Die Muskeldystrophie Duchenne wird X-chromosomal vererbt und ist die häufigste Muskelerkrankung im Kindesalter. Ursächlich ist eine Mutation im Dystrophin-Gen auf der Position Xp21. Einer der Hauptfaktoren für die Krankheitsentstehung ist die intrazelluläre Ca2+-Überladung der Dystrophin-defizienten Muskelzellen. Diese resultiert vermutlich aus einem gesteigerten Ca2+-Einstrom in die Dystrophin-defiziente Muskelzelle über spezifische Kationenkanäle. Zunehmend in Betracht gezogen werden hier die TRP- (transient receptor potential) Kanäle. Ziel dieser Arbeit war es, mittels molekularbiologischer Methoden, ausgewählte TRP-Kanäle zu untersuchen. Es sollten diejenigen Ca2+-Kanäle identifiziert werden, denen bei der Muskeldystrophie Duchenne eine pathogenetische Bedeutung zukommt. Dies soll zukünftig eine gezielte pharmakologische Interventionsmöglichkeit zur Behandlung der Muskeldystrophie Duchenne eröffnen. Zu diesem Zweck wurden Myozyten (immortalisierte Dystrophin-positive IMO-Zellen und Dystrophin-negative IMORTO-MDX- oder SC-5 Zellen) während der Muskelzellproliferation und -differenzierung betrachtet. Die mRNA-Expressionen der TRP-Kanäle TRPC3, TRPC6, TRPM4, TRPM7 und TRPV4, die intrazellulären Lokalisationen von TRPC3, TRPC6, TRPM7 und TRPV4 sowie die Protein- Expression von TRPC3 wurden bestimmt. Ferner wurde die Abhängigkeit der Expression von TRPC3, TRPM4 und TRPV4 von unterschiedlichen externen Ca2+- Konzentrationen in beiden Zelllinien untersucht. Während der Muskelzelldifferenzierung stiegen die mRNA-Expressionen von TRPC3 und TRPM4 sowohl in den SC5- als auch in den IMO-Zellen an. TRPC3 wurde darüber hinaus in den IMO-Zellen am Ende des Differenzierungszeitraumes im Myotubenstadium signifikant mehr exprimiert als in den SC-5-Zellen. TRPC3 war vornehmlich intrazellulär lokalisiert, eine Plasmamembranständigkeit in den SC-5 Zellen ist nicht auszuschließen. Für TRPC6 konnte auf mRNA-Ebene in beiden Zelllinien eine vergleichbare Expression während der Proliferation detektiert werden. Während der Differenzierung stieg die Expression von TRPC6 in den SC-5-Zellen an, fiel jedoch in den IMO-Zellen ab. TRPC6 könnte somit als Marker der Muskeldystrophie fungieren. Die Lokalisation von TRPC6 scheint in den SC-5-Zellen sowohl perinukleär als auch sarkolemmal vorzuliegen. Die Expression von TRPM7 stieg in den IMO-Zellen während der Differenzierung, blieb hingegen in den SC-5-Zellen aus. Für TRPV4 konnten keine Expressionsunterschiede det ektiert werden. Die Ergebnisse sprechen für eine Beteiligung der Kanäle TRPC3, TRPC6 und TRPM7 an der Pathogenese der Muskeldystrophie Duchenne. Sie könnten als pharmakologische Angriffspunkte in der Therapie der Duchenne-Muskeldystrophie in Betracht kommen und sollten daher weiter untersucht werden.
Kürzlich durchgeführte Studien an immortalisierten Lymphoblasten haben eine möglicherweise vererbte gesteigerte intrazelluläre Signalweiterleitung in einer Untergruppe von Patienten mit essentieller Hypertonie aufgedeckt. Da diese Studien an einer begrenzten Zahl von Zellinien durchgeführt worden waren, sind Rückschlüsse betreffs der Prävalenz dieses Phänotyps in der gesamten normo- und hypertensiven Population unmöglich. Wir stellten deshalb von 26 normo- und 37 hypertensiven Probanden Zellinien aus mit Epstein-Barr-Viren immortalisierten Lymphoblasten her. Nachfolgend ermittelten wir den Anstieg der freien Ca2+-Konzentration, [Ca2+]i, die durch Stimulation mit 0,1 µmol/l platelet-activating factor (PAF) in Fura-2-beladenen Zellen hervorgerufen wurde. PAF-induzierte [Ca2+]i-Anstiege waren vom Spenderalter in den Zellen der normotensiven und hypertensiven Probanden unabhängig. Die basalen [Ca2+]i-Werte waren zwischen den beiden Kollektiven nicht signifikant unterschiedlich. Mit Hilfe der mittleren zweifachen Standardabweichung des PAF-induzierten [Ca2+]i-Anstieges über die Basalwerte (=110 nmoll) als oberen Normalwert können wir schätzen, daß erhöhte [Ca2+]i-Signale in den hypertensiven Probanden mit 30% deutlich mehr prävalent als in den normotensiven Probanden (4 %) sind. Wir spekulieren, daß eine gesteigerte Reaktivität von Pertussis-Toxin-sensitiven G-Proteinen als primärer Defekt in ungefähr einem Drittel der gesamten Population von essentiellen Hypertonikern vorliegt.
Die Atemwege sind mögliche Eintrittspforten für Staphylococcus aureus in den menschlichen Organismus. Inhalierte Bakterien oder Bakteriencluster kommen initial vermutlich nicht direkt mit den Epithelzellen der Atemwege in Kontakt, sondern nur mit der aufgelagerten Mukusschicht. Die Mikroorganismen nehmen in dieser Situation möglicherweise über sekretorische lösliche Virulenzfaktoren auf die Funktion der Epithelzellen Einfluss und können dadurch das Infektionsgeschehen für sich günstig beeinflussen. Die Behandlung einer Infektion ist oft schwierig, da viele S. aureus-Stämme resistent gegenüber Antibiotika sind. Es ist daher von großem Interesse, mehr über die vielfältigen Interaktionen dieser Bakterien mit ihren eukaryotischen Wirtszellen in Erfahrung zu bringen. Bisher ist nur wenig über die Reaktionen humaner Atemwegsepithelzellen auf Kontakt mit S. aureus-Sekretionsprodukten bekannt, deswegen wurden in dieser Arbeit die Effekte der löslichen Virulenzfaktoren, Hämolysin A und B, auf die Zellmorphologie, Zytokinsezernierung und Ca2+-Signaltransduktion in verschiedenen humanen Atemwegsepithelzellen (16HBE14o-, S9, A549) genauer charakterisiert. Unter rHla-Einwirkung konnte in konfluenten Zellrasen die Bildung parazellulärer Lücken beobachtet werden, wobei die Stärke der Reaktion zelltypspezifisch war. Für die in vivo-Situation könnte der Verlust des stabilen Zellverbands bedeuten, dass das Bakterium dadurch die Möglichkeit erhielte, in den Wirtsorganismus einzudringen. Die Untersuchungen an primären Nasenepithelzellen unterstützen diese Schlussfolgerung. Hingegen zeigten Hämolysin B und die bakteriellen Zellwandbestandteile Lipoteichonsäure und Peptidoglykan kaum Effekte auf die Morphologie der Zellen. Durch fluorometrische Messung mit Indo1-beladenen Zellen wurde deutlich, dass die rHla-Behandlung und der daraus resultierende Einbau von Hla-Poren in die Membran der Atemwegsepithelzellen zu einem Ca2+-Einstrom in die Zellen führen. Wurden die A549-Zellen mit höheren Hla-Konzentrationen behandelt, war der Ca2+-Einstrom sehr stark und konnte nicht durch den zelleigenen Ca2+-Auswärtstransport kompensiert werden, so dass die intrazelluläre Ca2+-Konzentration [Ca2+]i stetig anstieg. Diese Ca2+-Überladung könnte zur Schädigung der Zellen oder gar zum Absterben einiger Zellen beigetragen haben, was in den Experimenten mit dem Time lapse-Mikroskop beobachtet wurde. Auch die Behandlung der A549-Zellen mit rHlb, durch dessen Sphingomyelinase-Aktivität Spaltprodukte entstehen können, die selbst als Signalmoleküle fungieren, führte zu einer leicht veränderten [Ca2+]i in den A549-Zellen. Ob dieses durch Sphingosin-1-Phosphat erfolgt, das in A549-Zellen tatsächlich ein deutliches Ca2+-Signal erzeugt, oder durch andere Hlb-bedingte Effekte auf die Zellen, wurde nicht abschließend geklärt. Auch der direkte Einfluss der beiden Hämolysine auf die Freisetzung von pro-inflammatorischen Zyto- und Chemokinen aus den Atemwegsepithelzellen unter rHla und rHlb wurde quantitativ bestimmt. Mit Hilfe von FlowCytomix-Kits konnte ebenfalls gezeigt werden, dass beide Hämolysine die Sekretion von IL-6 und IL-8 aus den Zellen bewirken. Um die physiologischen Vorgänge im respiratorischen Gewebe nach Kontakt mit S. aureus bzw. dessen Virulenzfaktoren zu ergründen, wurden in dieser Arbeit verschiedene endogene Proteinkinasen und Signalmoleküle der Atemwegsepithelzellen pharmakologisch inhibiert und untersucht, wie sich die selektive Hemmung der Signaltransduktion auf die Lückenbildung im Zellrasen unter der Stimulation mit rHla auswirkt. Da die intrazelluläre Konzentration von Ca2+-Ionen für die Steuerung der Salz- und Wassersekretion im respiratorischen Gewebe und somit für die Abwehr potentieller Pathogene wichtig ist, wurden für diese Arbeit einige Schlüsselelemente dieses Systems analysiert. Die Resultate weisen auf eine komplexe Verbindung der Signalwege hin, wobei die Zellantworten häufig Zelltyp-spezifisch waren. Es konnte durch Time lapse-Beobachtungen gezeigt werden, dass Calmodulin, c-Src, Calpaine, die Proteinkinasen A, G, B und C sowie NF-κB den Zellen tendenziell helfen, ihre Zellform unter rHla-Einwirkung zu bewahren. Für Calmodulin, die Ca2+/CaM abhängige Kinase II, ERK1/2, p38 und NF-κB wurde eine Beteiligung an der Erhöhung der Sekretionsraten von IL-8 und IL-6 durch rHla sowie rHlb festgestellt. Die Ergebnisse deuten darauf hin, dass die untersuchten Signalwege, je nach Intensität der Einwirkung der bakteriellen Faktoren auf die Atemwegsepithelzellen, sowohl zellprotektive als auch Epithel-beeinträchtigende Prozesse beeinflussen, jedenfalls aber in die Produktion von Signalen (Freisetzung von Zyto- und Chemokinen) eingebunden sind, die solcherart Epithelzellen in vivo an das Immunsystem eines Wirts senden.
Diejenigen Mechanismen, welche innerhalb der skeletalen Myozyten zur Kontraktion und Kraftentfaltung führen, sind heute, bis auf wenige verbleibende Mysterien, sehr gut verstanden. In der Hauptsache werden zu den relevanten Membranproteinen, die im Exzitations- und Kontraktionsgeschehen der Myozyten von Bedeutung sind, der sarkolemmale Dihydropyridinrezeptor sowie der sarkoplasmatische Ryanodinrezeptor gezählt - nicht aber TRP-Ionenkanäle. Diese werden hingegen u.a. mit der Sensorik von Geschmack, Temperatur, Osmolarität, Nozizeption sowie taktiler Reize in Verbindung gebracht. TRP-Ionenkanäle werden ubiquitär exprimiert. Ihre Existenz innerhalb des Sarkolemms von Myozyten, sowohl vom glatten als auch vom quergestreiften Typus, ist belegt. Die belgische Gruppe um Nadège Zanou, Georges Shapovalov und Phillip Gailly publizierten Hinweise, die darauf hindeuten, dass ein spezieller kanonischer TRP-Ionenkanal, der TRPC1, möglicherweise eine Rolle im Kontraktionsgeschehen der quergestreiften Myozyten spielt. Solche Beobachtungen werfen unter anderem die Frage auf, ob es weitere Kandidaten der TRP-Proteinfamilie gibt, die in die myozytären Kontraktionsprozesse involviert sind. Es ist derzeit teilweise geklärt, welche Funktionen TRP-Ionenkanäle der TRPV-Subfamilie innerhalb glatter Muskelzellen übernehmen. Welche Bedeutung Vertreter der TRPV-Subfamilie für die quergestreiften Myozyten haben, ist aktuell aber noch nicht hinreichend geklärt. Die vorliegende Dissertation thematisiert die wissenschaftliche Frage nach der funktionellen Bedeutung von TRPV4-Ionenkanälen für die Kontraktions- und Ermüdungsvorgänge innerhalb der quergestreiften Muskulatur der Maus. Um die Frage beantworten zu können, ob TRPV4-Kationenkanäle innerhalb der quergestreiften Myozyten funktional sind, führten wir In-vitro-Kraftmessungen mit isolierten Mm. solei der Wildtypmäuse C57Bl/10Sc/J und C57Bl/6 sowie der TRPV4-defizienten Maus durch. Darüber hinaus haben wir den Einfluss von 4aPDD, ein Phorbolesterderivat und selektiver TRPV4-Aktivator, auf Kontraktions- und Relaxationszeiten, die maximalen Kraftentwicklungen sowie die Muskelermüdung (Fatigue) untersucht. Im Rahmen unserer Untersuchungen konnten wir zeigen, dass sich der quergestreifte Muskel über eine TRPV4-Stimulation im Hinblick auf seine Maximalkraftentwicklung und Ermüdungserscheinungen positiv beeinflussen lässt, wohingegen dabei sowohl die Kontraktions- als auch die Relaxationskinetiken unbeeinflusst blieben. Unsere Resultate und Beobachtungen stellen somit ein deutliches Plädoyer für die Funktionalität der TRPV4-Ionenkanäle innerhalb der quergestreiften Myozyten dar.