Refine
Document Type
- Doctoral Thesis (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Proteine (2) (remove)
Institute
- Institut für Chemie und Biochemie (2) (remove)
Understanding the fundamental mechanisms in the extracellular matrix of cells (ECM) is crucial for the development of drugs and biomaterials. Therefore, an atomistic model of the extracellular matrix is a cost-efficient way to observe influences of drugs, test the effect of mutations or misfolds in proteins or study the properties of fibril or network-forming peptides.
With this thesis, a refined molecular model of an adhesion complex is proposed that contains collagen, fibronectin and the cell receptor integrin. During the building of the model, major new insights are given for each of these proteins and a powerful protein-folding algorithm is
developed.
This thesis is about the establishment and the application of novel methods and tools that are re-lated to the most widely used enzyme class: hydrolases. It covers all fields from the identification to the application of these valuable enzymes with particular focus on lactonases, acylases and proteases. The activity assay introduced in Article I substantially extends the method toolbox for studies on lactonases and acylases that interfere with the bacterial cell-cell communication system. Article II describes a fully automatized robotic platform that represents the next-level tool for the high-throughput enzyme screening in the microtiter plate format. It was used, for instance, for the screening for improved porcine aminoacylase I variants. Diverse aspects of the protease-mediated hydrolysis of non-resistant proteins for the purification of resistant target proteins are highlighted in Article III.