Refine
Year of publication
Document Type
- Doctoral Thesis (150)
- Article (71)
- Conference Proceeding (17)
Has Fulltext
- yes (238)
Is part of the Bibliography
- no (238)
Keywords
- - (83)
- Plasma (24)
- Plasmaphysik (24)
- Plasmadiagnostik (14)
- Stellarator (12)
- Komplexes Plasma (7)
- Polyelektrolyt (7)
- Kernfusion (6)
- Wendelstein 7-X (6)
- dusty plasma (6)
Institute
- Institut für Physik (238) (remove)
Publisher
- IOP Publishing (55)
- MDPI (12)
- Frontiers Media S.A. (4)
- IOP Science (3)
- European Geosciences Union (2)
- John Wiley & Sons, Ltd (2)
- APS (1)
- IOP (1)
- IOP Scince (1)
- IoP (1)
In this work, 2-dimensional measurements in the THz frequency range with self-made spintronic THz emitters were presented. The STE were used to optimize the spatial resolution and determine the magnetization in geometric shapes. At the beginning, various combinations of FM and NM layers were produced and measured to achieve an optimal composition of the STE. The layer thickness of the ferromagnetic CoFeB layer and the nonmagnetic PT layer was also varied. The investigations have shown that a layer combination of 2 nm thick CoFeB and 2 nm thick Pt, applied to a fused silica glass substrate and covered with a 300 nm thick SiO2 layer, emits the highest THz amplitude. Based on these, a structured sample, consisting of an STE and an additional layer system of 5 nm Cr and 100 nm Au, was produced. Further, three wedge-shaped structures were removed from the gold layer by an etching process so that the THz radiation generated by the STE can pass through these areas. This enables the optimization of the resolution of the system. For this purpose, the sample was moved perpendicular to the laser beam by two stepping motors with a step size of 5 μm and imaged 2-dimensionally. By reducing the step size to 0.2 μm, the beam diameter could be measured at the edge of the structure using the knife-edge method. Based on this measurement, the resolution of the system could be determined as 5.1 ± 0.5 μm at 0.5 THz, 4.9 ± 0.4 μm at 1 THz, and 5.0 ± 0.5 μm at 1.5 THz. These results are confirmed by simulations considering the propagation of THz wave packets through the SiO2. The expansion of the FWHM of the waves, passing through the 300 nm thick layer, is about 1%. Only a SiO2 layer with a thickness in the μm range occurs an expansion of around 10%. This shows that it is possible to perform 2-dimensional THz spectroscopy with a resolution in the dimension of the exciting laser beam by using near-field optics. Afterward, the achieved spatial resolution was used to investigate the influence of external magnetic fields on the STE and the emitted THz radiation. By implementing a pair of coils above the sample, an external magnetic field could be applied parallel to the pattern. The used sample was designed in such a way that only certain geometric areas on the fused silica glass substrate were coated with an STE so that THz radiation is emitted only in those areas. The 2-dimensional images show the geometric structures for f = 1.0 THz and f = 1.5 THz clearly. By applying a permanent, positive magnetic field (+M), a positive course of the THz amplitude can be seen. A rotation of the magnetic field by 180° (-M) leads to a reversal of the orientation of the emitted THz radiation, whereby the magnetic field does not influence the corresponding frequency spectrum. By using minor loops, the sample was demagnetized by the constant reduction of the magnetic field strength with alternating magnetic field direction. The 2-dimensional representation of the pattern with a step size of 10 μm shows that the sample was demagnetized since both, positively and negatively magnetized structures, could be imaged. In addition, in the 2nd row from the top, a completely demagnetized circle and a rectangle with a division into two domains can be seen. These structures have both positive and negative magnetized areas, which are separated by a domain wall. To investigate this in more detail a 2-dimensional measurement of the divided regions was made with a step size of 2.5 μm. These images confirm the division of the structures into positive and negative domains, separated by a domain wall, which was verified by Kerr-microscope measurements. Both data show a similar course of the domains and the domain wall. However, to be able to examine the domain wall more precisely using 2-dimensional THz spectroscopy, the resolution of the system must be improved to a range of a few nm, because the expected domain wall width is between 𝑙𝑊 = 12.56 nm and 𝑙𝑊 = 125.6 nm. The improved resolution would make it possible to image foreign objects, such as microplastics in biological cells or tissue. For this purpose, different plastics, such as polypropylene, polyethylene, and polystyrene, were investigated in the THz frequency range up to 4 THz. While no specific absorption could be determined for PP, characteristic absorption peaks were found for PE and PS. The energy of the photons with a frequency of about 2.2 THz excites lattice vibrations in the PE. Therefore, this frequency is specifically absorbed, and the intensity in the transmission spectrum is lower than for other frequencies. PS absorbs especially THz radiation with a frequency of 3.2 THz. In addition, all of the investigated plastics are mostly transparent for THz radiation, which makes imaging of these materials feasible. Based on these basic properties, it will be possible to image and identify these types of plastic.
A novel method for time-resolved tuned diode laser absorption spectroscopy has been developed. In this paper, we describe in detail developed electronic module that controls time-resolution of laser absorption spectroscopy system. The TTL signal triggering plasma pulse is used for generation of two signals: the first one triggers the fine tuning of laser wavelength and second one controls time-defined signal sampling from absorption detector. The described method and electronic system enable us to investigate temporal evolution of sputtered particles in technological low-temperature plasma systems. The pulsed DC planar magnetron sputtering system has been used to verify this method. The 2" in diameter titanium target was sputtered in pure argon atmosphere. The working pressure was held at 2 Pa. All the experiments were carried out for pulse ON time fixed at 100 (is. When changing OFF time the discharge has operated between High Power Impulse Magnetron Sputtering regime and pulsed DC magnetron regime. The effect of duty cycle variation results in decrease of titanium atom density during ON time while length of OFF time elongates. We believe that observed effect is connected with higher degree of ionization of sputtered particles. As previously reported by Bohlmark et al., the measured optical emission spectra in HiPIMS systems were dominated by emission from titanium ions [1].
Application of quantum cascade laser absorption spectroscopy to studies of fluorocarbon molecules
(2009)
The recent advent of quantum cascade lasers (QCLs) enables room-temperature mid-infrared spectrometer operation which is particularly favourable for industrial process monitoring and control, i.e. the detection of transient and stable molecular species. Conversely, fluorocarbon containing radio-frequency discharges are of special interest for plasma etching and deposition as well as for fundamental studies on gas phase and plasma surface reactions. The application of QCL absorption spectroscopy to such low pressure plasmas is typically hampered by non-linear effects connected with the pulsed mode of the lasers. Nevertheless, adequate calibration can eliminate such effects, especially in the case of complex spectra where single line parameters are not available. In order to facilitate measurements in fluorocarbon plasmas, studies on complex spectra of CF4 and C3F8 at 7.86 μm (1269 – 1275 cm-1) under low pressure conditions have been performed. The intra-pulse mode, i.e. pulses of up to 300 ns, was applied yielding highly resolved spectral scans of ∼ 1 cm-1 coverage. Effective absorption cross sections were determined and their temperature dependence was studied in the relevant range up to 400 K and found to be non-negligible.
Fluorocarbon containing capacitively coupled radio frequency (cc-rf) plasmas are widely used in technical applications and as model systems for fundamental investigations of complex plasmas. Absorption spectroscopy based on pulsed quantum cascade lasers (QCL) was applied in the mid-IR spectral range of 1269-1275 cm-1. Absolute densities of the precursor molecule CF4 and of the stable product C3F8 were measured with a time resolution of up to 1 ms in pulsed CF4/H2 asymmetrical cc-rf (13.56 MHz) discharges. For this purpose both the non-negligible temperature dependence of the absorption coefficients and the interference of the absorption features of CF4 and C3F8 had to be taken into account in the target spectral range. Therefore, at two different spectral positions composite absorption spectra were acquired under the same plasma conditions in order to discriminate between CF4 and C3F8 contributions. A total consumption of∼ 12 % was observed for CF4 during a 1 s plasma pulse, whereas C3F8 appeared to be produced mainly from amorphous fluorocarbon layers deposited at the reactor walls. A gas temperature increase by ∼ 100 K in the plasma pulse was estimated from the measurements. Additionally, not yet identified unresolved absorption (potentially from the excited CF4 molecule) was found during the àon-phase'.
We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.
In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.
A quantum kinetic approach is presented to investigate the energy relaxation of dense strongly coupled two-temperature plasmas. We derive a balance equation for the mean total energy of a plasma species including a quite general expression for the transfer rate. An approximation scheme is used leading to an expression of the transfer rates for systems with coupled modes relevant for the warm dense matter regime. The theory is then applied to dense beryllium plasmas under conditions such as realized in recent experiments. Special attention is paid to the influence of correlation and quantum effects on the relaxation process.
In order to clarify the physics of the crossover from a spin-density-wave (SDW) Mott insulator to a charge-density-wave (CDW) Peierls insulator in one-dimensional (1D) systems, we investigate the Hubbard-Holstein Hamiltonian at half filling within a density matrix renormalisation group (DMRG) approach. Determining the spin and charge correlation exponents, the momentum distribution function, and various excitation gaps, we confirm that an intervening metallic phase expands the SDW-CDW transition in the weak-coupling regime.
We discuss a numerical method to study electron transport in mesoscopic devices out of equilibrium. The method is based on the solution of operator equations of motion, using efficient Chebyshev time propagation techniques. Its peculiar feature is the propagation of operators backwards in time. In this way the resource consumption scales linearly with the number of states used to represent the system. This allows us to calculate the current for non-interacting electrons in large one-, two- and three-dimensional lead-device configurations with time-dependent voltages or potentials. We discuss the technical aspects of the method and present results for an electron pump device and a disordered system, where we find transient behaviour that exists for a very long time and may be accessible to experiments.
A research of the temperature effect of the muon cosmic ray (CR) component on the MuSTAnG super telescope data (Greifswald, Germany) for the whole period of its work (from 2007) was carried out. The primary hourly telescope's data were corrected for the temperature effect, using vertical temperature atmospheric profile at the standard isobaric levels obtained from the GFS model. To estimate the model accuracy and applicability the air sounding data for some years were used.
The properties of the ion feature of the Thomson scattering signal are investigated. Firstly, the description of the atomic form factor by hydrogen-like wave functions is reviewed and better screening charges are obtained. Then the ionic structure in systems with several ion species is calculated from the HNC integral equation.
Based on distributions of local Green's functions we present a stochastic approach to disordered systems. specifically we address Anderson localisation and cluster effects in binary alloys. Taking Anderson localisation of Holstein polarons as an example we discuss how this stochastic approach can be used for the investigation of interacting disordered systems.
The interaction of partially ionized plasmas with an electromagnetic field is investigated using quantum statistical methods. A general statistical expression for the current density of a plasma in an electromagnetic field is presented and considered in the high field regime. Expressions for the collisional absorption are derived and discussed. Further, partially ionized plasmas are considered. Plasma Bloch equations for the description of bound-free transitions are given and the absorption coefficient as well as rate coefficients for multiphoton ionization are derived and numerical results are presented.
First-principle path integral Monte Carlo simulations were performed in order to analyze correlation effects in complex electron-hole plasmas, particularly with regard to the appearance of excitonic bound states. Results are discussed in relation to exciton formation in unconventional semiconductors with large electron hole mass asymmetry.
Collisional absorption of dense fully ionized plasmas in strong high-frequency laser fields is investigated in the non-relativistic case. Quantum statistical methods are used as well as molecular dynamics simulations. In the quantum statistical expressions for the electrical current density and the electron-ion collision frequency–valid for arbitrary field strength–strong correlations are taken into account. In addition, molecular dynamic simulations were performed to calculate the heating of dense plasmas in laser fields. Comparisons with the analytic results for different plasma parameters are given. Isothermal plasmas as well as two-temperature plasmas are considered.
The relaxation of nonideal two-temperature plasmas is investigated with a kinetic approach. First the energy transfer between the electrons and ions is described using different approximations: the energy transfer through classical collisions (Landau-Spitzer approach) is reviewed; quantum diffraction and strong collisions are included by applying the quantum Boltzmann equation; the influence of collective modes is considered on the basis of the Lenard-Balescu equation (coupled modes) and with the Fermi-Golden-Rule approach (independent electron and ion modes). Finally, the evolution of the species temperature is investigated. In nonideal plasmas, changes in the correlation energy have to be taken into account during the relaxation. It is demonstrated that ionic correlations can significantly influence the relaxation particularly the evolution of the ion temperature).
We investigate the equilibration of nonideal plasmas from initial states where each species has already established a Maxwellian distribution, but the species temperatures and the chemical composition are not in equilibrium. On the basis of quantum kinetic equations, we derive hydrodynamic balance equations for the species densities and temperatures. The coupled density-temperature relaxation is then given in terms of the energy transfer between the subsystems and the population kinetics. We use the Landau-Spitzer approach for the energy transfer rates and a system of rate equations to describe the nonequilibrium plasma composition. Nonideality corrections are included in the rate coefficients and as potential energy contributions in the temperature equations on the simplest level of a Debye shift.
The triple-trap mass spectrometer ISOLTRAP at ISOLDE/CERN has demonstrated the feasibility of mass spectrometry of in-trap-decay product ions. This novel technique gives access to radionuclides, which are not produced directly at ISOL-type radioactive ion beam facilities. As a proof of principle, the in-trap decay of 37K+ has been investigated in a Penning trap filled with helium buffer gas. The half-life of the mother nuclide was confirmed and the recoiling 37Ar+ daughter ion was contained within the trap. The ions of either the mother or the daughter nuclide were transferred to a precision Penning trap, where their mass was determined.
Colossal magneto-resistance manganites are characterized by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting two conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low-energy physics. Focusing on short-range electron–lattice and spin–orbital correlations we supplement the modelling with numerical simulations.
Low-pressure plasmas offer a unique possibility of confinement, control and
fine tailoring of particle properties. Hence, dusty plasmas have grown
into a vast field and new applications of plasma-processed dust particles
are emerging. There is demand for particles with special properties and
for particle-seeded composite materials. For example, the stability of
luminophore particles could be improved by coating with protective Al2O3
films which are deposited by a PECVD process using a metal-organic precursor gas.
Alternatively, the interaction between plasma and injected micro-disperse powder
particles can also be used as a diagnostic tool for the study of plasma surface
processes. Two examples will be provided: the interaction of micro-sized (SiO2)
grains confined in a radiofrequency plasma with an external ion beam as well as
the effect of a dc-magnetron discharge on confined particles during deposition
have been investigated.
The region surrounding the excitonic insulator phase is a three-component plasma composed of electrons, holes, and excitons. Due to the extended nature of the excitons, their presence influences the surrounding electrons and holes. We analyze this correlation. To this end, we calculate the density of bound electrons, the density of electrons in the correlated state, the momentum-resolved exciton density, and the momentum-resolved density of electron-hole pairs that are correlated but unbound. We find qualitative differences in the electron-hole correlations between the weak-coupling and the strong-coupling regime.
Solar Activity Driven 27‐Day Signatures in Ionospheric Electron and Molecular Oxygen Densities
(2022)
Abstract
The complex interactions in the upper atmosphere, which control the height‐dependent ionospheric response to the 27‐day solar rotation period, are investigated with the superposed epoch analysis technique. 27‐day signatures describing solar activity are calculated from a solar proxy (F10.7) and wavelength‐dependent extreme ultraviolet (EUV) fluxes (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Solar EUV Experiment), and the corresponding 27‐day signatures describing ionospheric conditions are calculated from electron density profiles (Pruhonice ionosonde station) and O2 density profiles (Global‐scale Observations of the Limb and Disk). The lag analysis of these extracted signatures is applied to characterize the delayed ionospheric response at heights from 100 to 300 km and the impact of major absorption processes in the lower (dominated by O2) and upper ionosphere (dominated by O) is discussed. The observed variations of the delay in these regions are in good agreement with model simulations in preceding studies. Additionally, the estimated significance and the correlation of the delays based on both ionospheric parameters are good. Thus, variations such as the strong shift in 27‐day signatures for the O2 density at low heights are also reliably identified (up to half a cycle). The analysis confirms the importance of ionospheric and thermospheric coupling to understand the variability of the delayed ionospheric response and introduces a method that could be applied to additional ionosonde stations in future studies. This would allow to describe the variability of the delayed ionospheric response spatially, vertically and temporally and therefore may contribute further to the understanding of processes and improve ionospheric modeling.
Abstract
Based on the analysis of electron density Ne profiles (Grahamstown ionosonde), a case study of the height‐dependent ionospheric response to two 27‐day solar rotation periods in 2019 is performed. A well‐defined sinusoidal response is observed for the period from 27 April 2019 to 24 May 2019 and reproduced with a Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model simulation. The occurring differences between model and observations as well as the driving physical and chemical processes are discussed based on the height‐dependent variations of Ne and major species. Further simulations with an artificial noise free sinusoidal solar flux input show that the Ne delay is defined by contributions due to accumulation of O+ at the Ne peak (positive delay) and continuous loss of O2+ ${\mathrm{O}}_{2}^{+}$ in the lower ionosphere (negative delay). The neutral parts' 27‐day signatures show stronger phase shifts. The time‐dependent and height‐dependent impact of the processes responsible for the delayed ionospheric response can therefore be described by a joint analysis of the neutral and ionized parts. The return to the initial ionospheric state (and thus the loss of the accumulated O+) is driven by an increase of downward transport in the second half of the 27‐day solar rotation period. For this reason, the neutral vertical winds (upwards and downwards) and their different height‐dependent 27‐day signatures are discussed. Finally, the importance of a wavelength‐dependent analysis, statistical methods (superposed epoch analysis), and coupling with the middle atmosphere is discussed to outline steps for future analysis.
The role of large-scale fluctuation structures in electrostatic
drift-wave-type plasma turbulence is highlighted. In particular,
well-defined laboratory experiments allow one to study the
dynamics of drift wave mode structures as well as `eddies' in
drift wave turbulence. In the present paper we discuss the
mutual relationships between observations made in linear
magnetic geometry, purely toroidal geometry and magnetic
confinement. The simplest structure, a saturated, nonlinear
drift mode, is the starting point for a Ruelle-Takens-Newhouse
transition route to chaos and weakly developed turbulence. Both
spectral and phase space analysis are applied to characterize in
detail the transition scenario, which is enforced due to an
increased drive by the plasma equilibrium state. In addition to
direct multi-probe observation, statistical approaches are most
revealing for the systematic study of the spatiotemporal
dynamics in fully developed drift wave turbulence. In
particular, the propagation of large-scale `eddy' structures is
traced by conditional statistics methods. Finally, the control
of drift wave turbulence by spatiotemporal synchronization is
discussed.
Abstract
We formulate exact generalized nonequilibrium fluctuation relations for the quantum mechanical harmonic oscillator coupled to multiple harmonic baths. Each of the different baths is prepared in its own individual (in general nonthermal) state. Starting from the exact solution for the oscillator dynamics we study fluctuations of the oscillator position as well as of the energy current through the oscillator under general nonequilibrium conditions. In particular, we formulate a fluctuation–dissipation relation for the oscillator position autocorrelation function that generalizes the standard result for the case of a single bath at thermal equilibrium. Moreover, we show that the generating function for the position operator fulfils a generalized Gallavotti–Cohen-like relation. For the energy transfer through the oscillator, we determine the average energy current together with the current fluctuations. Finally, we discuss the generalization of the cumulant generating function for the energy transfer to nonthermal bath preparations.
AbstractComplex plasma is a state of soft matter where micrometer-sized particles are immersed in a weakly ionized gas. The particles acquire negative charges of the order of several thousand elementary charges in the plasma, and they can form gaseous, liquid and crystalline states. Direct optical observation of individual particles allows to study their dynamics on the kinetic level even in large many-particle systems. Gravity is the dominant force in ground-based experiments, restricting the research to vertically compressed, inhomogeneous clouds, or two-dimensional systems, and masking dynamical processes mediated by weaker forces. An environment with reduced gravity, such as provided on the International Space Station (ISS), is therefore essential to overcome this limitations. We will present the research goals for the next generation complex plasma facility COMPACT to be operated onboard the ISS. COMPACT is envisaged as an international multi-purpose and multi-user facility that gives access to the full three-dimensional kinetic properties of the particles.
AbstractGas puff modulation experiments are performed at ASDEX Upgrade in L-mode plasmas. We model the discharge with the ASTRA transport code in order to determine transport coefficients outside of a normalized radius of ρ
pol = 0.95. The experimental data is consistent with a range of particle diffusivities and pinch velocities of the order of D = (0.20 ± 0.13) m2 s−1 and v = (−1 ± 2) m s−1, respectively. The electron temperature response caused by the gas modulation permits to estimate also that heat diffusivity χ
e increases almost linearly when collisionality rises due to fuelling. The fuelling particle flux is amplified by recycling, overcompensating losses.
Synopsis
By interaction with electrons in ion storage devices (ion-cyclotron-resonance and radio-frequency traps) negatively charged clusters of gold and aluminum have been produced up to the 6th and 10th charge state, respectively. The production of these poly-anions opens exciting new possibilities to measure their lifetimes, to monitor their relaxation schemes after laser radiation, as well as to probe their Coulomb barriers.
Synopsis
C+60 has been proposed to be responsible for two of the diffuse interstellar bands (DIBs), the absorption features observed in the visible-to-near-infrared spectra of the interstellar medium. However, a confirmation requires laboratory gas-phase spectra, which are so far not available. We plan to develop a novel spectroscopy technique that will allow us to obtain the first gas-phase spectra of C+60, and that will be applicable to other complex organic molecules such as polycyclic aromatic hydrocarbons. The current status of the experimental setup, the ideas behind the measurement scheme and the preparatory work toward its implementation will be presented.
Synopsis
A network of ion sources is being developed on the 300-kV acceleration platform of the cryogenic storage ring (CSR) at the Max-Planck-Institut für Kernphysik. It consists of several types of sources like a metal ion sputtering source (MISS), a Penning source, a laser vaporization (LVAP) source, and an electrospray ionization (ESI) source to produce a large variety of ions which can be studied for photon and electron interaction in a ro-vibrationally cold environment. Furthermore a storage device such as a radiofrequency quadrupole (RFQ) is foreseen for internal state cooling and accumulation of rarely produced species.
AbstractThe 2022 Roadmap is the next update in the series of Plasma Roadmaps published by Journal of Physics D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.
Detecting changes in plasmas is compulsory for control and the detection of novelties.
Moreover, automated novelty detection allows one to investigate large data sets to substantially
enhance the efficiency of data mining approaches. To this end we introduce permutation entropy
(PE) for the detection of changes in plasmas. PE is an information-theoretic complexity measure
based in fluctuation analysis that quantifies the degree of randomness (resp. disorder,
unpredictability) of the ordering of time series data. This method is computationally fast and
robust against noise, which allows the evaluation of large data sets in an automated procedure.
PE is applied on electron cyclotron emission and soft x-ray measurements in different
Wendelstein 7-X low-iota configuration plasmas. A spontaneous transition to high core-electron
temperature (Te) was detected, as well as a localized low-coherent intermittent oscillation which
ceased when Te increased in the transition. The results are validated with spectrogram analysis
and provide evidence that a complexity measure such as PE is a method to support in-situ
monitoring of plasma parameters and for novelty detection in plasma data. Moreover, the
acceleration in processing time offers implementations of plasma-state-detection that provides
results fast enough to induce control actions even during the experiment.
Abstract
We present experiments on the luminescence of excitons confined in a potential trap at milli-Kelvin bath temperatures under continuous-wave (cw) excitation. They reveal several distinct features like a kink in the dependence of the total integrated luminescence intensity on excitation laser power and a bimodal distribution of the spatially resolved luminescence. Furthermore, we discuss the present state of the theoretical description of Bose–Einstein condensation of excitons with respect to signatures of a condensate in the luminescence. The comparison of the experimental data with theoretical results with respect to the spatially resolved as well as the integrated luminescence intensity shows the necessity of taking into account a Bose–Einstein condensed excitonic phase in order to understand the behaviour of the trapped excitons.
Abstract
Nanoscale multilayer thin films of W and PC (Polycarbonate) show, due to the great difference of the components’ characteristics, fascinating properties for a variety of possible applications and provide an interesting research field, but are hard to fabricate with low layer thicknesses. Because of the great acoustic mismatch between the two materials, such nanoscale structures are promising candidates for new phononic materials, where phonon propagation is strongly reduced. In this article we show for the first time that W/PC-multilayers can indeed be grown with high quality by pulsed laser deposition. We analyzed the polymer properties depending on the laser fluence used for deposition, which enabled us to find best experimental conditions for the fabrication of high-acoustic-mismatch W/PC multilayers. The multilayers were analyzed by fs pump-probe spectroscopy showing that phonon dynamics on the ps time-scale can strongly be tailored by structural design. While already periodic multilayers exhibit strong phonon localization, especially aperiodic structures present outstandingly low phonon propagation properties making such 1D-layered W/PC nano-structures interesting for new phononic applications.
Abstract
We have demonstrated efficient injection and trapping of a cold positron beam in a dipole magnetic field configuration. The intense 5 eV positron beam was provided by the NEutron induced POsitron source MUniCh facility at the Heinz Maier-Leibnitz Zentrum, and transported into the confinement region of the dipole field trap generated by a supported, permanent magnet with 0.6 T strength at the pole faces. We achieved transport into the region of field lines that do not intersect the outer wall using the
drift of the positron beam between a pair of tailored plates that created the electric field. We present evidence that up to 38% of the beam particles are able to reach the intended confinement region and make at least a 180° rotation around the magnet where they annihilate on an insertable target. When the target is removed and the
plate voltages are switched off, confinement of a small population persists for on the order of 1 ms. These results lend optimism to our larger aims to apply a magnetic dipole field configuration for trapping of both positrons and electrons in order to test predictions of the unique properties of a pair plasma.
Abstract
Experimental studies on dusty plasmas containing systems of (super-)paramagnetic dust particles are presented. In our experiments, external (homogeneous as well as inhomogeneous) magnetic fields in the mT range are applied to study the effect on single particles or few-particle systems that are trapped inside the sheath region. The behavior of the paramagnetic dust particles is considerably different than that of dielectric plastic particles, which are widely used in dusty plasmas. It is revealed that especially non-magnetic contributions play an important role in the interaction between superparamagnetic particles.
Abstract
Many processes in nature are governed by the interaction of electro-magnetic radiation with matter. New tools such as femtosecond and free-electron lasers allow one to study the interaction in unprecedented detail with high temporal and spatial resolution. In addition, much work is devoted to the exploration of novel target systems that couple to radiation in an effective and controllable way or that could serve as efficient sources of energetic particles when being subjected to intense laser fields. The interaction between matter and radiation fields as well as their mutual modification via correlations constitutes a rich field of research that is impossible to cover exhaustively. The papers in this focus issue represent a selection that largely reflects the program of the international conference on ‘Correlation Effects in Radiation Fields’ held in 2011 in Rostock, Germany.
Abstract
The spectral properties of three-dimensional dust clusters confined in gaseous discharges are investigated using both a fluid mode description and the normal mode analysis (NMA). The modes are analysed for crystalline clusters as well as for laser-heated fluid-like clusters. It is shown that even for clusters with low particle numbers and under presence of damping fluid modes can be identified. Laser-heating leads to the excitation of several, mainly transverse, modes. The mode frequencies are found to be nearly independent of the coupling parameter and support the predictions of the underlying theory. The NMA and the fluid mode spectra demonstrate that the wakefield attraction is present for the experimentally observed Yukawa balls at low pressure. Both methods complement each other, since NMA is more suitable for crystalline clusters, whereas the fluid modes allow to explore even fluid-like dust clouds.
The nature and origin of electronic nematicity remains a significant challenge in our
understanding of the iron-based superconductors. This is particularly evident in the
iron chalcogenide, FeSe, where it is currently unclear how the experimentally
determined Fermi surface near the M point evolves from having two electron pockets
in the tetragonal state, to exhibiting just a single electron pocket in the nematic state. This
has posed a major theoretical challenge, which has become known as the missing electron
pocket problem of FeSe, and is of central importance if we wish to uncover the secrets
behind nematicity and superconductivity in the wider iron-based superconductors. Here,
we review the recent experimental work uncovering this nematic Fermi surface of FeSe
from both ARPES and STM measurements, as well as current theoretical attempts to
explain this missing electron pocket of FeSe, with a particular focus on the emerging
importance of incorporating the dxy orbital into theoretical descriptions of the nematic
state. Furthermore, we will discuss the consequence this missing electron pocket has on
the theoretical understanding of superconductivity in this system and present several
remaining open questions and avenues for future research.
Response of Osteoblasts to Electric Field Line Patterns Emerging from Molecule Stripe Landscapes
(2022)
Molecular surface gradients can constitute electric field landscapes and serve to control local cell adhesion and migration. Cellular responses to electric field landscapes may allow the discovery of routes to improve osseointegration of implants. Flat molecule aggregate landscapes of amine- or carboxyl-teminated dendrimers, amine-containing protein and polyelectrolytes were prepared on glass to provide lateral electric field gradients through their differing zeta potentials compared to the glass substrate. The local as well as the mesoscopic morphological responses of adhered osteoblasts (MG-63) with respect to the stripes were studied by means of Scanning Ion Conductance Microscopy (SICM) and Fluorescence Microscopy, in situ. A distinct spindle shape oriented parallel to the surface pattern as well as a preferential adhesion of the cells on the glass site have been observed at a stripe and spacing width of 20 μm. Excessive ruffling is observed at the spindle poles, where the cells extend. To explain this effect of material preference and electro-deformation, we put forward a retraction mechanism, a localized form of double-sided cathodic taxis.
The heaviest actinide elements are only accessible in accelerator-based experiments on a one-atom-at-a-time level. Usually, fusion–evaporation reactions are applied to reach these elements. However, access to the neutron-rich isotopes is limited. An alternative reaction mechanism to fusion–evaporation is multinucleon transfer, which features higher cross-sections. The main drawback of this technique is the wide angular distribution of the transfer products, which makes it challenging to catch and prepare them for precision measurements. To overcome this obstacle, we are building the NEXT experiment: a solenoid magnet is used to separate the different transfer products and to focus those of interest into a gas-catcher, where they are slowed down. From the gas-catcher, the ions are transferred and bunched by a stacked-ring ion guide into a multi-reflection time-of-flight mass spectrometer (MR-ToF MS). The MR-ToF MS provides isobaric separation and allows for precision mass measurements. In this article, we will give an overview of the NEXT experiment and its perspectives for future actinide research.
Insight into the Impact of Oxidative Stress on the Barrier Properties of Lipid Bilayer Models
(2022)
As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.
Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides
(2022)
RAdiation-Detected Resonance Ionization Spectroscopy (RADRIS) is a versatile method for highly sensitive laser spectroscopy studies of the heaviest actinides. Most of these nuclides need to be produced at accelerator facilities in fusion-evaporation reactions and are studied immediately after their production and separation from the primary beam due to their short half-lives and low production rates of only a few atoms per second or less. Only recently, the first laser spectroscopic investigation of nobelium (Z=102) was performed by applying the RADRIS technique in a buffer-gas-filled stopping cell at the GSI in Darmstadt, Germany. To expand this technique to other nobelium isotopes and for the search for atomic levels in the heaviest actinide element, lawrencium (Z=103), the sensitivity of the RADRIS setup needed to be further improved. Therefore, a new movable double-detector setup was developed, which enhances the overall efficiency by approximately 65% compared to the previously used single-detector setup. Further development work was performed to enable the study of longer-lived (t1/2>1 h) and shorter-lived nuclides (t1/2<1 s) with the RADRIS method. With a new rotatable multi-detector design, the long-lived isotope 254Fm (t1/2=3.2 h) becomes within reach for laser spectroscopy. Upcoming experiments will also tackle the short-lived isotope 251No (t1/2=0.8 s) by applying a newly implemented short RADRIS measurement cycle.
Abstract
The surface charge distribution deposited by the effluent of a dielectric barrier discharge driven atmospheric pressure plasma jet on a dielectric surface has been studied. For the first time, the deposition of charge was observed phase resolved. It takes place in either one or two events in each half cycle of the driving voltage. The charge transfer could also be detected in the electrode current of the jet. The periodic change of surface charge polarity has been found to correspond well with the appearance of ionized channels left behind by guided streamers (bullets) that have been identified in similar experimental situations. The distribution of negative surface charge turned out to be significantly broader than for positive charge. With increasing distance of the jet nozzle from the target surface, the charge transfer decreases until finally the effluent loses contact and the charge transfer stops.
Abstract
Identifying materials with an efficient spin-to-charge conversion is crucial for future spintronic applications. In this respect, the spin Hall effect is a central mechanism as it allows for the interconversion of spin and charge currents. Spintronic material research aims at maximizing its efficiency, quantified by the spin Hall angle and the spin-current relaxation length . We develop an all-optical contact-free method with large sample throughput that allows us to extract and . Employing terahertz spectroscopy and an analytical model, magnetic metallic heterostructures involving Pt, W and Cu80Ir20 are characterized in terms of their optical and spintronic properties. The validity of our analytical model is confirmed by the good agreement with literature DC values. For the samples considered here, we find indications that the interface plays a minor role for the spin-current transmission. Our findings establish terahertz emission spectroscopy as a reliable tool complementing the spintronics workbench.
Formation of singly and doubly charged Arq+ and Tiq+ (q = 1,2) and of molecular Ar 2 +, ArTi+, and Ti 2 + ions in a direct current magnetron sputtering discharge with a Ti cathode and argon as working gas was investigated with the help of energy-resolved mass spectrometry. Measured ion energy distributions consist of low-energy and high-energy components resembling different formation processes. Intensities of Ar 2 + and ArTi+ dimer ions strongly increase with increasing gas pressure. Addition of oxygen gas leads to the formation of positively charged O+, O2 +, and TiO+ and of negatively charged O− and O2 - ions.
Abstract
Alkali ion beams are among the most intense produced by the ISOLDE facility. These were the first to be studied by the ISOLTRAP mass spectrometer and ever since, new measurements have been regularly reported. Recently the masses of very neutron-rich and short-lived cesium isotopes were determined at ISOLTRAP. The isotope 148Cs was measured directly for the first time by Penning-trap mass spectrometry. Using the new results, the trend of two-neutron separation energies in the cesium isotopic chain is revealed to be smooth and gradually decreasing, similar to the ones of the barium and xenon isotopic chains. Predictions of selected microscopic models are employed for a discussion of the experimental data in the region.
AbstractWe propose a new scattering mechanism of Rydberg excitons, i.e., those with high principal quantum numbers, namely scattering by coupled LO phonon-plasmon modes, which becomes possible due to small differences in energies of the states due to different quantum defects. Already in very low-density electron–hole plasmas these provide a substantial contribution to the excitonic linewidth. This effect should allow determining plasma densities by a simple line shape analysis. Whenever one expects that low-density electron–hole plasma is present the plasmon induced broadening is of high significance and must be taken into account in the interpretation.
AbstractMagneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today’s magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton–Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light–matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future.