Refine
Year of publication
Language
- English (55) (remove)
Keywords
- Biokatalyse (14)
- Proteindesign (9)
- Enzym (6)
- Protein-Engineering (5)
- Biotechnologie (4)
- Thermodynamik (4)
- DNA-Wirkstoff-Interaktion (3)
- DNA-drug interaction (3)
- DNS (3)
- Esterasen (3)
Institute
- Institut fĂźr Chemie und Biochemie (55) (remove)
The present work is a cumulative dissertation that covers the research work of the author at the Department of Analytical and Physical Chemistry of Chelyabinsk State University. It contains a short description of the study and a set of attached publications in peer-reviewed journals and conference proceedings.
The phase and chemical equilibria in binary systems Me â Si
(where Me is the 4th-period transition metal) as well as Mo â Si, Mn â Ge and Fe â Ge at low temperatures were considered. The solid solubility of silicon in vanadium, chromium, manganese, iron, nickel, cobalt and copper and that of germanium in manganese and iron was estimated.
The phase equilibria in Me â Si â O, Mo â Si â O, Mn â Ge â O and Fe â Ge â O ternary systems at standard conditions were considered from a thermodynamic viewpoint. The atmospheric corrosion of transition metals silicides and manganese and iron germanides was discussed.
The chemical and electrochemical equilibria in Me â Si â H2O, Mo â Si â H2O, Mn â Ge â H2O and Fe â Ge â H2O systems were considered from a thermodynamic viewpoint. Pourbaix diagrams for some 4th-period transition metals and molybdenum, as well as for silicon, were revised. The potential â pH diagrams for Me â Si â H2O, Mo â Si â H2O, Mn â Ge â H2O and Fe â Ge â H2O systems were plotted in the first time. The corrosion-electrochemical behaviour of transition metals silicides and manganese and iron germanides in aqueous media was discussed.
The potential â pH diagrams for some siliceous brasses and bronzes (which are multicomponent alloys containing both transition metals and silicon) were plotted, and the corrosion of these alloys in aqueous media was discussed.
Method of estimation of corrosion-electrochemical behaviour of multicomponent alloys, which takes into account both thermodynamic and kinetic data and is based on mutual construction of equilibrium and polarisation potential â pH diagrams, was described. Its usage was illustrated in the example of the structural steel 20KT.
Pyrrolobenzodiazepines (PBDs) are a group of antitumor antibiotics that exert their biological activity by alkylation of guanine bases within the minor groove of double-stranded DNA through nucleophilic attack of the guanine amino group on the PBD imine functionality. In trying to increase both the binding strength and sequence selectivity for further enhancing their biological activity, PBDs were linked to additional DNA binding moieties. Preliminary DNA melting experiments partly also performed in our lab with a series of closely related PBD-naphthalimide and benzimidazole conjugates revealed extraordinary DNA-binding capability of hybrids PBD-NIM and PBD-BIMZ. These studies also indicated the favorable contribution of the piperazine structure on drug binding to the DNA duplex. Previously, in vitro cytotoxicity studies also showed promising antitumor activity of both compounds with PBD-BIMZ having the largest cytotoxic potential among various examined conjugates. In the present work, the kinetics, thermodynamics and structural details of the drug-DNA interactions have been determined employing a variety of spectroscopic, calorimetric and computational methods. Thus, a high thermal duplex stabilization upon DNA binding could be ascertained for both drugs and attributed to their covalent attachment to the DNA guanine bases. The 1:1 binding stoichiometry as well as the exclusive minor groove binding for the benzimidazole and the mixed minor grove - intercalative type of binding for the naphthalimide hybrid could be verified by several spectroscopic methods including NMR spectroscopy. Furthermore, by using a combination of solution NMR and some of the most recent molecular modeling techniques, the first high-resolution structures of DNA-drug complexes with PBD hybrid drugs could be obtained giving detailed insight into the specific drug-DNA interactions. Thus, details on van der Waals and hydrogen bond contacts within the complex and the tight fit of the benzimidazole hybrid into the DNA minor groove could be revealed. By using recent data analysis techniques like clustering algorithms, the high flexibility of the piperazine moiety within the PBD-BIMZ-DNA complex could be nicely captured and visualized. Additionally, a thermodynamic analysis for the non-covalent drug binding by UV and fluorescence spectroscopy as well as by direct calorimetric methods revealed a 1:1 binding mode driven by enthalpy changes and counteracted by unfavorable entropic contributions to result in moderately strong association constants. Analysis of the solvent-accessible surface area confirmed the importance of hydrophobic effects on drug binding and the combination of these data with ITC measurements allowed for an extensive thermodynamic characterization of the drug binding process. With respect to the influence of the individual drug moieties on DNA binding, the importance of the piperazine ring for drug-DNA interactions and the basis for its capability to enhance drug binding were addressed. Furthermore, it could be shown that the naphthalimide and benzimidazole moieties also impart additional sequence selectivity to the alkylating PBD structural unit and these distinct differences in the sequence selectivity could be linked to the three-dimensional structures of the DNA-drug complexes. Clearly, the combination of detailed structural and thermodynamic data of complex formation allows for a better understanding of the binding mechanism and structure-activity relationship when it comes to drug-DNA interactions. Therefore, the information gathered can assist in the design of more efficient derivatives of this type of alkylating DNA binding drugs in particular and of DNA recognition by ligands composed of several motifs in general.
The overarching goal of this work was to develop a biosensor based on functional nucleic acids. The biosensor should be modular, such that by exchange of the recognition unit, tailored biosensors could be created, allowing detecting a variety of analytes on demand. In the context of the cooperation with a company, initially, TNFalpha was chosen as an analyte. In a previous work, it was tried to build a modular aptazyme for TNFalpha that was based on four aptamers that were developed by SELEX. Here, these aptamers were investigated more closely by different methods (SPR, QCM). In the present work, it was proven beyond doubt that this attempt was not feasible. The aptamers were not able to bind the biologically active form of TNFalpha. An even more interesting finding was that a common tool to immobilize molecules to investigate their interactions with a binding partner, namely the streptavidin-biotin interaction, can strongly influence the result of the assay and causing false-positive results. Afterwards, it was decided to continue the work with a DNAzyme and modular approach was strictly refrained. It was tried to build aptazymes for TNFa or creatinine by in vitro selection, which failed. Most likely, the crucial factors were the ligands itself and the high demand on in vitro selection to select two functionalities (aptamer and catalytic activity) in parallel. This was the reason, to develop a new and a different method with streptavidin as a model analyte. The new strategy was to combine in vitro selection and rational design. The 17E-DNAzyme was chosen as catalytically active module. In preparation of the in vitro selection work, its properties were analyzed. An oligo-based inhibitor of the 17E-DNAzyme was rationally designed and its functionality was experimentally evaluated. Then, a library was designed which contained the 17E-DNAzyme, a randomized domain, and the inhibitor and its functionality was experimentally proven. The in vitro selection for the aptamer and the catalytic function were separated in two steps where the substrate strand was introduced in the second step. The knowledge about in vitro selection procedures, which was gained in the first trials with TNFalpha and creatinine was applied and could be substantially broadened. The crucial factors for the success of this process were identified. Most important steps are the amplification steps between the rounds and the in vitro selection pressure. The template concentration in the PCR has to be very low; the selection pressure has to be high. However, in fact, the exact quantity of "low" and "high" is difficult to determine exactly, it has to be individually evaluated for every amplification step, and this makes in vitro selection a method that requires a lot of experimental skills, optimization procedures, and experience. An EMSA was established and performed to qualitatively prove the affinity of the library for streptavidin in the first step of the in vitro selection method. For the second step, the in vitro selection of the catalytic function, considerable effort was done, but the in vitro selection did not succeed. Using the Biacore, the dissociation constant of the pool, which was applied in the second step of in vitro selection, was determined to be KD = 38 nM. This is very low, and by sequencing the pool it was found that the sequence variability was too low. The sequences share a cramp-like stem-loop structure, which hold the DNAzyme in an inactive conformation. This work presents valuable results for the development of biosensors based on nucleic acids, applying in vitro selection and rational design. Aptamers for streptavidin were selected. The library, which was used for this in vitro selection was structurally constrained. This obviously, represented an exceptionally good starting point for the in vitro selection. In this work, a lot of information about the development of in vitro selection systems was gained. Important work was done on establishing a click chemistry-based immobilization strategy. This work is going to fundamentally facilitate a new in vitro selection approach based on this immobilization strategy.
Surface and electrode modifications allow the alteration of surface and electrode properties required for certain applications. In the first part of this thesis, a pH sensitive graphite/quinhydrone composite electrode for Flow-Injection-Analysis (FIA) systems was optimized by using polysiloxane as binder material. This allows an easier handling of the electrode. Furthermore, new applications of the FIA system in conjunction with the pH sensitive detection system were developed. The electrode used here in conjunction with a common reference electrode proved to be a very useful potentiometric detector for FIA acid-base titrations of aqueous solutions. Even acid-base titrations in buffered solutions were performed successfully with the FIA system allowing the determination of activities of enzymes, which catalyse reactions with increasing or decreasing proton concentrations. A FIA system was applied to measure calcium and magnesium ions in different water samples by measuring the hydronium ion release during the complexometric reaction between EDTA and calcium or magnesium ions. A method was established to determine sequentially the titratable acidity and the pH of different wine samples. The new FIA method fulfils the official requirements of the "Organisation Internationale de la Vigne et du Vin" with respect to reproducibility and repeatability and can be easily adjusted to the legal requirements in USA and Europe. In summary, the first part of this thesis shows that the FIA system in conjunction with the graphite/quinhydrone/polysiloxane composite electrode is very well suited for simple, rapid and automatic determinations of small sample volumes in the areas of water analysis, food analysis or even biochemical analysis, provided that hydronium ions are involved. For all applications, one and the same measuring device without changing the detection system is used. Only different carrier solutions are necessary, which can be provided by a proper stream selector. The second part of this thesis is focused on the modification of gold surfaces of medical devices by treatment with OH radicals. These investigations are based on previous studies of the impact of OH radicals on mechanically polished gold surfaces resulting in a smoothing of the surface by dissolution of highly reactive gold atoms. In this thesis, the effect of OH radicals, generated either ex vivo by Fenton solutions or in vivo by immune reactions, on gold implants was analysed using atomic force microscopy. It was found that there is an analogy between the exposure of gold to Fenton solutions and the exposure of gold to immune reactions. The pre-treatment of gold implants with OH radicals of Fenton solution prevents surface alterations of the gold implants in vivo. This indicates that the in vivo release of gold from implants can be reduced by exposing the gold implants to Fenton solution before implantation. Finally, the modification of gold surfaces by OH radicals was applied to a medical nanodetector, which is coated with a gold layer and functionalized with antibodies, for isolating circulating tumour cells (CTCs) from the blood stream of cancer patients. By treating the gold layer of the nanodetector with OH radicals generated by Fenton solution or by UV-photolysis of hydrogen peroxide, the cytotoxicity of the gold layer after gamma irradiation was reduced to almost zero. This modification of the gold surface with OH radicals allows applying the nanodetector for in vivo applications.
An interesting subclass of the SLs are Cers, the simplest SLs. Cers are assigned a special role within SLs because of their involvement in many cellular and biophysical processes.In literature Cers are describe to modulate many events in signaling including apoptosis. Besides its role as second messenger and therefore the involvement in many signal cascades, Cers are also known to be essential in physical modifications and structural alternations of membranes. Such regulatory functions on membrane formation are e.g. domain formation with other lipids (i.g. SM and Chol), phase separation with sterols (Chol), vesicular trafficking, fusion, membrane curvature fluidity and thickness and the induction of membrane leakiness. In contrast to phospholipids, Cers can move from one side of the membrane leaflet to the other, due to their strong hydrophobicity. This movement is called flip-flop or as transbilayer movement and is controversially discussed. Consequently, no exact value has been reported about the flip-flop property of Cers, which probably plays an important role during the transmission of an extra cellular signal through the membrane.In order to probe the biophysical properties of ceramides, a synthetic access to 1-thioceramides (1-SHCer) analogues with different N-acyl chain length has been developed in this study. With 1SHCer the flip-flop was investigated on pre-formed liposomes and the data indicated a very rapid flip-flop of Cers with a half time t1/2 <10s in raft- and non-raft like membrane models. Furthermore, the acyl chain length exhibited no measurable impact on the speed of the flip-flop. Utilizing the same probes the importance of hydrogen bond donor and acceptor properties of Cers upon interaction with sphingomyelin in the presence or absence of cholesterol (Chol) has been probed. Performed fluorescent quenching experiments (P.Slotte) proposed the following relative preference in interaction with pSM:pSM:DAGs > pSM:Cer > pSM:Chol > pSM: 1-pCerSH.Most strikingly, the importance of the 1-OH H-bond acceptor functionality to replace Chol around and above the melting temperature of pSM has been demonstrated. Recently, an unusual subclass of SLs, named 1-deoxysphingoids have come to the foreground, as biomarker for metabolic disorders. 1-doxSA is physiologically generated (10-40nM) due to substrate promiscuity of SPT and shown to be elevated in patients with metabolic disorders. In this study an organic synthetic access to fluorescent DSB derivatives was established, featuring a fluorescent moiety at the lipid tail, such as FITC 26. Comprehensive fluorescent studies of 26 revealed an unusual subcellular distribution. Exogenous 1-doxSA analogues, such as FB1 and 1-doxSA-FITC, enter via specific entry points. During the next few hours these lipids accumulate within the cytosol prior to N-acylation by CerS. Upon N-acylation, the newly formed 1-doxdhCer and its analogues insert into the ER membrane.The fluorescent probe and most likely FB1 analogues accumulate within the late endosomal and lysosomal system, probably via a direct connection with the ER. Analysis of the lipid metabolism of unlabeled 1-doxSA and FB1 revealed a strikingly similar behavior, pointing towards a common pharmacological effect. Complete consumption of TG within 24h in epithelia cells combined with GO analysis of 1-doxSA interacting lipids indicates significant modulation of fatty acid degradation, pointing towards regulation of the energy metabolism. This is in good agreement with the observed induction of autophagy. Together, this rapid and similar metabolic change of both 1-doxSA and FB1, points toward direct 1-doxSA head-group related lipid-protein interaction and less toward the influence of FB1 on CerS activity. This work suggests the biological significance of 1-doxSA as a primary nutrient sensor to maintain nutrient homeostasis and its role in the pathophysiology of metabolic diseases.
Phosphines are highly versatile ligands for transition metal catalysts because of wide tuning abilites of their stereoelectronic properties. Bulky and basic phosphines, to a smaller extend also Ď-acidic phosphites were intensively studied whereas dicoordinated trivalent phosphorus compounds were comparatively little investigated in this respect. In part this may go back to the limited stability of many P=C compounds, in the case of the stable benzazaphosphole to low stabilityof complexes with non-zero-valent transition metals. With the availability of suitable chelate complexes this problems may be overcome. Because biaryl phosphines proved particularly useful as chelate ligands this work is focused on the development of convenient syntheses of new biaryl-type N-heterocyclic or functionally aryl substituted 1,3-benzazaphosphole P,N- P,P- and P,O-chelate ligands and the characterization of their structures. The pivotal point was to find an applicable synthetic route to the title ligands. Because currently transition metal catalyzed cross-coupling reactions are a hot field in catalytic research, the initial target of my work was the investigation of the applicability of suitable biaryl coupling reactions on 1,3-benzazaphospholes. There are several types of transition metal catalyzed biaryl couplings. One reaction, which is currently in the main focus by use of non-toxic and air stable coupling partners, often allowing water as environmental friendly solvent, is the Pd-catalyzed Suzuki-Miyaura coupling of an aryl halide with an arylboronic acid. To apply the Suzuki coupling to the synthesis of biaryl-type benzazaphospholes, the synthesis of either benzazaphosphol-2-boronic acids or reactive 2-halogen-benzazaphospholes have to be performed. Because of the successful introduction of functional groups in position 2 of benzazaphospholes via lithiation and reaction with electrophiles, the 2-lithiation of suitably available N-substituted benzazaphospholes and introduction of boryl groups or halogen by reaction with boronic acid esters or with a halogenating reagent like dibromoethane appeared as a realistic route and was chosen for closer study. N-Neopentyl-benzazaphosphole was selected by its relatively easy access and N-mesityl-benzazaphosphole as a N-aryl representative. From the two principal methods developed to synthesize 1,3-benzazaphospholes, only the synthesis and reduction of o-aniline phosphonic acid esters to o-phosphinoanilines and subsequent [4+1] cyclocondensation is promising to access N-substituted 2-CH benzazaphospholes. My first investigations targeted to improve the synthesis of the benzazaphosphole precursors. The invention of a Cu- instead of the earlier used Pd-catalyzed P-C coupling allows a more economical access to anilinophosphonates which were then transformed to 2H-1,3-benzazaphospholes by the established orthoformamide cyclocondensation. Several attempts of the coupling with careful control of dryness of all reagents and solvents were made in order to obtain pure 1,3-benzazaphosphole-2-boronic acid ester and, after mild hydrolysis, to isolate 1,3-benzazaphosphole-2-boronic acid. The coupling worked with N-mesityl-1,3-benzazaphosphole 13e, but the benzazaphosphol-2-boronic acid could not be obtained in pure form because of easy B-C bond cleavage during crystallization, certainly by the two âOH groups. For attempts with a reverted methodology, the synthesis of a 2-bromo-substituted benzazaphosphole was studied, which should be coupled with (hetero)arylboronic acids via Suzuki-Mijaura reaction. However, the 2-bromo-benzazaphosphole also could not be obtained in pure form, and a coupling experiment with phenyl boronic acid and catalysis with ligand free Pd/C failed. Therefore, other routes to biaryl-type benzazaphospholes were envisaged. Direct C-H functionalization has emerged over the past few years as an attractive strategy to enhance molecular complexity. This holds also for Ď-excess-type heterocycles like indoles, benzoxazoles or purines which allow direct CH-arylation in 2-position. These reactions generally involve palladium based catalysts and in some cases rhodium catalysts. In a series of experiments the catalytic arylation, heteroarylation and later also alkylation were studied with 1,3-benzazaphospholes 13a-e as precursors. The initial studies were carried out with iodobenzene, keeping similar reaction conditions as for 2-CH arylation of indoles. Then transition metal catalysts, bases and conditions were varied. The necessity and influence of a catalyst was established by blind experiments without transition metal catalyst which led to strong decrease of the reactivity. However, the transitional metal catalyzed reactions of N-substituted-1,3-benzazaphosphole with aryl- and heteroaryl halides did not give the desired 2-aryl-substituted 1,3-benzazaphosphole biaryl ligands but revealed a novel oxidative addition at the P=C double bond. In the presence of moisture benzazaphospholine-P-oxides are formed. Further exploration of the scope of this reaction showed that it is applicable to several functionally substituted aryl halides and heteroaryl halides. As besides PdX2 (X = Cl, OAc) also Pd(0)(PPh3)4 was found active as catalyst, it can be assumed, that the reaction occurs via a Pd(0) species and oxidative addition of the aryl halide at Pd(0). Because Pd(0) will coordinate stronger to the Ď-acidic benzazaphosphole than Pd(II) it is assumed that in the first step small equilibrium amounts of a Pd(0)benzazaphosphole complex will be formed which undergo the oxidative addition and then react to benzazaphospholium salt and furnish back a Pd(0) complex with 1,3-benzazaphosphole ligand. The benzazaphospholium salts are highly sensitive to moisture and react with traces of water to form benzazaphospholine-P-oxides 20 and acid, neutralized by the base. A cyclic species RRâP(OH)=CHRâ, where the halogen is replaced by OH, may be assumed as intermediate which undergoes a rearrangement to the more stable RRâP(=O)-CH2Râ tautomer, driven by the high P=O bond energy. After various investigations of the optimum conditions for the reaction, a number of new functionally substituted P-aryl or P-heteroaryl benzazaphospholine P-oxides and 1,3-dineopentyl-benzazaphospholine-3-oxide were isolated and characterized by 1H, 31P, 13C and HRMS data and two by crystallography. The biaryl-type 2-phenyl-1,3-benzazaphosphole is known since the earliest reports of these heterocycles, synthesized by cyclocondensation of 2-phosphinoaniline with benziminoester hydrochloride or in low yield with benzaldehyde. The latter method was further developed because of the compatibility of the aldehyde group with various donor functions. 2-Phosphinoaniline (12a) and 2-phosphino-4-methylaniline (12b) were heated with pyridine-2-carboxaldehyde under varied conditions, and a crucial role of acid catalyst was observed in the investigation. The results showed that the dehydrogenating cyclocondensation, if catalyzed by a suitable type and amount of acid catalyst, works well for primary phosphinoanilines 12a,b and a variety of reactive aldehydes, including N-heterocyclic and o- or m-functionally substituted arylaldehydes. In an equimolar ratio, on heating usually hydrogen is eliminated, at least formally, to furnish the aromatically stabilized 1H-1,3-benzazaphosphole ring systems of 35 whereas in other cases reductive side reactions occur, e.g. the N-CH2R substitution to 36 in reactions with two equivalents of aldehyde. Thus the synthesis of 1,5-dimethyl-1,3-benzazaphosphole (36a) was achieved by double cyclocondensation of 12b and formaldehyde in a 1:2 molar ratio. This provides the so far shortest way to synthesize N-substituted 1,3-benzazaphospholes and suggests, that the reaction is generally applicable in reactions with two equivalents of monoaldehyde. This puts the question if N-secondary o-phosphinoanilines such as N-neopentyl-2-phosphinoaniline (12d) can be cyclocondensed with aldehydes to benzazaphospholes or if a primary amino group is required. The successful experiment shows that cyclocondensation of N-secondary o-phosphinoanilines with suitable aldehydes is possible. N-Neopentyl-2-pyrido-1,3-benzazaphosphole was obtained in high yield. An interesting extension of the above reaction are cyclocondensations with compounds bearing two aldehyde groups. Double condensation of 12b with o-phthaldialdehyde was performed. It proceeded fast and gave tetracyclic-1,3-benzazaphosphole in high yield. Based on the NMR monitored primary formation of organoammonium phosphino glycolates from amines, phosphines and glyoxylic acid, followed by conversion to phosphinoglycines, it is assumed that the reaction proceeds by initial attack of the primary phosphino group of 12b at the carbonyl carbon atom of R-CHO, polarized with the help of the acid catalyst. The resulting P-C bonded secondary phosphine, containing an Îą-hydroxy group, may release water after transfer of a proton to oxygen in equilibrium, followed by attack of amine. This leads to formation of the dihydro-intermediate 34, observed by NMR reaction monitoring in several cases. Possible ways are releasing of H2 during reflux, directly giving 2-substituted NH-1,3-benzazaphospholes 35, or hydrogen transfer, connected e.g. with N-substitution leading to 1,2-disubstituted 1,3-benzazaphospholes 36. The second path is observed mainly when excess or double molar quantities of aldehydes are used at the start of the reaction. The two hydrogen atoms at P and C2 are consumed during the second condensation and formation of the NCH2R group and generate the P=C double bond. Finally, cyclocondensation of o-phosphinoanilines with aldehydes has proven as a useful method for the synthesis of biaryl type benzazaphosphole ligands. After thorough investigations, N-primary and secondary phosphino anilines were found cyclisable with various heteroaryl aldehydes upon refluxing in toluene in the presence of a suitable acid catalyst, and 11 new compounds were synthesized following this procedure and characterized by 1H, 31P, 13C NMR and HRMS data. For two compounds crystal structures were also obtained. First attempts to synthesize chelate complexes with the 2-(hetero)aryl-1,3-benzazaphospholes were started. A soluble 2-(o-diphenylphosphinophenyl)-1,3-benzazaphoasphole-Cr(CO)4 chelate complex was detected by NMR spectroscopy, whereas most products of the new ligands with Rh(COD) or NiCp complexes were insoluble in usual NMR solvents and require further efforts for synthesis and full analytical and structural characterization.
1,1-Bis(trimethylsilyloxy)ketene acetals represent useful synthetic building blocks which can be regarded as masked carboxylic acid dianions. In recent years, a number of cyclization reactions of 1,1-bis(trimethylsilyloxy)ketene acetals have been reported. Functionalized maleic anhydrides represent important synthetic building blocks, which have been employed, for example, in the synthesis of Îł-alkylidenebutenolides, maleimides, 5-alkylidene-5H-pyrrol-2-ones. Substituted maleic anhydrides are available by Michael reaction of nucleophiles with parent maleic anhydride and subsequent halogenation and elimination. Oxalyl chloride is an important synthetic tool for the synthesis of O-heterocycles. 3-hydroxymaleic (1-3) anhydrides were synthesised by one-pot cyclization of 1,1-bis(trimethylsilyloxy)ketene acetals with oxalyl chloride using TMSOTf as a catalyst. The Me3SiOTf mediated reaction of 1,1-bis(trimethylsilyloxy)ketene acetals with 3-silyloxyalk-2-en-1-ones, such as (4), afforded 5-ketoacids, such as (5). Treatment of the latter with TFA in CH2Cl2 afforded pyran-2-ones, such as (6-8). It has been found that 1,1-bis(trimethylsilyloxy)ketene acetals can behave as dinucleophile. Functionalized benzo-azoxabicyclo[3.3.1]nonanones (9-12), were prepared by regio- and diastereoselective condensation of 1,1-bis(silyloxy)ketene acetals with isoquinolinium and quinolinium salts and subsequent regioselective and stereospecific iodolactonization. Our next target was the reaction of silyl ketene acetals with pyrazine and quinoxaline. These reactions provide a facile access to a variety of 2,3-benzo-1,4-diaza-7-oxabicyclo[4.3.0]non-2-en-6-ones and 1,4-diaza-7-oxabicyclo[4.3.0]non-2-en-6-ones (13-14). The second part of my research work was concentrated on bis(silyl enol ethers). The TiCl4-mediated [3+3] cyclization of 2,4-bis(trimethylsilyloxy)penta-1,3-diene with 3-silyloxyalk-2-en-1-ones afforded 2-acetylphenols (15), which were transformed into functionalized chromones (16). The Me3SiOTf-mediated condensation of the latter with 1,3-bis(silyl enol ethers) and subsequent domino â˛retro-MichaelâaldolâlactonizationⲠreaction afforded 7-hydroxy-6H-benzo[c]chromen-6-ones (17-18). With regard to our on going investigation with bis(silyl enol ethers), we significantly extended the preparative scope of the methodology. We have successfully developed regioselective cyclizations of unsymmetrical 1,1-diacylcyclopentanes, such as 1-acetyl-1-formylcyclopentane, and also studied cyclizations of 2,2-diacetylindane, 1,1-diacetylcyclopent-3-ene and 3,3-dimethylpentane-2,4-dione. In addition, the mechanism of the domino process was studied. We have synthesised spiro[5.4]decenones (19) and that were transfored into bicyclo[4.4.0]deca-1,4-dien-3-ones (20-21), by domino â˛EliminationâDouble-Wagner-Meerwein-RearrangementⲠreactions. The Lewis acid mediated domino â˛[3+3]-cyclization-homo-MichaelⲠreaction of 1,3-bis-silyl enol ethers with unsymmetrical 1,1-diacylcyclopentanes, such as 1-acetyl-1-formylcyclopentane, allows an efficient one-pot synthesis of functionalized salicylates containing a halogenated side-chain (22-23). A great variety of substitution patterns have been realized by variation of the starting materials and of the Lewis acid. The mechanism of the domino process was studied.
Structureâ and sequenceâfunction relationships in (S)-amine transaminases and related enzymes
(2015)
Chiral primary amines are valuable building blocks for many biologically active compounds. Environmentally friendlier alternatives to the classical methods for Îą-chiral primary amine synthesis are highly desired. A biocatalytic alternative that recently proved beneficial for industrial applications is asymmetric synthesis utilising (S)-selective amine transaminases (S-ATAs). These enzymes can be utilized to transaminate a prochiral ketone with an amino donor (e.g. isopropylamine), to achieve a chiral amine and a carbonyl product (e.g. acetone). However, for several potential applications protein engineering is required to fit (S)-ATAS to the demands of an industrial process. Since no (S)-ATA crystal structure required for understanding the substrate recognition and thus protein engineering was available, we first aimed at obtaining structural data. Instead of solving crystal structures ourselves, we took advantage of structural genomics projects and discovered, that the protein data bank (PDB) already contained crystal structures of four enzymes with unknown function that we hypothesised to possess (S)-ATA activity. After developing a screening method, the four enzymes could be characterized as Ď-amino acid:pyruvate transaminases (ĎAA:pyr TAs). (S)-amine conversion was suggested to be a âsubstrate-promiscuousâ activity of these enzymes, as it is pronounced differently in the four investigated ones. By comparing the active sites of the highly and poorly active (S)-ATAs, the residues that determine the ability of amine conversion in these enzymes were discovered. Furthermore, the mechanism for dual substrate recognition, the binding of both, carboxyl and bulky hydrophobic substrates in the same active site, could be elucidated with the crystal structures. A flexible arginine side chain is able to adopt various positions thus enabling carboxylate binding and by âflippingâ out of the active site, to create space for amine binding. Then, a limitation of these enzymes, the restricted substrate scope caused by a small binding pocket was addressed. First, a rational protein engineering approach was set up to create more space. The tested mutations, however, destroyed most of the activity for both regular and more bulky substrates. We thus learned that the structural requirements for (S)-ATA activity are more complex than initially anticipated and a semi-rational approach was applied to broaden the substrate scope. By systematic saturation of active site positions, substantially improved mutants for bulkier amine synthesis could be obtained. As this study highlighted a lack of understanding of (S)-ATA, the functional important residues in the enzymes belonging to the class III TA family were surveyed. This family is defined by common sequence and structure features and besides (S)-ATAs mainly comprises TAs of various substrate scopes but also a few phospholyases, racemases and decarboxylases. To enable the comparison of active site residues among them, a commercial bioinformatics tool was used to create a family wide structure-based alignment of around 13,000 sequences. Based on statistical analyses of this alignment, structural inspections and literature evaluation, active site residues crucial for certain specificities within this family have been identified. By investigating the ingenious active site designs that enable such a plethora of reactions, and by identifying sets of functional important residues termed âactive site fingerprintsâ, the understanding of catalysis in this enzyme family could be broadened. Furthermore, these functional important residues can on the one hand be applied to predict the specificity of uncharacterised enzymes, if a fingerprint is matched. On the other hand, if no fingerprint is matched, they can help to discover yet unknown activities or mechanisms to achieve a known specificity. We exemplified the latter case by functionally characterising a Bacillus anthracis enzyme with the crystal structure 3N5M, whose substrate specificity was unknown and could not be predicted. The 3N5M enzyme was found to possess ĎAA:pyr TA and (S)-ATA activity even though it lacks the above-mentioned âflippingâ arginine. Based on molecular dynamics simulations we were able to propose an alternative mechanism for dual substrate recognition in the B. anthracis ĎAA:pyr TA. By these findings the understanding of the requirements for (S)-ATA activity could be further broadened and a functional knowledge gap within the class III TA family was closed. The active site residue composition in 3N5M is now connected to enzymatic function and may be applied for future specificity predictions.
Indoloquinoline derivatives are very interesting compounds for pharmaceutical applications because of their broad spectrum of biological activity. However, phenyl-substituted indoloquinolines suffer from solubility problems in aqueous solution and require the synthesis of better soluble derivatives for their effective application. Therefore, the indoloquinoline derivatives were covalently attached to two different types of cationic aminoalkyl linkers. After having successfully established the synthesis and subsequent purification of the novel derivatives that could be isolated in excellent yields, these ligands were characterized in this thesis with regard to their spectral properties in different environments and their sequence specific binding to different types of nucleic acids with a variety of spectroscopic methods.
The term diabetes mellitus comprises a group of metabolic diseases all distinguished by their main characteristic hyperglycaemia. With a steadily increasing prevalence diabetes displays an enormous burden for patients and health systems and is therefore of special interest for research. The development of the two main types of diabetes, type 1 and type 2, is closely linked to the formation of reactive species, especially hydrogen peroxide, inside different compartments of pancreatic beta cells. However, these cells are especially vulnerable towards oxidative stress mediated by hydrogen peroxide due to a low expression of antioxidative enzymes.
The main aims of the present thesis were to analyse the intracellular generation and to enable the site-specific detection of hydrogen peroxide to evaluate its role in the delicate equilibrium between redox signalling and oxidative stress under certain pathophysiological conditions, and moreover to monitor its movement through compartments and subcellular membranes of insulin-producing cells. Additionally, a new methodology for an artificial site-specific generation of hydrogen peroxide inside living cells was developed.
The aim of this work is to further analyze the nature of the TiO2 passivation layer regarding structure, hydrophilicity and adsorption behavior, starting with the question how far metal and oxide properties are affected by the contact, regarding structural relaxation, atomic charges and work function. This determines how far the influence of metal has to be considered in simulations of TiO2 passivation layers. Mimicking the initial phases of implant contact with the biological environment, the adsorption of the inorganic ions on titanium oxides is to be investigated next, especially the influence of Ca2+ and HnPO4n-3 on the surface properties. Finally, biomolecule adsorption on TiO2 surfaces is investigated for understanding and improving their bioactivity.
Titanium and Titanium Dioxide
The properties of sharp interfaces formed between metallic titanium and a titanium dioxide layer with rutile or anatase structure and four different surface terminations were investigated. In all cases the work of separation is higher than the sum of surface energies, indicating the formation of an energetically very favorable interface region that glues the two phases together. The interface energy is negative, which means that for Ti and TiO2 bulk phases, mixing is energetically favorable.
The influence of the metal on the atomic and electronic structure of the oxide is limited to a few atomic layers. Depending on its modification, a passivation layer may give rise to up- (rutile) or downshift (anatase) of the work function of the underlying titanium metal.
Calcium and Phosphate
First principles molecular dynamics simulations in vacuum revealed stable bonds between Ca2+ and HnPO4n-3 ions and the investigated TiO2 surfaces. Ca2+ ions bind to 2â4 surface oxygen atoms, preferring peripheral positions as found on both rutile surfaces where adsorption energies reach 9 eV per ion. In solution the hydration energy drastically reduces these values.
Phosphate adsorbs to the TiO2 surface, but the adsorption energy is much lower than that of Ca2+ ions. The approach of phosphate is highly orientation dependent and hampered by the terminal oxygen atoms.
Both ab initio and force field simulations indicate enrichment of Ca2+ ions close to the surface, most of them directly bound to it, which results in a net positive charge. As the adsorption of phosphate takes longer and is strongly reinforced by adsorbed Ca2+ ions, it has become obvious that Ca2+ ions initiate the adsorption of calcium phosphate clusters to titania surfaces. However, the TiO2 surface does not necessarily act as a nucleation site for calcium phosphate crystallization, as adsorbed Ca2+ ions show reduced affinity towards phosphate compared to free ions in solution.
Collagen and Mechanical Stress
Coinciding force distance relations have been obtained for a variety of restraint force constants, expansion rates and environments. The resulting Youngâs moduli are in the range of experimental values both at low and high strain ranges. For low strains the calculated Youngâs modulus of about 2 GPa is comparable to experimental values between 3 and 5 GPa. For high strains it reaches 10 GPa. The Youngâs moduli can be assigned to three different mechanisms of stretching, affecting the macroscopic linearity, the torsional angles and the bond lengths.
Chondroitin Sulfate (CS) and Hyaluronic Acid (HA)
A force field model for CS and HA could be established that reproduced experimental torsion angles and showed the same free energy surface (FES) as an ab initio model. Hydration affects the overall FES, but does not alter the position of the energetic minima. Stabilization of the conformation via bridging water molecules as suggested by other works is not necessary.
Both glycosaminoglycans adsorb to a hydroxylated rutile (100) surfaces despite the negative net charge both on surface and adsorbate. The presence of Na + ions is enough to compensate for the negative surface charge and to allow for adsorption. Ca2+ ions form additional bridges between negative groups on the surface and in the adsorbate.
Simulations of Short Model Peptides and Practically Relevant Modeled Titanium Implant Surfaces
(2014)
One of the aims of this work was to generate a non restrained force field model including carbon contamination to make the adsorption simulations more realistic and comparable with experimental data. Another purpose was to find out how the special recognition of small linker proteins on titanium dioxide is working. During this work a fixed and a non restrained rutile (100) model was used and critical properties were observed which are not only related to the surface. The rigid water layers on top of the oxide are very important for the protein and peptide adsorption. Therefore the first discussing object were the properties of the water layers and how they can be influenced. The charge distribution on the surface was found to have a big effect on them. Depending on the charges of the surface atoms or the functional groups, resulting out of the hydroxylation equilibrium, precisely the first water layer gets more rigid or smother. This has a big effect on biomolecule adsorption. The peptides need to penetrate these water layers to generate direct interaction points. The correct description of the surface in molecular dynamic simulations therefore has a high influence on the results. The better the model is the better the findings are comparable with experimental ones. Additionally carbon contamination was mimicked by using a monolayer of pentanol molecules. This fits very good with experimental data (e.g. contact angle) and make the oxide model more hydrophobic. Interaction of proteins and peptides in experiments or in medical use are often observed under normal air conditions, which means that the scaffold is i) hydroxylated by water and ii) carbon contaminated in a short period of time. Therefore investigations were done to find out how the contamination influences the adsorption of a formally know good or bad binding peptide (TiOBP1; TiOBP2). It was found that the TiOBP1 is able to bind the different surface modifications very well which coincides with observations made in experiments. The way of adsorption (direct or indirect) depends on the water layers properties. The first layer on high charged surface models is that rigid, that the peptide is not able to adsorb in a direct way. On the carbon contaminated oxide model the adsorption is possible by reducing the flexibility of the secondary structure motive. In the case of TiOBP2 adsorption on the clean surface model results in only weak binding or even in no interaction. Whereas on the carbon contaminated dioxide the once know bad binder is able to interact with the Pentanol monolayer. No direct adsorption is observed but the hydrophobic side chains have the possibility to orient themselves according to the hydrophobic layer without changing significantly in the secondary structure motive. An additional test peptide (minTBP) adsorbs without being affected by the contamination. This raises the question if the distribution of hydrophobic to hydrophilic amino acids has influence on the adsorption ability according to clean and contaminated surface. For experimental application it could be of interest to generated peptides (GEPI´s) which bind both surface types without changing the secondary structure motives then as we know functionality is based on these structures. In the case of the PHMB polymer adsorption was observed depending on the hydroxylation ratio and therefore on the charge density of the rutile (100) surface. After analysis of the simulations takeaways from experiments could be substantiated. The PHMB interacts with the negative charged surface via the first water layer as a film. So the new force field model describing the rutile (100) titanium dioxide surface with additional carbon contamination model of one monolayer pentanol fits the experimental data very well. The adsorption studied on this surfaces indicates that the contamination as expected makes the surface more hydrophobic and influences the adsorption behavior of the tested peptides especially the secondary structure of TiOBP1. This indeed enhances experimental investigations. Peptides which e.g. link organic and inorganic parts should be good adsorbing on clean and contaminated surfaces by keeping their functionality. Furthermore experimental data can be substantiated by using atomistic simulations like in the case of PHMB adsorption.
Humanity is constantly confronted with the emergence and reemergence of infectious diseases. Many of them produce large or devastating epidemics, like AIDS (HIV) and Ebola. Others have been long neglected, yet pose immediate threats to global public health as evidences the abrupt emergence of Zika virus in South America and its association with microcephaly in babies. The examples illustrate, that many of these diseases are provoked by RNA viruses. One of the first steps in understanding and eliminating those threats is the development of sensitive and rapid diagnostic methods. A general and relatively rapid method is the direct detection and examination of the agentâs genome. However, the nature of (re)emerging RNA viruses poses a series of very specific problems for the design of such methods. Therefore, a systematic approach was proposed for the design of DNA-hybridization-base methods to detect and characterize RNA viruses that will have both a high sensitivity and a specificity sufficiently broad to detect, per reaction, down to a single copy of any of the possible variants of the viral genome.
Following this approach a series of assays were designed, developed or adapted and put into use for detection and characterization of important RNA viruses. One of those viruses is West Nile virus (WNV), which after its explosive introduction into USA become the most widespread flavivirus throughout the world and, consequently, many countries began an intensive monitoring. While existing assay detected predominantly the Lineage 1, in Europa Lineage 2 was expected. Two new RT-qPCR for the detection of both lineages were developed, and reportedly used by independent laboratories. Due to more than 50000 associated deaths per year, the Hepatitis E virus also received an increasing attention to elucidate novel routes of transmission. This virus (especially genotype 3) has the zoonotic potential of transmission from pigs and wild boar to humans. RT-qPCR and nested qPCR for detection and characterization of this virus as well as a methodology for subtyping were developed and the first detected case of subtype 3b in a German wild animal was documented. In addition a novel assay for flaviviruses conformed by a RT-qPCR coupled with a low density DNA microarray was developed, which enabled the identification of WNV in mosquitoes from Greece. A RT-qPCR suitable for surveillance and diagnostic of all known variants of Venezuelan equine encephalitis virus was developed too. A causative agent of hemorrhagic infections, the Ngari virus, was detected and characterized in animal samples from Mauritania. These achievements were supported by the development of software applications for selection and visualization of primers and probes from aligned DNA sequences and for modeling of DNA hybridizations using unaligned sequences.
In conclusion a general methodology for rapid development of sensitive diagnostic methods based in DNA-hybridization technics (PCR, sequencing and microarray) was stablished and successful applications are reported.
Ribozymes for Aminoacylation
(2012)
Aminoacyl-tRNA synthetases (aaRS) are at the heart of modern translation, catalyzing the accurate biosynthesis of aminoacyl-tRNAs. According to the RNA world hypothesis, the early translation system should have aminoacylation ribozymes for RNA aminoacylation. For this, an aaRS ribozyme system, consisting of the KK13 ribozyme and the C3a ribozyme was successfully designed, which can perform both amino acid activation and aminoacyl transfer reaction. Generation of such aminoacylation ribozyme system would fill up the gap between the RNA world and the modern biological world. In addition, two types of diversified aminoacylation ribozymes, symmetrical ribozymes and self-assembling ribozymes were successfully developed, which may have great meaning in the origin of life.
In this thesis, rates and extend as well as the ecological implications of electron exchange reactions that involve redox-active moieties in organic matter (OM) were explored. The research builds on earlier findings that confirmed that OM may act as terminal electron acceptor (TEA) for electrons released in microbial respiration. This property was associated with quinone moieties that are ubiquitously found in OM from terrestrial and aquatic environments and that may undergo reversible reduction to the respective hydroquinone. Earlier methodological advances allowed for a rapid, direct and precise quantification of the electron accepting and donating properties of quinones in dissolved OM (DOM) by mediated electrochemical analysis. In this work, the previously established mediated electrochemical analysis was adapted and used in the characterization of redox properties of particulate natural samples that contain redox active iron and organic matter ("geochemical phases"). For the first time, direct measurements confirmed that microorganisms transferred electrons (e) from microbial respiration to the organic and inorganic electron acceptors in the particulate phase. Particulate OM in the sediments was found to provide a capacity to accept or donate e of 650 Âľmol e/gC. An incubation experiment resolved the spatiotemporal dynamics of organic and inorganic TEA species (i.e., nitrate, sulfate, Fe- and Mn oxyhydroxides) in sediments upon changes in oxygen availability and hence redox conditions. Oxygen is consumed when the reduced species are oxidized and, by this means, re-generate their electron-accepting capacity. The use of mediated electrochemical analysis allowed for the quantification of the redox state of the geochemical phases during their reduction and re-oxidation. The electron fluxes initiated by the oxic re generation of the TEAs nitrate, sulfate, Fe(III), Mn(IV) and quinoid moieties in OM were therefore directly monitored instead of modeled from the speciesâ distribution profiles in interstitial waters. The cyclic reduction and re-oxidation of redox species exposed to oxygen fluctuations was suspected to be a critical component of many aquatic ecosystems. In stratified lakes, extended sediment volumes are exposed to oxygen only upon lake overturn. Lake oxygen budgets are therefore influenced by benthic redox processes. The combined field and laboratory study showed that lake overturn seasonally introduces a finite amount of oxygen to the hypolimnion and that about 50% of the subsequent sediment oxygen consumption is exclusively associated with the re-generation of TEA species. These species previously formed in the sediment when organic matter was microbially decomposed during anaerobia. While lake overturn can completely mix epi- and hypolimnetic waters, small-scaled dynamics in temperature and oxygen availability may confine discrete parts of the water column with oscillations in physicochemical conditions. In the studied lake, a transient thermocline cyclically introduces oxygen to hypoxic hyplimnetic waters close to the pelagic redox interface. In the lake, organic TEAs may represent an important component of the total pelagic electron acceptor capacity. Due to the rapid and reversible redox reactions of DOM, reduced organic TEAs are re-generated upon dislocation to oxic parts of the water column. Results show that diurnal fluctuations of oxycline depth shape a micro-environment selecting for microbial species that are released from TEA limitations by OM in oxidized state. Pelagic microbial communities subjected to the same amount of OM in different oxidation states differed by more than 50% after one day. This work substantiates earlier findings that suggested that OM may be an important TEA species in many aquatic and terrestrial ecosystems. OM reduction in microbial respiration was shown to directly affect critical system parameters as bacterial activity, oxygen budgets and aquatic biodiversity. Both the microbial reduction and subsequent abiotic oxidation of OM are sufficiently fast for relevant interaction with oxycline fluctuation on different timescales. Given that organic TEAs are cyclically regenerated, a significant share of ecosystem respiration could be linked to OM reduction. This thesis demonstrated the new and important role electron exchange reactions in OM-rich environments play and explored the mechanism of this previously neglected part of lake functioning. As of today, linking the chemistry of aquatic turnover processes with the microbiological and physical conditions at redox interfaces remains challenging. In conclusions, by providing several cases from aquatic environments, this thesis contributes to the mechanistic understanding of OM reduction in microbial respiration. The results prompt for further research regarding the competitive inhibition of other respiration pathways, including the reductive production of the potent greenhouse gas methane.
Central to this thesis are so-called G-quadruplex (G4) nucleic acids. These unusual structures have recently moved into the scientific limelight - mostly due to their prevalence in the human genome. Incidentally, the vast majority of G4-prone sequences is found in telomeric regions and in the promoter sequences of a large number of cancer-related genes.
Furthermore, recent studies suggest a wide applicability of these structures as therapeutic and functional agents, though the technology is still in its infancy with only a few oligonucleotides in clinical trials. Notably, G-quadruplexes are highly polymorphous, exhibiting different topologies and conformations based on sequence, solution condition and molecularity. Therefore, rational design of such structures with specific, topology-encoded functions demands a comprehensive understanding of the underlying folding parameters.
As the folding process is the result of a whole orchestra of parameters with synergistic effects, the herein proposed approach to understand the G4 structural arrangement concentrates on native G4-forming sequences with well-defined topologies. Perturbations of these structures by rational nucleotide substitutions allow for the observation of discrete effects on the folding pathway and on the resulting overall topology.
The method chosen for primary investigation in the following studies on G4 architectures was Nuclear Magnetic Resonance (NMR) as it is the most powerful tool for structure elucidation in liquids. Unique to this technique, it permits the observation of discrete species in mixtures by distinct perturbations at the atomic level as well as valuable insights into the molecular dynamics.
The included publications study the effects of site-specific bromine substitutions on native quadruplex scaffolds, thereby successfully inducing new structures. These expand the G4 structural landscape but also enhance our understanding of the driving forces in G4 folding.
In this work, the regioselectivity of different Baeyer-Villiger monooxygenases (BVMOs) for the conversion of selected substrates was reversed or improved by protein engineering. These studies highlight the importance of substrate positioning for the regioselectivity and that the position of the substrate can be efficiently influenced by introducing proper mutations. It was shown that the beneficial mutations for all BVMOs were partly in corresponding positions. Additionally, the sulfoxidation activity and the stability of BVMOs were targeted and improved by applying protein engineering.
The aim of this thesis was to validate a method called OSCARR for One-pot, Simple Cassette Randomization and Recombination for focused directed evolution, which had been developed by Dr. Hidalgo. It is based upon the megaprimer PCR method using outer primers differing in TM and including asymmetric cycles before the addition of the forward primer to generate more mutated megaprimer. As mutation-carrying primers, spiked oligonucleotides are employed. These spiked oligonucleotides are designed using an algorithm and have strictly defined composition of nucleotides at each position. An OSCARR library of the Pseudomonas fluorescens esterase I (PFE I) of approximately 8000 clones was generated and screened for altered chain-length selectivity. Two mutants with higher activity towards medium chain length p-nitrophenyl esters were identified, both carried the mutation F126I, which causes the substrate entrance tunnel to be widened, thus facilitating access of bulkier substrates to the active site. One mutant carried the additional mutation G120S which completes a catalytic tetrad which is observed mainly in proteases. F126I had a stronger influence on chain-length specificity, so the further amino acids which form the âbottleneckâ to the active site were mutated to further widen the entrance, and mutants with improved activity were found. The bottleneck mutants which consist of single, double, triple and quadruple mutants which are mostly combinations of F126L, F144L, F159L and I225L were then assayed for altered enantioselectivity against chiral acids and secondary alcohols. For substrates 1-phenyl-1-propyl acetate (2), 1-phenyl-2-propyl acetate (3) and 1-phenyl ethyl acetate (4), mutants with increased enantioselectivity were found. I225L plays a crucial role, as it is vital for enantioselectivity against 3, but destroys selectivity against 2, both facts obvious from the comparison of the triple mutant without I225L (mutant T3) and the corresponding quadruple mutant including I225L (mutant Q). However, the single mutant I225L alone does not possess high selectivity against 3, so synergistic effects play an important role. The PFE I wild type already possesses a good enantioselectivity in the hydrolysis of 4, but all mutants which were analyzed in detail surpass the wild type. The program YASARA was then used to calculate docking solutions for both enantiomers of 2 and 3 into the wild type and the best mutant. The results revealed that the mutantsâ widened bottleneck allows the phenyl moiety of the substrates to point towards the access tunnel, while only (R)-2 does so in the wild type. Residues 126 and 144 do not come very close to the substrate and are more likely to influence substrate diffusion. Another goal was to find a way to confer promiscuous amidase activity upon the PFE I. In the search for structural homologues, a close structural neighbour with amidase activity was found. The --lactamase from Aureobacterium sp. was named after its activity toward the Vince lactam 2-azabicyclo[2.2.1]hept-5-en-3-one. Biocatalysis experiments with the PFE I and its mutants revealed an excellent enantioselectivity against the ( )-lactam. Specific activities were determined for purified proteins, and the activity of some mutants was within the same order of magnitude as lactamaseâs activity.
Molybdenum dependent enzymes are involved in essential metabolic transformations in bacteria, plants, and human beings. The extreme instability of the molybdenum cofactor (Moco) prevents its use as an effective treatment for patients with a Moco deficiency. Therefore, the design, develop and execute the artificial molybdenum cofactor models are essential.
In the present thesis, the asymmetric molybdopterin (mpt) model precursors with oxygen functionality and various electronic structures and their Moco model complexes mimicking the natural cofactor have been synthesized and comprehensively investigated through multi-nuclear NMR, MS, IR, resonance Raman, X-ray crystallography, UV-Vis, and electrochemical methods. Notably, the asymmetrically substituted dithiolenes in this thesis are confirmed through a significant push-pull effect, which is tuning its electronic structure. The redox behavior of Moco model complexes was investigated by temperature-dependent cyclic voltammetry. Electronic and vibrational spectral studies were investigated in detail to understand substituents effect on the electronic structure of model complexes and to elucidate roles of mpt in catalysis. Since the model complexes can be considered as structural models for the Moco dependent oxidoreductases, catalytic oxygen atom transfer (OAT) reactions in DMSO/PPh3 were investigated.
The main focus of the present thesis was achieved through the development of various synthetic routes that address phosphonate bearing dithiolene ligands, inspiring the natural mpt. Simultaneously the Minisci protocol was applied for the synthesis of new pterin ketophosphonates, taking into consideration the essential aspects of the natural molybdopterin, including the phosphate anchor group. Even though some aspects of this protocol require further optimizations, but the mentioned synthetic route has exceptional potential and flexibility.