Diejenigen Mechanismen, welche innerhalb der skeletalen Myozyten zur Kontraktion und Kraftentfaltung führen, sind heute, bis auf wenige verbleibende Mysterien, sehr gut verstanden. In der Hauptsache werden zu den relevanten Membranproteinen, die im Exzitations- und Kontraktionsgeschehen der Myozyten von Bedeutung sind, der sarkolemmale Dihydropyridinrezeptor sowie der sarkoplasmatische Ryanodinrezeptor gezählt - nicht aber TRP-Ionenkanäle. Diese werden hingegen u.a. mit der Sensorik von Geschmack, Temperatur, Osmolarität, Nozizeption sowie taktiler Reize in Verbindung gebracht. TRP-Ionenkanäle werden ubiquitär exprimiert. Ihre Existenz innerhalb des Sarkolemms von Myozyten, sowohl vom glatten als auch vom quergestreiften Typus, ist belegt. Die belgische Gruppe um Nadège Zanou, Georges Shapovalov und Phillip Gailly publizierten Hinweise, die darauf hindeuten, dass ein spezieller kanonischer TRP-Ionenkanal, der TRPC1, möglicherweise eine Rolle im Kontraktionsgeschehen der quergestreiften Myozyten spielt. Solche Beobachtungen werfen unter anderem die Frage auf, ob es weitere Kandidaten der TRP-Proteinfamilie gibt, die in die myozytären Kontraktionsprozesse involviert sind. Es ist derzeit teilweise geklärt, welche Funktionen TRP-Ionenkanäle der TRPV-Subfamilie innerhalb glatter Muskelzellen übernehmen. Welche Bedeutung Vertreter der TRPV-Subfamilie für die quergestreiften Myozyten haben, ist aktuell aber noch nicht hinreichend geklärt. Die vorliegende Dissertation thematisiert die wissenschaftliche Frage nach der funktionellen Bedeutung von TRPV4-Ionenkanälen für die Kontraktions- und Ermüdungsvorgänge innerhalb der quergestreiften Muskulatur der Maus. Um die Frage beantworten zu können, ob TRPV4-Kationenkanäle innerhalb der quergestreiften Myozyten funktional sind, führten wir In-vitro-Kraftmessungen mit isolierten Mm. solei der Wildtypmäuse C57Bl/10Sc/J und C57Bl/6 sowie der TRPV4-defizienten Maus durch. Darüber hinaus haben wir den Einfluss von 4aPDD, ein Phorbolesterderivat und selektiver TRPV4-Aktivator, auf Kontraktions- und Relaxationszeiten, die maximalen Kraftentwicklungen sowie die Muskelermüdung (Fatigue) untersucht. Im Rahmen unserer Untersuchungen konnten wir zeigen, dass sich der quergestreifte Muskel über eine TRPV4-Stimulation im Hinblick auf seine Maximalkraftentwicklung und Ermüdungserscheinungen positiv beeinflussen lässt, wohingegen dabei sowohl die Kontraktions- als auch die Relaxationskinetiken unbeeinflusst blieben. Unsere Resultate und Beobachtungen stellen somit ein deutliches Plädoyer für die Funktionalität der TRPV4-Ionenkanäle innerhalb der quergestreiften Myozyten dar.
Als Teil der TRP-Ionenkanalfamilie handelt es sich bei dem TRPV4 um einen nicht selektiven Kationenkanal mit einer höheren Spezifität gegenüber Kalziumionen im Ver-gleich zu anderen Kationen. Dieser Kanal ist bereits in einer Vielzahl von Geweben mit unterschiedlichen Funktionen beschrieben worden, über seine genaue Funktion in der quergestreiften Muskulatur ist jedoch bisher wenig bekannt. Untersuchungen an Dystrophin-defizienten-Mausmuskelfasern – einem Modell für die Muskeldystrophie vom Typ Duchenne – zeigten einen erhöhten intrazellulären Kalzi-umgehalt auf, der für die pathogenetischen Veränderungen wie Muskelzellnekrosen und verstärkter Fibrosierung im Rahmen dieser Erkrankung verantwortlich gemacht wird. Durch seine hohe Ionenselektivität und dadurch bedingte Einflussnahme auf die Kalzi-umhomöostase ist eine Beteiligung des TRPV4 in diesem Zusammenhang denkbar. Pritshow et. al. konnten zudem zeigen, dass der TRPV4 Kanal in quergestreifter Musku-latur eines Wildtyp-Mausmodells unter gezielter Stimulation positiven Einfluss auf die maximale Kraftentwicklung und Ermüdungserscheinungen nimmt. Auf Basis dieser Erkenntnisse sind in der vorliegenden Arbeit elektrophysiologische Untersuchungen des TRPV4 Kanals mit den spezifischen Kanalaktivatoren 4α-PDD und GSK1016790A an isolierten TRPV4 Wildtyp-und Knockout-Skelettmuskelfasern der Maus durchgeführt worden. Untersuchungsgegenstand waren dabei mittels Kalium-chlorid induzierte Kalziumtransienten, die sich unter dem Einfluss der TRPV4 Kanalak-tivität veränderten. Die Ergebnisse zeigten, dass 4α-PDD in Wildtyp-Skelettmuskelfasern zu einer höheren Offenheitswahrscheinlichkeit des TRPV4 und damit auch zu einem vermehrten Ein-strom an Kalziumionen, erkennbar am langsameren Abklingen des Transienten, führt. Im Gegensatz dazu führte die Stimulation mit 4α-PDD in TRPV4 Knockout-Skelettmuskelfasern zu einem schnelleren Abklingen des Transienten im Vergleich zur Kontrolle – ein Effekt, der bis dato in der Literatur nicht erklärt werden kann. Des Wei-teren erreichten die induzierten Kalziumtransienten schneller das Maximum, Grund hierfür könnte eine mögliche Gegenregulation anderer TRP-Kanäle sein. Die Anwendung des selektiven TRPV4 Kanalaktivators GSK1016790A ergab keine signifikanten Veränderungen im Vergleich zur unstimulierten Situation. Da es bisher keine Daten zur Verwendung von GSK1016790A im Zusammenhang mit Skelettmus-kelfasern gibt, die zum Vergleich herangezogen werden konnten, sind Aussage-und Interpretationsmöglichkeiten bezüglich Validität und Reliabilität begrenzt. Die Einflussnahme des TRPV4 auf die gemessenen Kalziumtransienten und der dadurch erzielten Modulation der Kalziumhomöostase in isolierten Skelettmuskelfasern ist durch die Ergebnisse belegt. Welche Interventionsmöglichkeiten sich damit bezüglich der Duchenne Muskeldystrophie ergeben, sollte Gegenstand weiterer Untersuchungen sein.
Die Duchenne Muskeldystrophie stellt eine X-chromosomal rezessiv vererbte, schwere Form der Muskeldystrophie dar. Die Ursache ist eine Mutation im Dystrophingen und die Folgen äußern sich in Muskelschwäche, Muskelfasernekrosen und einer verstärkten Fibrosierung. Der genaue Pathomechanismus ist noch nicht abschließend geklärt. Durch Muskelbiopsien von DMD Patienten und mit Hilfe des homologen Tiermodells, der mdx-Maus, konnte herausgefunden werden, dass der intrazelluläre Kalziumgehalt der Dystrophin-defizienten Muskelfasern erhöht ist. Einen möglichen Therapieansatz könnte die Blockierung von Kationenkanälen der Muskelfasermembran, die den pathologischen Kalziumeinstrom ermöglichen, darstellen. In vorangegangenen Arbeiten werden die TRP-Kanäle (Transient Receptor Potential channels) für den pathologischen Kalziumeinstrom mitverantwortlich gemacht. In der vorliegenden Arbeit wurde der Fokus in erster Linie auf einen Vertreter der TRP-Kanal-Superfamilie, den TRPV4, gelegt. Zu diesem Zweck wurde die TRPV4-Knock out Maus näher untersucht. Zunächst führte man eine Standardhistologie mit Hilfe von HE, Sirius RED und ATPase-Färbung durch. Sowohl die Faserkaliberbestimmung als auch die Messung des Bindegewebsanteils zeigten keine Unterschiede zum Wildtypen. Eine anschließende Genstudie mittels RT-PCR ermöglichte die Quantifizierung der mRNA Expression von 22 TRP-Kanälen in der murinen Skelettmuskulatur. Dabei sollte in dieser Arbeit unter anderem die Frage einer möglichen Gegenregulation anderer-Kanäle auf Grund des TRPV4-Mangels in der TRPV4-KO Maus geklärt werden. Des Weiteren wurde auch ein Vergleich der mRNA Kanal-Expression zwischen schnellen (EDL) und langsamen (SOL) Muskel vorgenommen. Die Untersuchungen zeigten, dass von den 22 analysierten TRP-Kanälen 16 auf mRNA Ebene exprimiert werden. Dabei wiesen TRPV2 und TRPV3 eine erhöhte mRNA Expression in der TRPV4-KO Mutante im Vergleich zum Wildtyp auf. Signifikant war dieser Unterschied für TRPV2 im M. soleus und für TRPV3 in allen drei untersuchten Skelettmuskeln (TA, EDL, SOL). Dies könnte für eine Gegenregulation dieser 2 TRP-Kanäle in TRPV4-defizienten Muskelfasern sprechen. Des Weiteren wurde eine signifikant verstärkte mRNA Expression von TRPM3, M4, M6, M8, V2, V4, und V6 im langsam zuckenden M. soleus im Vergleich zum schnell zuckenden EDL beobachtet. Dies trifft sowohl für die TRPV4-KO als auch für die WT Mäuse zu und könnte für eine stärkere Expression dieser TRP-Kanäle in den langsamen TYP 1 Fasern des M. soleus sprechen. Aus den vorliegenden Ergebnissen geht hervor, dass im Falle des Verlustes eines TRP-Kanals höchstwahrscheinlich andere Vertreter dieser Kanalfamilie in der Lage sind durch eine verstärkte Expression den Mangel zu kompensieren. Dies gilt es im Rahmen einer möglichen Therapie der Duchenne Muskeldystrophie, zum Beispiel mit Hilfe von TRP-Kanalblockern, zu beachten.