Refine
Year of publication
Document Type
- Doctoral Thesis (85)
- Article (42)
Is part of the Bibliography
- no (127)
Keywords
- - (37)
- ABC-Transporter (11)
- Pharmakokinetik (9)
- P-Glykoprotein (8)
- OCT1 (7)
- MRP4 (6)
- SLC22A1 (5)
- Talinolol (5)
- Transportproteine (5)
- pharmacokinetics (5)
- sepsis (5)
- Glioblastom (4)
- Glioblastoma multiforme (4)
- Herzinfarkt (4)
- OATP2B1 (4)
- Pharmakologie (4)
- Plazenta (4)
- Proteine (4)
- organic cation transporter 1 (4)
- sphingosine-1-phosphate (4)
- Organischer Kationentransporter (3)
- Parodontitis (3)
- Pim1 (3)
- Ratte (3)
- Transportprotein (3)
- human (3)
- intestine (3)
- liver (3)
- single nucleotide polymorphism (3)
- species differences (3)
- ABCB1 (2)
- ABCC4 (2)
- ALK5 (2)
- Akute myeloische Leukämie (2)
- Apolipoprotein E (2)
- Arzneimittel (2)
- Arzneistofftransporter (2)
- Atherosklerose (2)
- Aufnahme (2)
- Aufnahmetransporter (2)
- Bioverfügbarkeit (2)
- Bosentan (2)
- Darmresorption (2)
- Doxorubicin (2)
- Efflux (2)
- Endothelin (2)
- FACS (2)
- Fettstoffwechsel (2)
- Genexpression (2)
- Herzkrankheit (2)
- Herzmuskelkrankheit (2)
- Hämatopoese (2)
- Interleukin 1 (2)
- Ischämie (2)
- Leber (2)
- Lipide (2)
- MRP2 (2)
- MRP5 (2)
- Magenentleerung (2)
- Makrolidantibiotikum (2)
- Multidrug-Resistenz (2)
- OATP (2)
- PAR2 (2)
- Paracetamol (2)
- Periodontitis (2)
- Pharmakogenetik (2)
- Pharmazeutischer Hilfsstoff (2)
- Postkonditionierung (2)
- Protease-aktivierter Rezeptor-2 (2)
- Reperfusion (2)
- Rhodococcus equi (2)
- Rifampicin (2)
- Sepsis (2)
- Statin (2)
- Thrombozyt (2)
- Trospiumchlorid (2)
- acetaminophen (2)
- blood–brain barrier (2)
- efflux (2)
- expression (2)
- fenoterol (2)
- gene expression (2)
- genetic variants (2)
- glioblastoma multiforme (2)
- ligand-transporter interaction (2)
- metabolisierende Enzyme (2)
- mortality (2)
- organic cation transporter (2)
- pancreatic carcinoma (2)
- placenta (2)
- platelets (2)
- polyspecificity (2)
- postconditioning (2)
- propiverine (2)
- protein abundance (2)
- protein kinase C (2)
- sulfur (2)
- transporter (2)
- transporters (2)
- 11β-HSD1 (1)
- 4157617-2 (1)
- 5-fluorouracil (1)
- 90-day mortality (1)
- <i>SLC16A1</i> (1)
- ABC transporter (1)
- ABC-transporter (1)
- ABC-transporters (1)
- ABCA1 (1)
- ABCC2 (1)
- ABCG1 (1)
- ABCG2 (1)
- ATP (1)
- ATP-Stoffwechsel (1)
- ATP-binding cassette (1)
- ATP-binding cassette transporters (1)
- Abdominaltumor (1)
- Aborigines (1)
- Adaptorproteine (1)
- Adenosin (1)
- Adenosine (1)
- Aktivität (1)
- Akute Leukämie (1)
- Akute Promyelozytenleukämie (1)
- Albuminuria (1)
- Aldosteron (1)
- Alkoholismus (1)
- Alveolarmakrophage (1)
- Alzheimer-Krankheit (1)
- Amoxicillin (1)
- Ang-(1-7) (1)
- Antibiotikatherapie (1)
- Antibiotikum (1)
- Anticholinergikum (1)
- Antigen CD34 (1)
- Antisense oligonucleotides (1)
- Aortic compliance (1)
- Apolipoprotein E knockout mice (1)
- Apolipoproteine (1)
- Apoptosis (1)
- Arterienverkalkung (1)
- Arteriosklerose (1)
- Arzneimitteldosis (1)
- Arzneimittelinteraktion (1)
- Arzneimittelresistenz (1)
- Arzneistofftransport (1)
- Astrozytom (1)
- Atherosclerosis (1)
- BCRP (1)
- BQ-788 (1)
- Bauchspeicheldrüse (1)
- Bauchspeicheldrüsenentzündung (1)
- Bauchspeicheldrüsenkrebs (1)
- Bcl-2 (1)
- Bcl-xL (1)
- Beta-Amyloide (1)
- Beta-Amyloids (1)
- Biomarker (1)
- Biotransformation (1)
- Blut-Hirn-Schranke (1)
- Bradykinin (1)
- Bromocriptin (1)
- CAD (1)
- CAR (1)
- CHD (1)
- CRISPR-Cas9 (1)
- CS molecular absorption (1)
- CTLA-4 (1)
- CYP (1)
- CYP2C19 (1)
- CYP2D6 (1)
- Caco-2 (1)
- Caco-2-Zellen (1)
- Canrenoat (1)
- Carnitin (1)
- Carrier (1)
- Celecoxib (1)
- Child–Pugh score (1)
- Chinin (1)
- Cholesterin (1)
- Cholesteroltransporter (1)
- Ciclosporin (1)
- Clarithromycin (1)
- Colchicin (1)
- Colitis Ulcerosa (1)
- Cremophor EL (1)
- Cyclodextrine (1)
- DHEAS (1)
- DNA damage (1)
- Diclofenac (1)
- Differenz (1)
- Differenzierungsmarker (1)
- Dissertation (1)
- Drug transporter (1)
- ECE (1)
- EGFR (1)
- EMSA (1)
- ERK (1)
- ETS family (1)
- ETS-Familie (1)
- Einfluss (1)
- Endothelin-Converting Enzyme-1a (1)
- Endothelinantagonisten (1)
- Endothelinantagonists (1)
- Endothelzelle (1)
- Enterozyten (1)
- Entgiftung (1)
- Entzündung (1)
- Enzym (1)
- Epigenetics (1)
- Epigenetik (1)
- Epilepsie (1)
- Eplerenon (1)
- Erythrozyt (1)
- Estimated glomerular filtration rate (1)
- Ethnomedizin (1)
- Experiment (1)
- FRET (1)
- Fettzellen (1)
- Flu (1)
- Fluoreszenz-Resonanz-Energie-Transfer (1)
- Fluorouracil (1)
- Fohlen (1)
- Freisetzung (1)
- Förster-Resonanzenergietransfer (1)
- G-Protein (1)
- Gadofosveset (1)
- Gadoxetate OATP1B1 OATP1B3 MRT Leber (1)
- Gastrische Infusion (1)
- Gastroretention (1)
- Gd-EOB-DTPA (1)
- Gehirntumor (1)
- Gemcitabin (1)
- Genetische Veränderungen (1)
- Genotyp (1)
- Genregulation (1)
- Glucostransporter (1)
- Glycogen-Synthase-Kinase-3 (1)
- Gram-positive infections (1)
- Granulozyt (1)
- GumbiGumbi (1)
- GumbyGumby (1)
- HEK (1)
- HL-60-Zelle (1)
- Harnblase (1)
- Harninkontinenz (1)
- Harnsäuretransporter (1)
- Heart rate reduction (1)
- Heparine (1)
- Heparins (1)
- Herz (1)
- Herzfunktion (1)
- Herzinsuffizienz (1)
- Hilfsstoff-Arzneistoff-Interaktion (1)
- Hormon (1)
- Hsp90 (1)
- Hydrocortison (1)
- Hydroxymethylglutaryl-CoA-Reductase (1)
- Hydroxysteroid-Dehydrogenasen (1)
- Hypertonie (1)
- Ibuprofen (1)
- Immunfluorenzenzfärbung (1)
- Immunfluoreszenz (1)
- Immunoblot (1)
- In vitro (1)
- In vivo (1)
- Induktion (1)
- Inhibition (1)
- Inhibitor (1)
- Ivabradine (1)
- K-ras (1)
- Kardiotoxizität (1)
- Kidney disease (1)
- Klinische Pharmakologie (1)
- Klinische Studie (1)
- Klinisches Experimen (1)
- Konduktanzmessung (1)
- Kongestive Herzmuskelkrankheit (1)
- Koronare Herzkrankheit (1)
- L-Carnitin (1)
- LAG-3 (1)
- LIGHT (1)
- LXR (1)
- Leukämie (1)
- Loperamid (1)
- Lymphozyt (1)
- Lösungsvermittler (1)
- MCT1 (1)
- MDCK-Zelle (1)
- MDCKII (1)
- MEF (1)
- MGMT (1)
- MRP3 (1)
- Macrogol 400 (1)
- Magensonde (1)
- Magnesium (1)
- Magnesiummangel (1)
- Magnesiumstoffwechsel (1)
- Magnesiumstoffwechselstörung (1)
- Makrophage (1)
- Maus (1)
- Medizin (1)
- Membranproteine (1)
- Membrantransport (1)
- Membrantransportprotein (1)
- Metabolismus (1)
- Methylierung (1)
- Methylnaltrexon (1)
- Mineralokortikoidrezeptor Antagonisten (1)
- Monocarboxylattransporter (1)
- Monooxygenasen (1)
- Monozyt (1)
- Morphin (1)
- Multi drug resistance (1)
- Multidrug resistance protein 4 (1)
- Mustererkennungsrezeptoren (1)
- Mutationen (1)
- Myokardinfarkt (1)
- NDPK (1)
- NF-Y (1)
- NHE1 (1)
- NM23 (1)
- NMR-Tomographie (1)
- NO (1)
- NR0B2 (1)
- Nahrungszufuhr (1)
- Naloxon (1)
- Natrium-Protonen-Austauscher (1)
- Nichtsteroidales Antiphlogistikum (1)
- Nierenzellkarzinom (1)
- Nod-like Rezeptoren (1)
- Nukleosid Diphosphat Kinase (1)
- Nukleäre Rezeptoren (1)
- Nukleärer Rezeptor (1)
- OATP 2B1 (1)
- OATP-B (1)
- OATP1A2 (1)
- OATP1B3 (1)
- OATPB (1)
- OCT1 Effects (1)
- OCT3 (1)
- OCTN2 (1)
- Obduktion (1)
- Opioid (1)
- Opioidantagonist (1)
- Opioide (1)
- Organic anion transporting polypeptide (1)
- Organic cation transporter (1)
- Organo-Anionen-Transporter (1)
- Organo-Anionen-Transporter 2B1 (1)
- Osteoporose (1)
- Overactive bladder (1)
- Oxide (1)
- P-glykoprotein (1)
- PBMCs (1)
- PIM1 kinase (1)
- PKC(eta) (1)
- PSC833 (1)
- PSD95 (1)
- Paracetmol (1)
- Phagozytose (1)
- Pharmakologischer Antagonist (1)
- Pharmceutical excipient (1)
- Phospholipase C (1)
- Pim-1 (1)
- Pittosporum-angustifolium (1)
- Pneumonie (1)
- Polymorphismen (1)
- Polymorphysmen (1)
- Postischämiesyndrom (1)
- Promotor (1)
- Promyelozytenleukämie (1)
- Protease-activated receptor-2 (1)
- Protein Kinase C (1)
- Proteinkinase C (1)
- RNAi (1)
- ROS (1)
- Ranitidin (1)
- Real time quantitative PCR (1)
- Regulation (1)
- Retinoesäure (1)
- Rezeptor (1)
- Rhodaminfarbstoff (1)
- Risikofaktor (1)
- Rocker switch (1)
- S1P (1)
- S1P receptor signaling (1)
- S1P receptors (1)
- SHIP-Trend (1)
- SHP1 (1)
- SIRS (1)
- SLC-Familie (1)
- SLC10A1 (1)
- SLC22A1 (OCT1) (1)
- SLC22A2 (1)
- SLC2A9 (1)
- SLCO1B1 (1)
- SLCO1B3 (1)
- SLCO2B1 (1)
- SMAD (1)
- SNP (1)
- Schwangerschaft (1)
- Schweißdrüse (1)
- Signaltransduktion (1)
- Sirolimus (1)
- Sitaxentan (1)
- Solubilising agent (1)
- Solute Carrier (1)
- Solutol HS 15 (1)
- Sondenlage (1)
- Sox2 (1)
- Sphingosin-1-Phosphat (1)
- Sphingosin-1-phosphat (1)
- Sphingosin-1-phosphate (1)
- Stammzellen (1)
- Stammzellmarker (1)
- Stent (1)
- Steroidhormone (1)
- TETRAN (1)
- TGF-β (1)
- TIM-3 (1)
- TRAIL (1)
- TREM-1 (1)
- Taxol (1)
- Teniposid (1)
- The Study of Health in Pomerania (1)
- Therapieerfolg (1)
- Thiamine Pharmacokinetics (1)
- Thrombose (1)
- Thrombozyten (1)
- Thyroxin <L-> (1)
- Tiermodell (1)
- Tigecyclin (1)
- Todesfall (1)
- Toll-like-Rezeptoren (1)
- Total testosterone (1)
- Transkription (1)
- Transport (1)
- Transport protein (1)
- Transporter (1)
- Transwellassay (1)
- Tuberkelbakterium (1)
- Tumorstammzelle (1)
- U-5637 (1)
- Untersuchungen (1)
- Urothel (1)
- Ussing-Kammer (1)
- Vasovist (1)
- Verstopfung (1)
- Visualisierung (1)
- Wechselwirkung (1)
- Zelldifferenzierung (1)
- Zellkultur (1)
- Zytokine (1)
- Zytostatikum (1)
- abomasum (1)
- active transport (1)
- additive manufacturing (1)
- age (1)
- aldosterone (1)
- allelic expression imbalance (AEI) (1)
- amitriptyline (1)
- amoxicillin (1)
- anticancer drugs (1)
- antimicrobial peptides (1)
- apoptosis (1)
- ascariasis (1)
- atherosclerosis (1)
- atomic absorption spectrometry (1)
- bioavailability (1)
- biofilm (1)
- biotransformation (1)
- bladder urothelium (1)
- brain (1)
- breast cancer (1)
- bronchoalveoläre Lavage (1)
- butylscopolamine (1)
- cAMP (1)
- cGMP (1)
- calves (1)
- cancer cells (1)
- canrenoate (1)
- cardiac surgery (1)
- cardio-vascular diseases (1)
- cardiotoxicity (1)
- carnitine (1)
- cell migration (1)
- chronisch entzündliche Darmerkankungen (1)
- cirrhosis (1)
- cisplatin (1)
- clarithromycin (1)
- clinical pharmacology (1)
- clinical study (1)
- combination therapy (1)
- conductance measurement (1)
- constipation (1)
- coronary artery disease (1)
- coronary heart disease (1)
- cytochrome P450 (1)
- cytotoxicity (1)
- dehydroepiandrosterone (1)
- diarrhoea (1)
- doxorubicin (1)
- drug metabolizing enzymes (1)
- drug transport (1)
- drug transporter (1)
- drug-drug interaction (1)
- drug-eluting implant (1)
- eNOS (1)
- ear canal stenosis (1)
- efavirenz (1)
- endothelial Nitric Oxide Synthase (1)
- endothelin (1)
- enzymes (1)
- epilepsy (1)
- eplerenone (1)
- estrone-3-sulfate (1)
- excipient (1)
- external auditory canal (1)
- ezetemibe (1)
- funktiknelle Zweiteilung (1)
- gastric emptying (1)
- gemcitabine (1)
- gender (1)
- gene structure (1)
- genetic association study (1)
- genetic polymorphism (1)
- glioblastoma (1)
- glucocorticoids (1)
- glutathione (1)
- glutathione peroxidase (1)
- graphite furnace technique (1)
- hENT1 (1)
- haplotypes (1)
- helminth (1)
- heparin (1)
- hepatic pathology (1)
- hepatitis C (1)
- hormon (1)
- human NTCP (1)
- human kidneys (1)
- hypertension (1)
- immune cells (1)
- immunohistochemistry (1)
- induction (1)
- inflammation (1)
- ins/del variant (1)
- interdigestive Motilität (1)
- intestinal absorption (1)
- intestinal nematode (1)
- intestinal/hepatic uptake (1)
- intestinale Absorption (1)
- intestinale Transitzeit (1)
- intracellular (1)
- intrazellulär (1)
- invasion kinetics (1)
- ipratropium (1)
- ischemia (1)
- isobutyrylcarnitine (1)
- kINPen (1)
- lectin (1)
- lipid mediator (1)
- lipid metabolism (1)
- liquid chromatography-mass spectrometry (1)
- liver pathology (1)
- localization (1)
- loperamide (1)
- luciferase reporter gene assay (1)
- lymphocyte (1)
- lymphocyte-activation gene 3 (1)
- mTor (1)
- magnetic resonance imaging (1)
- membrane protein (1)
- membrane transporters (1)
- metabolizing enzymes (1)
- metformin (1)
- methylnaltrexone (1)
- microRNA (1)
- microbiota (1)
- minigene (1)
- mitochondria (1)
- mmc (1)
- molecular absorption spectrometry (1)
- monocarboxylate transporter 1 (1)
- mouse Ntcp (1)
- multidrug resistance (1)
- myocardial infarction (1)
- naloxone (1)
- nasogastric feeding tube (1)
- natürliche Varianten (1)
- nephrotoxicity (1)
- neuroactive steroids (1)
- neurospheres (1)
- neurosteroids (1)
- nortriptyline (1)
- nuclear receptors (1)
- oral cancer (1)
- oral rehydration solution (1)
- organic cation transporter 2 (1)
- ortholog comparison (1)
- osteoporosis (1)
- p-gp (1)
- pAKT1 (1)
- pH-regulatorische Transporter (1)
- pancreas (1)
- pancreatitis (1)
- papilloma (1)
- paracetamol (1)
- parotid gland (1)
- pentathiepin (1)
- peptide analysis (1)
- periodontitis (1)
- personalized implant (1)
- pesticide and drug interaction (1)
- pharmacodynamic (1)
- pharmacokinetic (1)
- phenobarbital (1)
- plasma medicine (1)
- polyethylene glycol 400 (1)
- polymorphisms (1)
- predictor (1)
- predictors (1)
- pregnenolone sulfate (1)
- preoperative workflow (1)
- probenecid (1)
- promoter (1)
- protein expression (1)
- protein quantification (1)
- pulmonale Verteilung (1)
- pulmonary disease (1)
- rat liever (1)
- reactive oxygen and nitrogen species (1)
- reactive oxygen species (1)
- real-time PCR (1)
- regulation (1)
- reperfusion (1)
- reverser Cholesteroltransport (1)
- risk factors ; oral leukoplakia ; oral lichen ruber ; interleukin-1 ; periodontal disease (1)
- rosuvastatin (1)
- saliva (1)
- serine proteinases (1)
- signaling (1)
- single nucleotide polymorphism (SNP) (1)
- single nucleotide polymorphisms (1)
- slc family (1)
- solute carrier (1)
- solute carriers (1)
- sond position (1)
- statins (1)
- stem cells (1)
- stem-like cells (1)
- steroid hormones (1)
- structure-function relationship (1)
- structure-to-function relationship (1)
- substrates (1)
- sumatriptan (1)
- survival (1)
- survival analysis (1)
- systemic inflammation (1)
- talinolol (1)
- targeted chromosomal integration (1)
- therapy (1)
- thyroid hormones (1)
- transforming growth factor-β (1)
- transport (1)
- transport protein (1)
- transport proteins (1)
- transporter proteins (1)
- trospium (1)
- trospium chloride (1)
- tumor (1)
- uptake transporter (1)
- weinende Steinlinde (1)
- whole gut transit time (1)
- ß-naphthoflavone (1)
Institute
- Institut für Pharmakologie (127) (remove)
Publisher
- MDPI (27)
- Frontiers Media S.A. (9)
- S. Karger AG (2)
- Wiley (2)
- Dove Press (1)
- SAGE Publications (1)
Das Glioblastom ist ein WHO Grad 4-Tumor und einer der häufigsten und zugleich agressivsten Hirntumoren im Erwachsenenalter. Trotz multimodaler Therapie, die eine neurochirurgische Resektion sowie eine adjuvante Radiochemotherapie und als neuen Therapieansatz eine Kombination aus Temozolomid und tumor treating fields umfasst, ist die Prognose weiterhin schlecht, sodass der Suche nach neuen therapeutischen Zielstrukturen eine maßgebliche Bedeutung zukommt. Für verschiedene Tumorentitiäten konnte gezeigt werden, dass die Überexpression einzelner onkogener Kinasen die Tumorprogression vorantreibt, wobei bei Glioblastomen gezeigt werden konnte, dass die Serin-Threonin-Kinase Pim1 eine wichtige Rolle in der Pathogenese einnimmt.
In den Fokus rücken zunehmend auch stammzellähnliche Tumorzellen, die eine Subpopulation innerhalb von Glioblastomen darstellen und das aggressive biologische Verhalten sowie die Resistenz gegenüber der Standardtherapie und eine hohe Rezidivrate vermitteln können.
In dieser Arbeit sollte dementsprechend basierend auf den bisherigen Erkenntnissen zu Pim1 sowie zur Bedeutung von Tumorstammzellen im malignen Geschehen der Einfluss der Serin-Threonin-Kinase Pim1 auf das Stammzellverhalten von Glioblastomzellen näher untersucht werden.
Durch den Vergleich von adhärent wachsenden Tumorzellen der Glioblastomzelllinie LN-18 mit stammzellähnlichen LN-18 Neurosphären konnte eine erhöhte relative mRNA-Expression von Pim1 und EGFR sowie der potentiellen Stammzellmarker Nestin, CD44, CD133 und Musashi-1 nachgewiesen werden. Die relative Proteinexpression von Pim1 sowie der Stammzellmarker Nestin, CD44, CD133 und Sox2 war in den Neurosphären im Vergleich zu den adhärent wachsenden LN-18 Zellen ebenfalls gesteigert. Diese Daten konnten durch die Immunfluoreszenz-Färbungen bestätigt werden.
Ein effizienter siRNA-vermittelter knockdown von Pim1 auf Proteinebene konnte in dieser Arbeit nicht erzielt werden, sodass keine Aussagen zu einer Regulation von Stammzell- und Differenzierungsmarker nach zielgerichteter genetischer Abschaltung von Pim1 getroffen werden konnten. Hier sind weiterführend Optimierungen notwendig oder der Einsatz spezieller CRISPR-Cas9-Verfahren zur genetischen Ausschaltung sinnvoll.
Die pharmakologische Inhibition von Pim1 mit LY294002 und TCS Pim1-1 führte zu einer signifikanten Reduktion der Neurosphärenformation sowie der Zellviabilität bei LN-18 Zellen, wodurch die in Vorarbeiten an adhärenten Glioblastomzellen gewonnenen Daten um Untersuchungen an stammzellartigen Glioblastomzellen erweitert wurden.
Zusammenfassend legen die in dieser Arbeit erhobenen Daten nahe, dass Pim1 das Stammzellverhalten von Glioblastomzellen beeinflusst, indem Pim1 Einfluss auf die Expression von Stammzellmarkern nimmt und seine Inhibition die Aufrechterhaltung einer Glioblastomstammzellpopulation beeinträchtigt, indem die Neurosphärenformation und die Viabilität der Zellen stark reduziert werden. Somit stellt Pim1 eine geeignete Zielstruktur für eine zielgerichtete Therapieoption beim Glioblastom dar, beispielsweise in Kombination mit der klassischen Radiochemotherapie. Zukünftige Studien müssen zeigen, inwieweit eine selektive Pim1-Inhibition tatsächlich Einfluss auf die Prognose von Patienten mit Glioblastom nimmt.
The G protein-coupled receptor proteinase-activated receptor 2 (PAR2) has been implicated
in various aspects of cellular physiology including inflammation, obesity and cancer. In cancer,
it usually acts as a driver of cancer progression in various tumor types by promoting invasion and
metastasis in response to activation by serine proteinases. Recently, we discovered another mode
through which PAR2 may enhance tumorigenesis: crosstalk with transforming growth factor-β
(TGF-β) signaling to promote TGF-β1-induced cell migration/invasion and invasion-associated gene
expression in ductal pancreatic adenocarcinoma (PDAC) cells. In this chapter, we review what is
known about the cellular TGF-β responses and signaling pathways affected by PAR2 expression,
the signaling activities of PAR2 required for promoting TGF-β signaling, and the potential molecular
mechanism(s) that underlie(s) the TGF-β signaling–promoting effect. Since PAR2 is activated through
various serine proteinases and biased agonists, it may couple TGF-β signaling to a diverse range of
other physiological processes that may or may not predispose cells to cancer development such as
local inflammation, systemic coagulation and pathogen infection.
Renal drug transporters such as the organic cation transporters (OCTs), organic anion
transporters (OATs) and multidrug resistance proteins (MRPs) play an important role in the tubular
secretion of many drugs influencing their efficacy and safety. However, only little is known about
the distinct protein abundance of these transporters in human kidneys, and about the impact of
age and gender as potential factors of inter-subject variability in their expression and function.
The aim of this study was to determine the protein abundance of MDR1, MRP1-4, BCRP, OAT1-3,
OCT2-3, MATE1, PEPT1/2, and ORCTL2 by liquid chromatography-tandem mass spectrometry-based
targeted proteomics in a set of 36 human cortex kidney samples (20 males, 16 females; median age
53 and 55 years, respectively). OAT1 and 3, OCT2 and ORCTL2 were found to be most abundant
renal SLC transporters while MDR1, MRP1 and MRP4 were the dominating ABC transporters.
Only the expression levels of MDR1 and ORCTL2 were significantly higher abundant in older donors.
Moreover, we found several significant correlations between different transporters, which may
indicate their functional interplay in renal vectorial transport processes. Our data may contribute to
a better understanding of the molecular processes determining renal excretion of drugs.
Background: Recently, the expression of proteinase-activated receptor 2 (PAR2) has been
shown to be essential for activin receptor-like kinase 5 (ALK5)/SMAD-mediated signaling and cell
migration by transforming growth factor (TGF)-β1. However, it is not known whether activation
of non-SMAD TGF-β signaling (e.g., RAS–RAF–MEK–extracellular signal-regulated kinase (ERK)
signaling) is required for cell migration and whether it is also dependent on PAR2. Methods: RNA
interference was used to deplete cells of PAR2, followed by xCELLigence technology to measure
cell migration, phospho-immunoblotting to assess ERK1/2 activation, and co-immunoprecipitation
to detect a PAR2–ALK5 physical interaction. Results: Inhibition of ERK signaling with the MEK
inhibitor U0126 blunted the ability of TGF-β1 to induce migration in pancreatic cancer Panc1 cells.
ERK activation in response to PAR2 agonistic peptide (PAR2–AP) was strong and rapid, while it was
moderate and delayed in response to TGF-β1. Basal and TGF-β1-dependent ERK, but not SMAD
activation, was blocked by U0126 in Panc1 and other cell types indicating that ERK activation is
downstream or independent of SMAD signaling. Moreover, cellular depletion of PAR2 in HaCaT
cells strongly inhibited TGF-β1-induced ERK activation, while the biased PAR2 agonist GB88 at 10
and 100 µM potentiated TGF-β1-dependent ERK activation and cell migration. Finally, we provide
evidence for a physical interaction between PAR2 and ALK5. Our data show that both PAR2–APand TGF-β1-induced cell migration depend on ERK activation, that PAR2 expression is crucial for
TGF-β1-induced ERK activation, and that the functional cooperation of PAR2 and TGF-β1 involves a
physical interaction between PAR2 and ALK5
The multifunctional sphingosine-1-phosphate (S1P) is a lipid signaling molecule and central
regulator in the development of several cancer types. In recent years, intriguing information has
become available regarding the role of S1P in the progression of Glioblastoma multiforme (GBM),
the most aggressive and common brain tumor in adults. S1P modulates numerous cellular processes
in GBM, such as oncogenesis, proliferation and survival, invasion, migration, metastasis and stem cell
behavior. These processes are regulated via a family of five G-protein-coupled S1P receptors (S1PR1-5)
and may involve mainly unknown intracellular targets. Distinct expression patterns and multiple
intracellular signaling pathways of each S1PR subtype enable S1P to exert its pleiotropic cellular
actions. Several studies have demonstrated alterations in S1P levels, the involvement of S1PRs
and S1P metabolizing enzymes in GBM pathophysiology. While the tumorigenic actions of S1P
involve the activation of several kinases and transcription factors, the specific G-protein (Gi, Gq,
and G12/13)-coupled signaling pathways and downstream mediated effects in GBM remain to be
elucidated in detail. This review summarizes the recent findings concerning the role of S1P and its
receptors in GBM. We further highlight the current insights into the signaling pathways considered
fundamental for regulating the cellular processes in GMB and ultimately patient prognosis.
Salivary glands provide secretory functions, including secretion of xenobiotics and among
them drugs. However, there is no published information about protein abundance of drug transporters
measured using reliable protein quantification methods. Therefore, mRNA expression and absolute
protein content of clinically relevant ABC (n = 6) and SLC (n = 15) family member transporters in the
human parotid gland, using the qRT-PCR and liquid chromatography-tandem mass spectrometry
(LC−MS/MS) method, were studied. The abundance of nearly all measured proteins ranged between
0.04 and 0.45 pmol/mg (OCT3 > MRP1 > PEPT2 > MRP4 > MATE1 > BCRP). mRNAs of ABCB1,
ABCC2, ABCC3, SLC10A1, SLC10A2, SLC22A1, SLC22A5, SLC22A6, SLC22A7, SLC22A8, SLCO1A2,
SLCO1B1, SLCO1B3 and SLCO2B1 were not detected. The present study provides, for the first time,
information about the protein abundance of membrane transporters in the human parotid gland,
which could further be used to define salivary bidirectional transport (absorption and secretion)
mechanisms of endogenous compounds and xenobiotics.
Exogenous glucocorticoids increase the risk for osteoporosis, but the role of endogenous glucocorticoids remains elusive. Here, we describe the generation and validation of a loss- and a gain-of-function model of the cortisol producing enzyme 11β-HSD1 (HSD11B1) to modulate the endogenous glucocorticoid conversion in SCP-1 cells — a model for human mesenchymal stem cells capable of adipogenic and osteogenic differentiation. CRISPR-Cas9 was successfully used to generate a cell line carrying a single base duplication and a 5 bp deletion in exon 5, leading to missense amino acid sequences after codon 146. These inactivating genomic alterations were validated by deep sequencing and by cloning with subsequent capillary sequencing. 11β-HSD1 protein levels were reduced by 70% in the knockout cells and cortisol production was not detectable. Targeted chromosomal integration was used to stably overexpress HSD11B1. Compared to wildtype cells, HSD11B1 overexpression resulted in a 7.9-fold increase in HSD11B1 mRNA expression, a 5-fold increase in 11β-HSD1 protein expression and 3.3-fold increase in extracellular cortisol levels under adipogenic differentiation. The generated cells were used to address the effects of 11β-HSD1 expression on adipogenic and osteogenic differentiation. Compared to the wildtype, HSD11B1 overexpression led to a 3.7-fold increase in mRNA expression of lipoprotein lipase (LPL) and 2.5-fold increase in lipid production under adipogenic differentiation. Under osteogenic differentiation, HSD11B1 knockout led to enhanced alkaline phosphatase (ALP) activity and mRNA expression, and HSD11B1 overexpression resulted in a 4.6-fold and 11.7-fold increase in mRNA expression of Dickkopf-related protein 1 (DKK1) and LPL, respectively. Here we describe a HSD11B1 loss- and gain-of-function model in SCP-1 cells at genetic, molecular and functional levels. We used these models to study the effects of endogenous cortisol production on mesenchymal stem cell differentiation and demonstrate an 11β-HSD1 dependent switch from osteogenic to adipogenic differentiation. These results might help to better understand the role of endogenous cortisol production in osteoporosis on a molecular and cellular level.
Previous studies have reported the fundamental role of immunoregulatory
proteins in the clinical phenotype and outcome of sepsis. This study investigated two functional single
nucleotide polymorphisms (SNPs) of T cell immunoglobulin and mucin domain-containing protein 3
(TIM-3), which has a negative stimulatory function in the T cell immune response. Methods: Patients
with sepsis (n = 712) were prospectively enrolled from three intensive care units (ICUs) at the University
Medical Center Goettingen since 2012. All patients were genotyped for the TIM-3 SNPs rs1036199 and
rs10515746. The primary outcome was 28-day mortality. Disease severity and microbiological findings
were secondary endpoints. Results: Kaplan–Meier survival analysis demonstrated a significantly
lower 28-day mortality for TIM-3 rs1036199 AA homozygous patients compared to C-allele carriers
(18% vs. 27%, p = 0.0099) and TIM-3 rs10515746 CC homozygous patients compared to A-allele
carriers (18% vs. 26%, p = 0.0202). The TIM-3 rs1036199 AA genotype and rs10515746 CC genotype
remained significant predictors for 28-day mortality in the multivariate Cox regression analysis after
adjustment for relevant confounders (adjusted hazard ratios: 0.67 and 0.70). Additionally, patients
carrying the rs1036199 AA genotype presented more Gram-positive and Staphylococcus epidermidis
infections, and rs10515746 CC homozygotes presented more Staphylococcus epidermidis infections.
Conclusion: The studied TIM-3 genetic variants are associated with altered 28-day mortality and
susceptibility to Gram-positive infections in sepsis.
Membrane monocarboxylate transporter 1 (SLC16A1/MCT1) plays an important role in
hepatocyte homeostasis, as well as drug handling. However, there is no available information
about the impact of liver pathology on the transporter levels and function. The study was aimed to
quantify SLC16A1 mRNA (qRT-PCR) and MCT1 protein abundance (liquid chromatography–tandem
mass spectrometry (LC¬¬–MS/MS)) in the livers of patients diagnosed, according to the standard
clinical criteria, with hepatitis C, primary biliary cirrhosis, primary sclerosing hepatitis, alcoholic liver
disease (ALD), and autoimmune hepatitis. The stage of liver dysfunction was classified according to
Child–Pugh score. Downregulation of SLC16A1/MCT1 levels was observed in all liver pathology
states, significantly for ALD. The progression of liver dysfunction, from Child–Pugh class A to C,
involved the gradual decline in SLC16A1 mRNA and MCT1 protein abundance, reaching a clinically
significant decrease in class C livers. Reduced levels of MCT1 were associated with significant
intracellular lactate accumulation. The MCT1 transcript and protein did not demonstrate significant
correlations regardless of the liver pathology analyzed, as well as the disease stage, suggesting
posttranscriptional regulation, and several microRNAs were found as potential regulators of MCT1
abundance. MCT1 membrane immunolocalization without cytoplasmic retention was observed in all
studied liver pathologies. Overall, the study demonstrates that SLC16A1/MCT1 is involved in liver
pathology, especially in ALD
Die Sicherheit und Wirksamkeit der Arzneimitteltherapie wird maßgeblich von Transportproteinen beeinflusst. Die zelluläre Lokalisation von Transportern hat hierbei wesentlichen Einfluss darauf, ob diese als funktionelle Aufnahme- oder Effluxtransporter fungieren. Für den menschlichen Darm ist die Lokalisation einiger Transporter noch unklar. Ein Beispiel hierfür ist der organic cation transporter (OCT1), welcher für die intestinale Aufnahme zahlreicher kationischer Arzneistoffe, wie beispielsweise Morphin verantwortlich gemacht wird. Bisher gibt es allerdings widersprüchliche Aussagen über die exakte Lokalisation dieses Transporters in der Zellmembran von Enterozyten. Folglich ist die tatsächliche Bedeutung dieses Proteins für die Absorption von Arzneistoffen bis heute ungeklärt.
Daher war das Ziel dieser Arbeit die Expression, Lokalisation und Funktion von OCT1 in Enterozyten anhand verschiedener labortechnischer Methoden näher zu charakterisieren.
Mittels Immunfluoreszenzfärbung wurde versucht die Lokalisation von OCT1 im Zellmodell zu bestimmen. Ebenfalls im Zellmodell erfolgte die Untersuchung des vektoriellen Transportes von Morphin mittels Transwellassay. Diese, sowie entsprechende Analysen vitalen intestinalen Gewebes in der Ussing-Kammer, wurden genutzt, um indirekt Rückschlüsse auf die Transporterlokalisation zu ziehen.
Trotz eindeutiger und der Hypothese entsprechender Expression und Funktion in MDCKII-OCT1/P-gp-Zellen, konnten im Rahmen dieser Arbeit keine eindeutigen Ergebnisse bezüglich der Lokalisation von OCT1 in Caco-2-Zellen generiert werden.
Caco-2-Zellen sollten als Zellmodell für Enterozyten, insbesondere hinsichtlich der Charakterisierung von OCT1, neu bewertet werden, da aktuellen Erkenntnissen entsprechend möglicherweise keine signifikante Expression von OCT1 in diesen Zellen vorliegt. Auch das genutzte OCT1-Modellsubstrat Morphin ist möglicherweise problematisch. Es ist darauf hinzuweisen, dass es sich bei den vorliegenden Daten aufgrund der geringen Versuchszahl nur um vorläufige Ergebnisse handeln kann, welche in zukünftigen Arbeiten verifiziert werden sollten.
Zusammenfassend kann festgehalten werden, dass die vorliegende Arbeit zwar keine neuen Erkenntnisse bezüglich der Lokalisation von OCT1 in Enterozyten erbringen konnte, jedoch die Bedeutung eines kritischen Umgangs mit etablierten Methoden und deren Ergebnissen unterstreicht.
PIM1 Inhibition Affects Glioblastoma Stem Cell Behavior and Kills Glioblastoma Stem-like Cells
(2021)
Despite comprehensive therapy and extensive research, glioblastoma (GBM) still represents the most aggressive brain tumor in adults. Glioma stem cells (GSCs) are thought to play a major role in tumor progression and resistance of GBM cells to radiochemotherapy. The PIM1 kinase has become a focus in cancer research. We have previously demonstrated that PIM1 is involved in survival of GBM cells and in GBM growth in a mouse model. However, little is known about the importance of PIM1 in cancer stem cells. Here, we report on the role of PIM1 in GBM stem cell behavior and killing. PIM1 inhibition negatively regulates the protein expression of the stem cell markers CD133 and Nestin in GBM cells (LN-18, U-87 MG). In contrast, CD44 and the astrocytic differentiation marker GFAP were up-regulated. Furthermore, PIM1 expression was increased in neurospheres as a model of GBM stem-like cells. Treatment of neurospheres with PIM1 inhibitors (TCS PIM1-1, Quercetagetin, and LY294002) diminished the cell viability associated with reduced DNA synthesis rate, increased caspase 3 activity, decreased PCNA protein expression, and reduced neurosphere formation. Our results indicate that PIM1 affects the glioblastoma stem cell behavior, and its inhibition kills glioblastoma stem-like cells, pointing to PIM1 targeting as a potential anti-glioblastoma therapy.
Doxorubicin is a frequently used anticancer drug to treat many types of tumors, such as breast cancer or bronchial carcinoma. The clinical use of doxorubicin is limited by its poorly predictable cardiotoxicity, the reasons of which are so far not fully understood. The drug is a substrate of several efflux transporters such as P-gp or BCRP and was recently reported to be a substrate of cation uptake transporters. To evaluate the potential role of transporter proteins in the accumulation of doxorubicin at its site of action (e.g., mammary carcinoma cells) or adverse effects (e.g., heart muscle cells), we studied the expression of important uptake and efflux transporters in human breast cancer and cardiac tissue, and investigated the affinity of doxorubicin to the identified transporters. The cellular uptake studies on doxorubicin were performed with OATP1A2*1, OATP1A2*2, and OATP1A2*3-overexpressing HEK293 cells, as well as OCT1-, OCT2-, and OCT3- overexpressing MDCKII cells. To assess the contribution of transporters to the cytotoxic effect of doxorubicin, we determined the cell viability in the presence and absence of transporter inhibitors in different cell lines. Several transporters, including P-gp, BCRP, OCT1, OCT3, and OATP1A2 were expressed in human heart and/or breast cancer tissue. Doxorubicin could be identified as a substrate of OCT1, OCT2, OCT3, and OATP1A2. The cellular uptake into cells expressing genetic OATP1A2 variants was markedly reduced and correlated well with the increased cellular viability. Inhibition of OATP1A2 (naringin) and OCT transporters (1-methyl-4-phenylpyridinium) resulted in a significant decrease of doxorubicin-mediated cytotoxicity in cell lines expressing the respective transporters. Similarly, the excipient Cremophor EL significantly inhibited the OCT1-3- and OATP1A2-mediated cellular uptake and attenuated the cytotoxicity of doxorubicin. In conclusion, genetic and environmental-related variability in the expression and function of these transporters may contribute to the substantial variability seen in terms of doxorubicin efficacy and toxicity.
Transmembrane drug transport in hepatocytes is one of the major determinants of drug pharmacokinetics. In the present study, ABC transporters (P-gp, MRP1, MRP2, MRP3, MRP4, BCRP, and BSEP) and SLC transporters (MCT1, NTCP, OAT2, OATP1B1, OATP1B3, OATP2B1, OCT1, and OCT3) were quantified for protein abundance (LC-MS/MS) and mRNA levels (qRT-PCR) in hepatitis C virus (HCV)-infected liver samples from the Child–Pugh class A (n = 30), B (n = 21), and C (n = 7) patients. Protein levels of BSEP, MRP3, MCT1, OAT2, OATP1B3, and OCT3 were not significantly affected by HCV infection. P-gp, MRP1, BCRP, and OATP1B3 protein abundances were upregulated, whereas those of MRP2, MRP4, NTCP, OATP2B1, and OCT1 were downregulated in all HCV samples. The observed changes started to be seen in the Child–Pugh class A livers, i.e., upregulation of P-gp and MRP1 and downregulation of MRP2, MRP4, BCRP, and OATP1B3. In the case of NTCP, OATP2B1, and OCT1, a decrease in the protein levels was observed in the class B livers. In the class C livers, no other changes were noted than those in the class A and B patients. The results of the study demonstrate that drug transporter protein abundances are affected by the functional state of the liver in hepatitis C patients.
Background: Unwanted drug-drug interactions (DDIs), as caused by the upregulation of clinically relevant drug metabolizing enzymes and transporter proteins in intestine and liver, have the potential to threaten the therapeutic efficacy and safety of drugs. The molecular mechanism of this undesired but frequently occurring scenario of polypharmacy is based on the activation of nuclear receptors such as the pregnane X receptor (PXR) or the constitutive androstane receptor (CAR) by perpetrator agents such as rifampin, phenytoin or St. John’s wort. However, the expression pattern of nuclear receptors in human intestine and liver remains uncertain, which makes it difficult to predict the extent of potential DDIs. Thus, it was the aim of this study to characterize the gene expression and protein abundance of clinically relevant nuclear receptors, i.e., the aryl hydrocarbon receptor (AhR), CAR, farnesoid X receptor (FXR), glucocorticoid receptor (GR), hepatocyte nuclear factor 4 alpha (HNF4α), PXR and small heterodimer partner (SHP), in the aforementioned organs. Methods: Gene expression analysis was performed by quantitative real-time PCR of jejunal, ileal, colonic and liver samples from eight human subjects. In parallel, a targeted proteomic method was developed and validated in order to determine the respective protein amounts of nuclear receptors in human intestinal and liver samples. The LC-MS/MS method was validated according to the current bioanalytical guidelines and met the criteria regarding linearity (0.1–50 nmol/L), within-day and between-day accuracy and precision, as well as the stability criteria. Results: The developed method was successfully validated and applied to determine the abundance of nuclear receptors in human intestinal and liver samples. Gene expression and protein abundance data demonstrated marked differences in human intestine and liver. On the protein level, only AhR and HNF4α could be detected in gut and liver, which corresponds to their highest gene expression. In transfected cell lines, PXR and CAR could be quantified. Conclusions: The substantially different expression pattern of nuclear receptors in human intestinal and liver tissue may explain the different extent of unwanted DDIs in the dependence on the administration route of drugs.
Postoperative restenosis in patients with external ear canal (EEC) atresia or stenosis is a common complication following canaloplasty. Our aim in this study was to explore the feasibility of using a three dimensionally (3D)-printed, patient-individualized, drug ((dexamethasone (DEX)), and ciprofloxacin (cipro))-releasing external ear canal implant (EECI) as a postoperative stent after canaloplasty. We designed and pre-clinically tested this novel implant for drug release (by high-performance liquid chromatography), biocompatibility (by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay), bio-efficacy (by the TNF-α (tumor necrosis factor-alpha)-reduction test (DEX) and inhibition zone test (for cipro)), and microbial contamination (formation of turbidity or sediments in culture medium). The EECI was implanted for the first time to one patient with a history of congenital EEC atresia and state after three canaloplasties due to EEC restenosis. The preclinical tests revealed no cytotoxic effect of the used materials; an antibacterial effect was verified against the bacteria Staphylococcus aureus and Pseudomonas aeruginosa, and the tested UV-irradiated EECI showed no microbiological contamination. Based on the test results, the combination of silicone with 1% DEX and 0.3% cipro was chosen to treat the patient. The EECI was implantable into the EEC; the postoperative follow-up visits revealed no otogenic symptoms or infections and the EECI was explanted three months postoperatively. Even at 12 months postoperatively, the EEC showed good epithelialization and patency. Here, we report the first ever clinical application of an individualized, drug-releasing, mechanically flexible implant and suggest that our novel EECI represents a safe and effective method for postoperatively stenting the reconstructed EEC.
Oral Squamous Cell Carcinoma (OSCC) is the most common malignant cancer affecting the oral cavity. It is characterized by high morbidity and very few therapeutic options. Angiotensin (Ang)-(1-7) is a biologically active heptapeptide, generated predominantly from AngII (Ang-(1-8)) by the enzymatic activity of angiotensin-converting enzyme 2 (ACE 2). Previous studies have shown that Ang-(1-7) counterbalances AngII pro-tumorigenic actions in different pathophysiological settings, exhibiting antiproliferative and anti-angiogenic properties in cancer cells. However, the prevailing effects of Ang-(1-7) in the oral epithelium have not been established in vivo. Here, we used an inducible oral-specific mouse model, where the expression of a tamoxifen-inducible Cre recombinase (CreERtam), which is under the control of the cytokeratin 14 promoter (K14-CreERtam), induces the expression of the K-ras oncogenic variant KrasG12D (LSLK-rasG12D). These mice develop highly proliferative squamous papilloma in the oral cavity and hyperplasia exclusively in oral mucosa within one month after tamoxifen treatment. Ang-(1-7) treated mice showed a reduced papilloma development accompanied by a significant reduction in cell proliferation and a decrease in pS6 positivity, the most downstream target of the PI3K/Akt/mTOR signaling route in oral papilloma. These results suggest that Ang-(1-7) may be a novel therapeutic target for OSCC.
OCT1 and OCT2 are polyspecific membrane transporters that are involved in hepatic and renal drug clearance in humans and mice. In this study, we cloned dog OCT1 and OCT2 and compared their function to the human and mouse orthologs. We used liver and kidney RNA to clone dog OCT1 and OCT2. The cloned and the publicly available RNA-Seq sequences differed from the annotated exon-intron structure of OCT1 in the dog genome CanFam3.1. An additional exon between exons 2 and 3 was identified and confirmed by sequencing in six additional dog breeds. Next, dog OCT1 and OCT2 were stably overexpressed in HEK293 cells and the transport kinetics of five drugs were analyzed. We observed strong differences in the transport kinetics between dog and human orthologs. Dog OCT1 transported fenoterol with 12.9-fold higher capacity but 14.3-fold lower affinity (higher KM) than human OCT1. Human OCT1 transported ipratropium with 5.2-fold higher capacity but 8.4-fold lower affinity than dog OCT1. Compared to human OCT2, dog OCT2 showed 10-fold lower transport of fenoterol and butylscopolamine. In conclusion, the functional characterization of dog OCT1 and OCT2 reported here may have implications when using dogs as pre-clinical models as well as for drug therapy in dogs.
Sphingosine-1-phosphate (S1P) is a versatile signaling lipid involved in the regulation of numerous cellular processes. S1P regulates cellular proliferation, migration, and apoptosis as well as the function of immune cells. S1P is generated from sphingosine (Sph), which derives from the ceramide metabolism. In particular, high concentrations of S1P are present in the blood. This originates mainly from erythrocytes, endothelial cells (ECs), and platelets. While erythrocytes function as a storage pool for circulating S1P, platelets can rapidly generate S1P de novo, store it in large quantities, and release it when the platelet is activated. Platelets can thus provide S1P in a short time when needed or in the case of an injury with subsequent platelet activation and thereby regulate local cellular responses. In addition, platelet-dependently generated and released S1P may also influence long-term immune cell functions in various disease processes, such as inflammation-driven vascular diseases. In this review, the metabolism and release of platelet S1P are presented, and the autocrine versus paracrine functions of platelet-derived S1P and its relevance in various disease processes are discussed. New pharmacological approaches that target the auto- or paracrine effects of S1P may be therapeutically helpful in the future for pathological processes involving S1P.
This communication introduces the first-time application of high-resolution continuum-source molecular absorption spectrometry (HR CS MAS) for the quantification of a peptide. The graphite furnace technique was employed and the tripeptide glutathione (GSH) served as a model compound. Based on measuring sulfur in terms of carbon monosulfide (CS), a method was elaborated to analyze aqueous solutions of GSH. The most prominent wavelength of the CS molecule occurred at 258.0560 nm and was adduced for monitoring. The methodological development covered the optimization of the pyrolysis and vaporization temperatures. These were found optimally to be 250 °C and 2250 °C, respectively. Moreover, the effect of modifiers (zirconium, calcium, magnesium, palladium) on the absorption signals was investigated. The best results were obtained after permanent coating of the graphite tube with zirconium (total amount of 400 μg) and adding a combination of palladium (10 µL, 10 g L−1) and calcium (2 µL, 1 g L−1) as a chemical modifier to the probes (10 µL). Aqueous standard samples of GSH were used for the calibration. It showed a linear range of 2.5–100 µg mL−1 sulfur contained in GSH with a correlation coefficient R2 > 0.997. The developed method exhibited a limit of detection (LOD) and quantification (LOQ) of 2.1 µg mL−1 and 4.3 µg mL−1 sulfur, respectively. The characteristic mass accounted for 5.9 ng sulfur. The method confirmed the general suitability of MAS for the analysis of an oligopeptide. Thus, this study serves as groundwork for further development in order to extend the application of classical atomic absorption spectrometry (AAS).
The Na+/taurocholate cotransporting polypeptide (NTCP) is located in the basolateral membrane of hepatocytes, where it transports bile acids from the portal blood back into hepatocytes. Furthermore, NTCP has a role for the hepatic transport of some drugs. Extrapolation of drug transport data from rodents to humans is not always possible, because species differences in the expression level, localization, affinity, and substrate selectivity of relevant transport proteins must be considered. In the present study, a functional comparison of human NTCP (hNTCP) and mouse Ntcp (mNtcp) showed similar Km values of 67 ± 10 µM and 104 ± 9 µM for the probe substrate estrone-3-sulfate as well as of 258 ± 42 µM and 199 ± 13 µM for the drug rosuvastatin, respectively. IC50 values for the probe inhibitor cyclosporine A were 3.1 ± 0.3 µM for hNTCP and 1.6 ± 0.4 µM for mNtcp. In a drug and pesticide inhibitory screening on both transporters, 4 of the 15 tested drugs (cyclosporine A, benzbromarone, MK571, and fluvastatin) showed high inhibitory potency, but only slight inhibition was observed for the 13 tested pesticides. Among these compounds, only four drugs and three pesticides showed significant differences in their inhibition pattern on hNTCP and mNtcp. Most pronounced was the difference for benzbromarone with a fivefold higher IC50 for mNtcp (27 ± 10 µM) than for hNTCP (5.5 ± 0.6 µM).
In conclusion, we found a strong correlation between the transport kinetics and inhibition pattern among hNTCP and mNtcp. However, specific compounds, such as benzbromarone, showed clear species differences. Such species differences have to be considered when pharmacokinetic data are transferred from rodent to humans.