• Deutsch
Login

Universität Greifswald - Opus4 Open Access

  • Home
  • Search
  • Browse
  • Publish
  • Help

Refine

Author

  • Balke, Kathleen (1)
  • Beier, Andy (1)
  • Kohls, Hannes (1)
  • Last, Daniel (1)
  • Mallin, Hendrik (1)
  • Nguyen, Giang Son (1)

Year of publication

  • 2017 (2)
  • 2010 (1)
  • 2014 (1)
  • 2015 (1)
  • 2016 (1)

Language

  • English (6) (remove)

Keywords

  • Enzym (6) (remove)

Institute

  • Institut für Chemie und Biochemie (6) (remove)

6 search hits

  • 1 to 6
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Enantioselective biocatalysis for the preparation of optically pure tertiary alcohols (2010)
Nguyen, Giang Son
Tertiary alcohols have become interesting targets for organic synthesis themselves or as building blocks for valuable pharmaceutical compounds. However, the synthesis of optically pure tertiary alcohols is still a challenge both chemical and enzymatic means. Enzymes containing the GGG(A)X motif in the active site region have been known to show activity towards these sterically demanding substrates. Several tertiary alcohols have been resolved with high enantioselectivity by using this biocatalytic synthetic route. This thesis aims at providing a better understanding of enantiorecognition of GGG(A)X motif hydrolases in the enzymatic synthesis of enantiomerically enriched tertiary alcohols. Kinetic resolution of a wide range of tertiary alcohols using hydrolases provided insights on factors that can influence enantioselectivity of GGG(A)X motif enzymes. Additionally, a newly proposed chemoenzymatic method to synthesize protected alpha,alpha-dialkyl-alpha-hydroxycarboxylic acids has broadened the application of these enzymes to synthesize optically pure tertiary alcohols. Newly found biocatalysts through functional screening, database mining and rational protein design approaches provided a better enzyme platform for optically pure tertiary alcohol resolution.
Development of Enzymes for Biocatalytic Applications: Protein Engineering, Immobilization and Reactor Concepts (2014)
Mallin, Hendrik
Within this thesis the protein engineering, immobilization and application of enzymes in organic synthesis were studied in order to enhance the productivity of diverse biotransformations. Article I is a review about Baeyer-Villiger monooxygenases (BVMO) and provides a detailed overview of the most recent advantages in the application of that enzyme class in biocatalysis. Protein engineering of a former uncharacterized polyol-dehydrogenase (PDH) identified in the mesothermophilic bacterium Deinococcus geothermalis 11300 is described in Article II. Article III covers the combination of one PDH mutant with a BVMO in a closed-loop cascade reaction, thus enabling direct oxidation of cyclohexanol to ε-caprolactone with an internal cofactor recycling of NADP(H). Article IV and Article V report a process optimization for transamination reactions due to a newly developed immobilization protocol for five (S)- and (R)-selective aminotransferases (ATA) on chitosan support. Furthermore, the immobilized ATAs were applied in asymmetric amine synthesis. In Article VI, an ATA immobilized on chitosan, an encapsulated BVMO whole cell catalyst and a commercially available immobilized lipase were applied in a traditional fixed-bed (FBR) or stirred-tank reactor (STR), and were compared to a novel reactor design (SpinChem, SCR) for heterogeneous biocatalysis.
Biocatalytic Synthesis of Amino Alcohols (2015)
Kohls, Hannes
This thesis investigates the biocatalytic synthesis of amines and amino alcohols. The applicability and economic feasibility of biocatalysis for chiral amine synthesis is reviewed and the findings were compared to established chemical processes using relevant process parameters (TON, TOF and STY). This review clearly showcases the potential of biocatalysis for the synthesis of chiral amines and provides a valuable guide for synthetic chemists who want to benefit from these new opportunities. Next, biocatalysis is applied for the synthesis of an amino alcohol with two stereocentres: A novel route for the synthesis of all four stereoisomers of 4-amino-1-phenylpentane-2-ol is presented. Enzymes were applied to install both stereocentres successively, which allowed the selective synthesis with high yields and optical purities. A small scale preparative asymmetric transamination yielded one amino alcohol stereoisomer selectively. The approach presented in this thesis provides a valuable option for the synthesis of this compound class as it is highly selective, step efficient and circumvents the need for protecting groups as well as transition-metal catalysis. The substrate scope of an (S)-selective amine transaminase (ATA) was altered in order to expand the applicability for amino alcohol synthesis. Protein engineering was conducted to enlarge the small binding pocket. Small scale preparative synthesis of the 1,2-amino alcohol (R)-phenylglycinol exemplifies the applicability of the evolved variants for the asymmetric synthesis of this compound. The designed variants expand the collection of ATAs that are suitable for the synthesis of amino alcohols with bulkier substituents. To deepen the understanding of ATAs further, a class III TA family wide analysis (which includes (S)-selective ATAs) is presented. After comparing the active site architectures and performing literature research amino acids were identified that correlate with the reaction- and substrate specificity of the enzymes within this family. This information is compiled in a sequence-function matrix, which allows the prediction of the main activity of biochemically uncharacterised enzymes from their sequence. These insights provide a better understanding of the activity determining residues in (S)-ATAs and class III TAs in general.
Novel methods and tools for lactonases, acylases and proteases (2016)
Last, Daniel
This thesis is about the establishment and the application of novel methods and tools that are re-lated to the most widely used enzyme class: hydrolases. It covers all fields from the identification to the application of these valuable enzymes with particular focus on lactonases, acylases and proteases. The activity assay introduced in Article I substantially extends the method toolbox for studies on lactonases and acylases that interfere with the bacterial cell-cell communication system. Article II describes a fully automatized robotic platform that represents the next-level tool for the high-throughput enzyme screening in the microtiter plate format. It was used, for instance, for the screening for improved porcine aminoacylase I variants. Diverse aspects of the protease-mediated hydrolysis of non-resistant proteins for the purification of resistant target proteins are highlighted in Article III.
Discovery and Protein Engineering of Baeyer-Villiger monooxygenases (2017)
Beier, Andy
In this work, the discovery, expression and characterization of new eukaryotic Baeyer-Villiger monooxygenases (BVMOs) from yeasts has been shown. A rational design of one of these enzymes led to the identification of key residues to alter the sulfoxidation activity of this group of enzymes. Additionally, in another rational design approach, the cofactor specificity of the BVMO cyclohexanone monooxygenase from Acinetobacter calcoaceticus could be substantially altered to accept the much cheaper and therefore industrially more relevant cofactor NADH.
Protein Engineering of Baeyer-Villiger Monooxygenases (2017)
Balke, Kathleen
In this work, the regioselectivity of different Baeyer-Villiger monooxygenases (BVMOs) for the conversion of selected substrates was reversed or improved by protein engineering. These studies highlight the importance of substrate positioning for the regioselectivity and that the position of the substrate can be efficiently influenced by introducing proper mutations. It was shown that the beneficial mutations for all BVMOs were partly in corresponding positions. Additionally, the sulfoxidation activity and the stability of BVMOs were targeted and improved by applying protein engineering.
  • 1 to 6

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks