agent is composed mainly of a misfolded isoform of a cellular prion protein (PrPC), denoted prion protein scrapie (PrPSc). Genetically determined PrPC polymorphisms can modulate the convertibility of PrPC to PrPSc and thus lead to prolonged TSE incubation times or even complete resistance of the animal. In sheep, such polymorphisms are located at codons 136, 154 and 171. Several disease-associated amino acid polymorphisms also exist in caprine PrPC. However, due to their large number and the limited number of goats carrying them, it is difficult to assess their specific impact on TSE susceptibility in vivo. The susceptibility can be simulated in vitro by a cell-free conversion assay, in which the conversion efficiency of recombinant PrPC is determined. In this study, twelve caprine PrPC variants (M112T, M137I, L141F, I142M, H143R, N146S, N146D, R151H, R211Q, Q215R, Q222K and wild-type PrPC (denoted INRQ) were produced by using PCR mutagenesis amplification and expressed in E. coli M15 cells and purified on Ni-NTA agarose columns. The renatured PrPC variants had molecular masses of approx. 23 kDa and the expected conformation as determined by CD spectroscopy. These variants were then subjected to a cell-free conversion assay using different BSE and scrapie strains. Cross species (mouse and goat) cell-free conversion studies were performed and specific monoclonal antibodies were used to discriminate the exogenous PrPSc molecules used to seed the reaction and newly converted PrPres. The studies with the mouse-adapted strain Me7 revealed that polymorphisms M137I, H143R and L141F did not influence the conversion of PrPC in a significant manner. However, the reduced conversion rate of the variant I142M (harbouring a methionine at position 142 instead of isoleucine) correlated with longer scrapie incubation times in goats with this polymorphism. The polymorphisms M112T, R151H and Q211R showed also reduced conversion rates in comparison to INRQ, an effect that related well to reduced scrapie susceptibility of such goats in vivo. Polymorphisms N146S, N146D and Q222K were to date extremely rarely found in scrapie affected goats. It was intriguing to see that these amino acid substitutions also abolished the in vitro conversion efficiency completely as did the Q215R polymorphism, which had not yet been associated with scrapie resistance in vivo. Results of cell free conversion studies with mouse adapted BSE prions (BSE/Bl6 strain) correlated well with the results obtained with Me7, although the results with BSE/Bl6 showed more variation. Again it was possible to observe a reduction in the conversion with I142M, R151H and R211Q and no or almost no conversion with N146S, N146D and Q222K and with Q215R respectively. In subsequent experiments, caprine PrPC variants were directly biotinylated so that goat or sheep scrapie as well as cattle, sheep or goat BSE derived PrPSc could be used. In these assays I142M, H143R and R211Q clearly reduced the conversion of PrPC with ovine and caprine scrapie isolates, whereas R151H did not influence the conversion efficiency of biotin-tagged PrPC. Conversion with scrapie isolates showed a marked reduction or no conversion in the case of N146S and N146D which correlated again with the Me7 data and the in vivo observations. In the case of bovine BSE isolates, the cell-free conversion mimicked the species barrier observed in vivo. BSE material from cattle barely converted any caprine PrPC variant into PrPres, whereas BSE from sheep converted all variants including the resistance-associated N146S and N146D, suggesting that the resistance is also prion strain specific. A marked reduction in the conversion rate was also observed with I142M and, less pronounced, with H143R and R211Q corroborating the protective role of these polymorphisms against TSEs. When co-incubated, resistance-associated variants N146D, N146S and Q222K produced a dominant negative effect on the conversion of the susceptible wild-type PrPC genotype (INRQ). In a similar way, the incubation of I142M and H143R also reduced the amount of PrPres in a mixture with INRQ. In conclusion, the cell-free conversion assay results show that the caprine PrP polymorphisms M112T, I142M, R143H, N146S, N146D, R151H, R215Q and Q222K correlated clearly with the in vivo susceptibilities of the goats carrying these polymorphisms. Apart from practical implications, like the possibility of breeding TSE resistant goats, these data indicate that scrapie resistance is modulated by thermodynamic changes affecting PrPC-PrPSc interactions and the formation of conversion intermediates.
Kunststoffähnliche Polymere wie Polyhydroxyalkanoate (PHA) fanden in den letzten Jahren immer größere Berücksichtigung zur Substitution von Kunststoffen. Die attraktivsten Vertreter dieser Biopolymere sind dabei das Poly-3-hydroxybutyrat (PHB),das Poly-3-hydroxyvalerat (PHV) und das Poly-3-hydroxybutyrat-co-3-hydroxyvalerat(PHBV). Für eine kostengünstige Herstellung von PHA sind allerdings biotechnologisch etablierte Erzeuger notwendig. Für eine umweltfreundliche Produktion bieten sich Hefen an. Viele Hefen sind im Gegensatz zu den PHA-synthetisierenden Prokaryoten weder virulent noch pathogen. Allerdings verfügen sie nicht über die notwendige genetische Ausstattung zur PHA-Synthese. In der vorliegenden Arbeit wurden die Gene der PHB- bzw. PHBV-Synthese aus Cupriavidus necator und Methylobacterium extorquens in das Hefegenom von Arxula adeninivorans integriert. Es wurden die Gene phbA (kodiert für eine ß-Ketothiolase), phbB (kodiert für eine Acetoacetyl-CoA-Reduktase) und phbC aus C. necator sowie phaC aus M. extorquens genutzt, wobei die beiden letzteren für PHA-Synthasen kodieren. Für die Integration dieser PHA-Gene wurden sog. YIEC (Yeast Integration Expression Cassettes) konstruiert, mit welchen die Gene in die 25S-rDNA von A. adeninivorans integriert werden konnten. Es wurden jeweils die PHA-Synthasegene phaC oder phbC mit phbA und phbB aus Cupriavidus necator integriert. Dadurch entstanden die sog. 3-fach-Transformanten (3-fach/phaC und 3-fach/phbC). Ebenso wurden die PHA-Synthasegene einzeln integriert, wodurch die sog. 1-fach-Transformanten (1-fach/phaC und 1-fach/phbC) entstanden. Im Mittelpunkt der durchgeführten Arbeiten standen die Bestimmungen der Enzymaktivitäten der rekombinanten PHA-Synthasen, die Determinierung von PHA sowie die Untersuchungen der Veränderungen der Stoffwechselintermediate durch die Integration der PHA-Gene. Bevor die vier PHA-Transformanten generiert worden waren, waren in einer Machbarkeitsstudie die PHA-Gene phbA und phbB integriert und die Expression der rekombinanten Enzyme mit Enzymaktivitätsassays nachgewiesen worden. In den vier verwendeten PHA-Transformanten (1-fach/phaC, 1-fach/phbC sowie 3-fach/phaC und 3-fach/phbC) wurden phbAp und phbBp mittels spezifischer Antikörper nachgewiesen. Die Expression der PHA-Synthasegene wurde in den PHA-Transformanten durch Enzymaktivitätsassays vorgenommen. Die PHA-Transformanten wurden mit Glukose, Acetat, Ethanol, Propion- und Buttersäure alleinig und im Shift von Glukose auf eine andere Kohlenstoffquelle kultiviert. Dabei wurde festgestellt, dass Ethanol generell von den PHA-Transformanten nicht verwertet werden kann. Parallel zu den Analysen des Wachstumsverhaltens wurden die Enzymaktivitätsassays durchgeführt. Dabei konnten neben der Glukosekultivierung erstmals auch bei Acetatkultivierung Aktivitäten der rekombinanten PHA-Synthasen nachgewiesen werden. Sowohl bei der Glukose- als auch der Acetatkultivierung zeigten die vier PHA-Transformanten verschiedene Verläufe der Aktivitäten. Für die Transformante, in welche das PHA-Synthasegen phaC aus Methylobacterium extorquens integriert worden war (1-fach/phaC), wurden sowohl für die Glukose- als auch die Acetatkultivierung die Aktivitätswerte für die PHA-Synthasen bestimmt. Für die Transformante, welche das PHA-Synthasegen phbC aus Cupriavidus necator trägt (1-fach/phbC), konnten nur bei Glukosekultivierung PHA-Synthaseaktivitäten bestimmt werden. Diese wurden während der Kultivierung geringer. Für die 3-fach-Transformante 3-fach/phaC konnten PHA-Synthaseaktivitäten sowohl für die Glukose- als auch die Acetatkultivierung bestimmt werden, die während der beiden Kultivierungen geringer wurden. Für die Transformante, welche alle drei PHA-Gene inklusive des PHA-Synthasegens phbC (3-fach/phbC) trägt, wurden während der Glukosekultivierung gleich bleibende und während der Kultivierung mit Acetat stark steigende PHA-Synthaseaktivitäten ermittelt. Mit einer Färbemethode sollte in den 1-fach-Transformanten PHB nachgewiesen werden. Dazu wurden die Farbstoffe BODIPY 493/503 und Nilrot, die speziell intrazelluläres PHB bzw. Neutrallipide färben, verwendet. Es konnte mit BODIPY 493/503 kein intrazellulär eingelagertes PHB detektiert werden. Daher handelt es sich bei den Einlagerungen um Lipide. Für eine genauere Analyse der die durch die Integration der PHA-Gene entstehenden Stoffwechselprodukte wurde eine GC/MS-Methode entwickelt. In ersten Messungen zeigte sich für die PHA-Transformanten ein Peak, der die gleiche Retentionszeit wie 3-Hydroxyvalerat (3HV), das Monomer von PHV hatte. Dieser Peak wurde auch im Kontrollstamm G1212k detektiert. Da Cupriavidus necator mit der Kohlenstoffquelle Lävulinsäure (LäS) das PHA Poly-4-hydroxyvalerat produziert, wurde Lävulinsäure in der gaschromatographischen Methode als Referenzsubstanz eingesetzt. Dabei zeigte sich, dass LäS die gleiche Retentionszeit hat wie 3HV. Anschließend wurden die Massenspektren von 3-Hydroxybutyrat (3HB), dem Monomer von PHB, sowie 3HV und LäS verglichen. Dabei erwies sich, dass der Peak gleicher Retentionszeit nicht für 3HB oder 3HV steht, sondern für LäS. Es konnten somit in keiner der PHA-Transformanten 3HB oder 3HV nachgewiesen werden. Anhand der GC/MS-Daten wurde allerdings ersichtlich, dass die Integration aller drei PHA-Gene den Stoffwechsel der Hefe A. adeninivorans stärker beeinflusst als die alleinige Integration der PHA-Synthasegene. Daher wurden Citrat, Succinat, Malat und Fumarat (als Summenparameter für Maleinsäure und Fumarsäure) sowie die Fettsäuren Palmitin-, Stearin- und Linolensäure als weitere Referenzsubstanzen eingesetzt. Es zeigten sich je nach Wahl der Kohlenstoffquelle und der Kultivierungsbedingungen Unterschiede zwischen 3-fach-Transformanten und Kontrollstamm G1212k. In der Glukosekultivierung als auch der Co-Kultivierung von Glukose und Acetat (1:2) konnten die meisten Unterschiede zwischen PHA-Transformanten und G1212k festgestellt werden. Es wurden z. B. für die Glukosekultivierung in den 3-fach-Transformanten höhere Gehalte an Fettsäuren detektiert. Daraus lässt sich eine unterstützende Wirkung der rekombinanten Proteine der PHA-Synthese zur Fettsäurebiosynthese ableiten. Bei der Acetatkultivierung wird neben der PHA-Synthese und der Fettsäurebiosynthese das zentrale Zellintermediat Acetyl-CoA auch im Glyoxylatweg genutzt. Der Glyoxylatweg findet zwar in den Peroxisomen und nicht wie PHA- und Fettsäuresynthese im Zytosol statt, wird aber in Abhängigkeit von der Kohlenstoffquelle und durch die Aktivitäten des Zitronensäurezyklus geregelt. Die höheren Gehalte an Citrat bei der Co-Kultivierung von Glukose und Acetat (1:2) geben daher einen Anhaltspunkt zur Nutzung des Glyoxylatweges. Aufgrund der erhöhten Fettsäuregehalte während der Glukosekultivierungen und der Nutzung des Glyoxylatweges bei Kultivierung mit Acetat wird ersichtlich, dass die Integration aller drei PHA-Gene dazu führt, dass vermehrt Acetyl-CoA genutzt und Acetoacetyl-CoA, das erste Zwischenprodukt der PHA-Synthese, gebildet wird. Im Zytosol der Zellen findet aber auch der Mevalonatweg für die Isoprensynthese statt. Daher liegt sowohl eine Konkurrenz um Acetyl-CoA als auch um Acetoacetyl-CoA vor. Diese Konkurrenzen führen dazu, dass keine PHA-Synthese in den PHA-Transformanten stattfindet. Deswegen wird postuliert, dass stattdessen die Fettsäuresynthese, der Glyoxylatweg und der Mevalonatweg unterstützt werden. Intensivere Untersuchungen der Stoffwechselwege in A. adeninivorans müssen noch klären wie Zitronensäurezyklus und Glyoxylatweg sowie Fettsäure- und Isoprensynthese in dieser Hefe gesteuert werden können, um ein „metabolic engineering“ zur PHB-Synthese, wie es in S. cerevisiae bereits möglich ist, auch in A. adeninivorans zu realisieren. Dazu müssen nach der Expression der rekombinanten Proteine der PHA-Synthese auch die Intermediate der Stoffwechselwege gezielter nutzbar und konkurrierende Enzymaktivitäten inhibiert werden.
Die Wurzeln der meisten Pflanzenarten leben in enger Assoziation mit Mykorrhizapilzen. Insbesondere die arbuskuläre Mykorrhiza (AM) ist weltweit bei mehr als 80 % aller Pflanzen- und Kulturarten von Bedeutung. Es ist eine Symbiose, bei der die Wirtspflanze den Pilz mit organischem Material (Kohlenhydraten) versorgt, während im Gegenzug die Hyphen des Pilzes feinste Bodenporen erschließen und dadurch den Einzugsbereich der Wurzeln für Wasser und Nährstoffe (z.B. Phosphat, Mikronährstoffe) vergrößern. Phosphat und andere Nährstoffe werden in den Hyphen angereichert und an die Wirtspflanze abgegeben, was zu deren besserer Nährstoffversorgung beiträgt. In der vorliegenden Arbeit wurde der von der Firma AMykor in vivo in großen Mengen reproduzierte G. intraradices-Stamm molekularbiologisch eingeordnet und mit anderen Isolaten und kommerziellen Produkten verglichen. Zielregion der verwendeten Primer war die ribosomale DNA (rDNA), welche für die RNA der Ribosomen kodiert. Für die Vergleiche wurde der Bereich der hochvariablen ITS-Region (internal transcribed spacer) genutzt. Dieser „in vivo“ G. intraradices-Stamm konnte erfolgreich in eine monoxenische (in vitro) Kultur überführt werden. Die vereinzelten und sterilisierten AMykor–G. intraradices Sporen wurden zusammen mit sterilen, mit Hilfe von Agrobacterium rhizogenes transfizierten, Karottenwurzeln (Daucus carrota L. Belgien) auf Nährmedium kultiviert. Außerdem konnten noch drei weitere Wurzelkulturen etabliert werden, Fragaria x Ananassa (Duch.) (Gatersleben), Helianthus annuus L. (Gatersleben) und Daucus carota (Gatersleben). Im nächsten Schritt konnten eine asymbiotische, eine symbiotische und zwei subtraktive cDNA-Banken aus asymbiotischem und symbiotischem Myzel (Hyphen und Sporen) erstellt werden. Mit Hilfe der subtraktiven cDNA-Banken lassen sich G. intraradices-Gene isolieren, die speziell im asymbiotischen bzw. im symbiotischen Myzel exprimiert werden. Es konnten Expressed Sequence Tags (EST) identifiziert werden, deren putative Genprodukte eine Rolle bei der Transkription und Translation, dem Zellwachstum und der Entwicklung, dem Metabolismus und der Signaltransduktion spielen. Allerdings zeigten diese Homologievergleiche auch, dass ein Drittel der EST keine oder sehr geringe Ähnlichkeit zu bekannten Genen aufweist und ihre Funktion damit unbekannt bleibt. Sowohl asymbiotisches, präsymbiotisches und symbiotisches Hyphenmaterial (ERM) als auch mit G. intraradices infiziertes Wurzelmaterial dienten als Ausgangsmaterial für die Expressionsanalyse der isolierten Gene. Diese Expressionsanalysen zeigten, dass einige dieser putativen Gene nur im symbiotischen Stadium exprimiert werden. Zum Beispiel konnte ein EST mit Homologie zu einer Diacylglycerol-O-acyltransferase von Umbelopsis ramanniana isoliert werden. Mittels RT-PCR konnte eine Expression nur im ERM nicht aber im asymbiotischen, präsymbiotischen und im symbiotischen Stadium (Sporen, Hyphen und IRM) nachgewiesen werden. Dieses Enzym ist wahrscheinlich auch bei G. intraradices am Lipid-Stoffwechsel beteiligt und katalysiert die Bildung von Triacylglycerin aus Diacylglycerin. Auch ein EST, welches Homologie zu einer Fettsäuredioxygenase ppoA von Aspergillus aufweist, konnte mit Hilfe von Datenbankvergleichen gefunden werden. Dieses Gen ist in die Biosynthese des, von der Linolsäure abgeleiteten Oxylipin psiBα involviert und damit in die Entwicklung des anamorphen und telomorphen Stadiums, wobei eine Deletion des ppoA-Genes zu einer Reduktion der asexuellen und sexuellen Sporen führt. Von G. intraradices und allen anderen Glomus Spezies wurde noch kein sexuelles Stadium beschrieben. So könnte die Fettsäuredioxygenase hier an der Sporulation beteiligt sein. Da die Expression nur im ERM nachgewiesen werden konnte, wäre dies durchaus denkbar. Für das putative G. intraradices Fumaratreduktase-Gen (Gint(Fr)) konnte das vollständige ORF isoliert werden. Die Gint(Fr)-cDNA umfasst ein 1533 Bp großes offenes Leseraster, das 511 Aminosäuren kodiert. Gint(Fr) weist Homologie zu dem OSM1 Gen von Saccharomyces cerevisiae auf und katalysiert die Reduktion von Fumarat zu Succinat. Nur eine EST-Sequenz konnte als vollständiges ORF aus der cDNA-Bank isoliert werden. Die full-length Gint(Cbp)-cDNA umfasst ein 297 Bp großes offenes Leseraster, das 99 Aminosäuren kodiert. Ein NCBI-Datenbank-Vergleich zeigte, dass es sich um ein Putativ-Cruciform-DNA-binde-Protein mit Ähnlichkeit zu dem HMP1 Gen von Ustilago maydis handelt. Dieses Protein ist in die strukturelle Aufrechterhaltung der DNA involviert. Einige der hier isolierten Gene wurden als Sonden für eine Filterhybridisierung eingesetzt. Hier war es möglich, mykorrhizierte (mit G. intraradices) von nichtmykorrhizierten Pflanzen zu unterscheiden. Nun kann versucht werden, über Quantifizierung der in einer Probe enthaltenen Mykorrhizapilz-DNA eine Aussage über den Mykorrhizierungsgrad der Wurzel zu treffen und den Test in der Qualitätskontrolle und –sicherung einzusetzen.
Genome-wide responses and regulatory mechanisms to thiol-specific electrophiles in Bacillus subtilis
(2008)
The soil-dwelling bacterium Bacillus subtilis is regarded as model organism for functional genomic research of low GC Gram-positive bacteria. Recently, the group of Haike Antelmann has monitored the expression profile of B. subtilis after exposure to phenolic compounds. Interestingly, proteome and transcriptome analyses showed a strong overlap in the expression profile after exposure to catechol, MHQ that auto-oxidized to quinones and the thiol-reactive electrophile diamide. The response to electrophilic quinones and diamide is governed by a complex network of transcription factors, including Spx, CtsR, PerR, CymR and the novel MarR-type repressors MhqR (YkvE), YodB and YvaP. The regulatory mechanisms of these novel thiol-stress sensors YodB and YvaP are studied as part of this thesis in collaboration with the group of Peter Zuber (Oregon). YodB negatively regulates the expression of the nitroreductase YodC and the azoreductase YocJ (AzoR1) after exposure to electrophilic quinones and diamide. The azoreductase AzoR1 is a paralog of AzoR2 that is under control of MhqR. Both paralogous azoreductases (AzoR1 and AzoR2) have common functions in quinone and azo-compound reduction to protect cells against the thiol reactivity of electrophiles. DNA binding activity of YodB is directly inhibited by thiol-reactive compounds in vitro. Mass spectrometry approaches suggested that YodB is regulated by a thiol-(S)-alkylation mechanism in response to quinones. Mutational analyses revealed that the conserved Cys6 residue of YodB is required for optimal repression in vivo and in vitro. Recent studies further suggest that YodB is redox-regulated by intersubunit disulfide formation in vivo by diamide. In addition to the azoreductases, several thiol-dependent dioxygenases confer resistance to quinones. In collaboration with Kazuo Kobayashi (Nara), the YodB-paralogous MarR/DUF24-family regulator, YvaP was identified as repressor of the catechol-2,3-dioxygenase encoding yfiDE (catDE) operon. DNA binding activity of YvaP was also directly inhibited by quinones and diamide in vitro indicating that also YvaP is regulated via post-translational modifications. Mutational analyses showed that the conserved Cys7 is essential for YvaP regulation in vivo and serves as sensor for thiol-reactive compounds. In addition, also the basic amino acids K19, R20 are essential for YvaP repression in vivo as well as conserved basic arginine and lysine residues located in the DNA binding helix-turn-helix (HTH) motif. Non-reducing PAGE analysis suggests the formation of an intersubunit disulfide bond in a YvaP dimer upon treatment with quinones and diamide in vitro. Besides quinones, also aldehydes are electrophilic compounds which react via the thiol-(S)-alkylation reaction with thiols. Thus, we were also interested in the response of B. subtilis to the toxic electrophiles methylglyoxal (MG) and formaldehyde (FA). We analyzed the changes in the transcriptome and proteome of B. subtilis after exposure to MG and FA. Like quinone compounds, both MG and FA induce the thiol-specific stress response. Metabolomic approaches confirmed that these reactive aldehydes deplete the cellular thiol pool and thus act like quinones as another class of thiol-reactive electrophiles. Additionally, MG and FA also triggered responses to overcome DNA damage. Our studies further revealed the specific induction of two FA detoxification pathways regulated by the MarR/DUF24 family repressor HxlR, and the novel MerR/NmlR-type regulator YraB (AdhR). HxlR positively regulates the hxlAB operon encoding the ribulose monophosphate pathway. AdhR positively regulates an adhA-yraA operon that encodes the thiol-dependent formaldehyde dehydrogenase (AdhA) and the DJ1/PfpI-like cysteine proteinase (YraA), and the yraC gene that encodes a γ-carboxymuconolactone decarboxylase. Thus, the AdhR regulon is involved in the detoxification of FA to formate via the formaldehyde dehydrogenase AdhA which catalyzes the cleavage of S-hydroxymethylcysteine adducts. In addition, the cysteine proteinase YraA could be involved in the degradation of S-hydroxymethylcysteine-modified and damaged protein thiols. In collaboration with the group of John Helmann (Ithaca), it was shown that AdhR binds in vitro to a conserved inverted repeat between the -10 and -35 promoter elements upstream of adhA, yraB and yraC. In addition, we showed that the conserved Cys52 of AdhR is essential for aldehyde sensing and activation of adhA-yraA transcription in vivo. Thus, we speculate that redox regulation of AdhR involves thiol-(S)-alkylation of this Cys52 residue by aldehydes as another novel mechanism of bacterial physiology.