In der Frequenz kontinuierlich verĂ€nderbare Laser sind interessante Lichtquellen fĂŒr wissenschaftliche Forschung, Industrie und Technik. In diesem Zusammenhang zeigen insbesondere Diodenlaser mit externem Resonator (ECDL) vorteilhafte Eigenschaften. Weit verbreitet ist der Littrow-Laser, da er aufgrund seines einfachen Designs kostengĂŒnstig, kompakt und robust ist und zudem eine geringe Linienbreite aufweist. Das bei ihm eingesetzte Reflexions-Gitter fungiert gleichzeitig als Reflektor und Frequenzfilter. Die Durchstimmung erfolgt mechanisch durch Drehung des Gitters mittels eines Piezo-Aktuators. Diese Vorgehensweise begrenzt sowohl die erreichbare Repetitionsrate als auch Durchstimmbereich und -geschwindigkeit. Um diese Probleme zu umgehen, bietet sich der Einsatz zweier akusto-optischer Modulatoren (AOM) als Deflektor im externen Resonator an. Die Durchstimmung eines solchen AOM-Lasers erfolgt durch Ablenkung des Strahls auf rein nicht-mechanischem Weg. Dazu ist allerdings eine geeignete Ansteuerung der AOMs vonnöten. Im Rahmen dieser Arbeit wurde ein theoretisches Modell entworfen, welches grundlegende Eigenschaften eines AOM-Lasers beschreibt. Darauf basierend konnte ein Algorithmus zur Berechnung der fĂŒr eine kontinuierliche Durchstimmung notwendigen AOM-Ansteuersignale entwickelt werden. Dieses Modell zeigt zudem, dass zur Realisierung einer Durchstimmung mit gleichzeitig akzeptabler Laser-Linienbreite hohe Anforderungen an die Ansteuerelektronik, insbesondere bezĂŒglich Jitterfreiheit (< 5 ps), gestellt werden, was nur durch eine vollstĂ€ndig digitale Erzeugung der Ansteuersignale mittels sogenannter DDS-ICs (Direct-Digital-Synthesis) erfĂŒllt werden kann. Andere untersuchte Schaltungen zeigten schlechtere Eigenschaften. Aufgrund der guten Ăbereinstimmung zwischen dem aufgestellten Modell und dem praktischen AOM-Laseraufbau können im roten Spektralbereich kontinuierliche (modensprungfreie) Durchstimmbereiche von bis zu 220 GHz erreicht werden. Die maximale Durchstimmgeschwindigkeit liegt 1.5 GHz/”s. Eine Repetitionsrate von 25 kHz ist realisierbar. Die 0.2-ms-Linienbreite liegt bei 450 kHz. Der Laser konnte auĂerdem in einem Bereich von 6 nm (4 THz) ohne mechanische Nachjustage operieren. Eine genaue Analyse zeigt, dass trotz der schon sehr guten Performance des Lasersystems durch Verfeinerung des Modells und eine weitere Verbesserung der Komponenten die genannten Leistungsparameter um einen Faktor 5 - 10 gesteigert werden könnten.
Diese Arbeit untersucht experimentell den Einfluss des metastabilen Zustandes Xe(1s3) und des Resonanzzustandes Xe(1s2) auf die VUV-Strahlungserzeugung in Helium-Xenon-Glimmentladungen (He:Xe = 98:2). FĂŒr die Bestimmung der Atomdichten wurde eine experimentelle Anordnung geschaffen, mit der, basierend auf der Methode der Laser-Atom-Absorptionsspektroskopie, orts- und zeitaufgelöste Messungen von optischen Dichten im SĂ€ulenplasma durchgefĂŒhrt wurden. Als Hintergrundstrahlungsquelle kam ein durchstimmbarer Diodenlaser zum Einsatz. Die bereitgestellten LaserwellenlĂ€ngen von 820 nm bzw. 826 nm entsprechen optischen ĂbergĂ€ngen zwischen den XenonzustĂ€nden 6s' 1/2[1/2]0 --> 6p' 1/2[3/2]1 (1s3 --> 2p4) und 6s' 1/2[1/2]1 --> 6p' 1/2[1/2]1 (1s2 --> 2p2).
Den Ausgangspunkt der Untersuchungen stellte die Messung der Absorptionslinienprofile beider Nahinfrarot-ĂbergĂ€nge dar. In AbhĂ€ngigkeit von den Entladungsparametern Gasdruck, Entladungsstrom und Betriebsweise (Gleichstrom-, gepulste und Wechselstromentladung) wurden daraus die Dichten der angeregten Atome auf der Entladungsachse ermittelt. Durch die Analyse des Abklingens der Besetzungsdichten im Afterglow von gepulst betriebenen Entladungen mit Hilfe eines Systems von gekoppelten Ratengleichungen konnten die dominanten StoĂprozesse fĂŒr die betrachteten ZustĂ€nde identifiziert werden. Erstmalig ist in dieser Arbeit die radiale Verteilung der angeregten Spezies Xe(1s3) und Xe(1s2) in He-Xe-Glimmentladungen untersucht worden. Damit ist die VUV-Strahlungsleistung der 129 nm-Linie aus der Dichteverteilung der Resonanzatome ermittelbar.