Refine
Document Type
- Doctoral Thesis (6)
Language
- German (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Saccharomyces cerevisiae (6) (remove)
Die Hefe Saccharomyces cerevisiae reagiert auf die sich ständig ändernden Umweltbedingungen durch eine präzise Regulation der Genexpression. Möglich wird dies durch ein komplexes Netzwerk aus spezifischen Regulatoren und pleiotropen Faktoren. Aktivatorproteine binden an Aktivierungssequenzen (UAS-Elemente) in ihren Zielpromotoren und rekrutieren basale Transkriptionsfaktoren sowie Coaktiva¬toren. Dadurch erhöhen sich Wahrscheinlichkeit und Häufigkeit der Transkriptions¬initiation und die DNA im Promotorbereich wird durch die Aktivität von Komplexen der Chromatinremodellierung und -modifizierung für die Transkriptionsmaschinerie zugänglich gemacht. Dagegen binden spezifische Repressor¬proteine an ihre Regula¬tionssequenzen (URS-Elemente) oder an Aktivatorproteine, inhibieren deren Wirkung oder rekrutieren Histondeacetylase-Komplexe wie den Sin3-Corepressor, die eine Verdichtung des Chromatins bewirken. Der Sin3-Corepressorkomplex ist an einer Vielzahl von Regulationsprozessen beteiligt. In Hefe existieren zwei Sin3-Varianten, die als Rpd3L bzw. Rpd3S bezeichnet werden und sich in ihrer Zusammensetzung unterscheiden. Neben Sin3 als zentralem Gerüst¬protein in beiden Komplexen sind im Rpd3L strukturelle Untereinheiten wie Sds3, Sap30 und Pho23 sowie die Histondeacetylase (HDAC) Rpd3 als enzymatische Komponenten enthal¬ten. Durch Funktionsanalysen von Mutanten einzelner Unterein¬heiten wurde festge¬stellt, dass zusätzlich zu Rpd3 weitere HDACs an der Repression ICRE-abhängiger Gene der Phospholipid-biosynthese Gene beteiligt sind. Interaktionsstudien zeigten, dass auch die HDACs Hda1 und Hos1 an Sin3 binden. Die Bindung erfolgt über drei sogenannte HDAC-Interaktionsdomänen (HID1-3), wobei Hda1 und Hos1 an HID2 und HID3 binden, Rpd3 dagegen an HID1 und HID3. In dieser Arbeit konnte gezeigt werden, dass die HDACs direkt an ihre jeweiligen HIDs binden. Außerdem inter¬agieren Hda1 und Hos1 auch in vivo mit Sin3. Die HID1 wurde auf die Aminosäuren 801-950 verkürzt und es wurde nachge¬wiesen, dass eine funktionsfähige katalyti¬sche Domäne von Rpd3 nicht für die Wechselwirkung mit Sin3 notwendig ist. Außerdem wurden die Interaktionsdomänen von Sds3 und Sin3 kartiert. Die erhaltenen Befunde ergänzen die Daten zu Protein-Protein-Inter¬aktionen im Sin3-Corepressorkomplex und komplettieren funktionelle Aspekte der HDAC-Rekrutierung. Eine weitere Zielstellung dieser Arbeit war die Erstellung eines Interaktionsnetzwerks zwischen spezifischen Aktivatoren und allgemeinen Faktoren der Transkription. Eukaryotische Aktivatorproteine sind modular aufgebaut und besitzen voneinander separierbare Funktionsdomänen. Die Erkennung und Bindung von UAS-Elementen in den Zielpromotoren erfolgt über die DNA-Bindedomäne (DBD), während Tran¬skriptions¬¬aktivierungs¬domänen (TADs) basale Transkriptionsfaktoren und Co¬aktiva¬toren rekrutieren und somit die aktivierende Wirkung vermitteln. Im Gegensatz zu den DBDs folgen TADs meist keinen durch Sequenzanalysen vorhersagbaren Strukturmotiven und müssen manuell eingegrenzt werden. Für die Kartierung funktioneller TADs wurden Längenvarianten von über 30 Aktiva-toren aus verschiedenen Familien DNA-bindender Proteine an die Gal4DBD fusioniert und auf ihre Fähigkeit überprüft, ein UASGAL-abhängiges Reportergen zu aktivieren. Dabei konnten 15 neue TADs eingegrenzt werden. Weiterhin wurden die bisher nicht charakterisierten Zinkcluster¬proteine Yjl206c, Yer184c, Yll054c und Ylr278c als Aktivatoren bestätigt. Dadurch stand eine Samm¬lung aus 20 bekannten und neukartierten TADs zur Verfügung, die nach Konstruktion von GST-Fusionen für in vitro-Interaktionsexperimente mit Unter¬einheiten des Mediators, des TFIID- und des SWI/SNF-Komplexes eingesetzt wurden. Es konnten direkte Wechselwirkungen von Aktivatoren (u. a. Aft2, Aro80, Mac1 und Zap1) mit den TFIID-Komponenten TBP, Taf1, Taf4 und Taf5 detektiert werden. Die Bindung an Taf1 erfolgte im Bereich von aa 1-250, der zwei Aktivator¬interaktions-domänen (AID) enthält und in vorangegangenen Experimenten auch mit Ino2 und Adr1 interagierte. Die Rap1-Bindedomäne (RBD) von Taf4 (aa 253-344) interagierte auch mit Mac1, Aft2 und Ino2. Daher wurde dieser Bereich als allgemeine AID klassifiziert. Für die Aktivatorinteraktion essentielle Aminosäuren konnten allerdings nicht identi¬fiziert werden. 17 von 20 TADs interagierten direkt mit der Mediator-Untereinheit Med15, während für Med17 10 Kontakte zu Aktivatoren detektiert wurden, was die Relevanz des Mediators für die Aktivatorfunktion unterstreicht. Die katalytische Untereinheit des SWI/SNF-Komplexes Swi2 zeigte ähnlich viele TAD-Interaktionen wie Med15. Der N-terminale Bereich von Swi2 (aa 1-450) stellte sich als ausreichend für die Bindung der Aktivatoren heraus und enthält demnach eine oder mehrere AIDs. Damit konnte das Interaktionsnetzwerk zwischen Aktivatoren und allgemeinen transkriptionalen Cofaktoren substantiell erweitert werden.
In der Hefe S. cerevisiae erfolgt die Transkriptionsregulation der Strukturgene der Phospholipid-Biosynthese in Abhängigkeit der intrazellulären Konzentration der beiden Phospholipid¬vorstufen Inositol und Cholin (IC). Bei IC-Mangel kommt es zu einer Akkumulation des Signalmoleküls Phosphatidsäure, wodurch der Repressor Opi1 extranukleär am endoplasmatischen Retikulum (ER) verankert wird. Dadurch kann der heterodimere Aktivator Ino2/Ino4 an eine spezifische „upstream activation site” (UAS) in der Promotorregion, die als ICRE-Motiv („inositol/choline-responsive element“) bezeichnet wird, binden und die Initiation der Transkription vermitteln. Die aktivierende Wirkung geht dabei von zwei Transkriptions¬aktivierungsdomänen (TAD) im N-Terminus von Ino2 aus. Da bisher unbekannt war, wie die Ino2-vermittelte Genaktivierung erfolgt, bestand das Ziel dieser Arbeit in der Identifizierung der Coaktivatoren, die direkt an die TADs von Ino2 binden. Ferner sollten die für die Transkriptionsaktivierung wichtigen Wechselwirkungen innerhalb der Coaktivatoren präzise kartiert werden. Es konnte hier mit Hilfe der affinitätschromatographischen Methode des GST-„Pulldown“ gezeigt werden, dass TAD1 und TAD2 von Ino2 mit den generellen Transkriptionsfaktoren TFIID und TFIIA interagieren. Innerhalb des TFIID wurden die Untereinheiten Taf1, Taf4, Taf6, Taf10 und Taf12 in vitro als direkte Ino2-Interaktionspartner identifiziert. Dabei binden alle identifizierten Taf-Proteine an die starke TAD1, Taf10 zusätzlich an die TAD2. Frühere Untersuchungen hatten gezeigt, dass Mutationen innerhalb der TAD1 von Ino2 (D20K, F21R) zu einem vollständigen Verlust der Aktivierungsleistung führen. In dieser Arbeit wurde nachgewiesen, dass die gerichtete Mutation dieser Aminosäuren zu einem vollständigen Interaktionsverlust mit den Taf-Proteinen führt. Mit Hilfe von Interaktionsexperimenten wurden innerhalb von Taf1 zwei distinkte Aktivatorinteraktionsdomänen (AID1: AS 1-100; AID2: AS 182-250) kartiert, die die Bindung an Ino2 vermitteln. Mutationen hydrophober und basischer Aminosäure-Reste innerhalb der Taf1-AID2 hatten einen vollständigen Verlust der Interaktion mit Ino2 zur Folge. Möglicherweise sind also ionische und hydrophobe Wechselwirkungen an der Interaktion von Ino2 und Taf1 beteiligt. Mit Hilfe der Chromatin-Immunopräzipitation (ChIP) erfolgte der Nachweis, dass Taf1 in Abhängigkeit von Ino2 auch in vivo an den ICRE-haltigen Promotoren INO1 und CHO2 vorhanden ist. Im Folgenden wurden auch die Ino2-Interaktionsbereiche innerhalb der Proteine Taf6, Taf10 und Taf12 durch die Generierung sukzessiver GST-Verkürzungen eingegrenzt. Taf10 und Taf12 besitzen wie Taf1 zwei separate AIDs (Taf10: AID1 AS 1-100; AID2 AS 131-176; Taf12: AID1 AS 50-100; AID2 AS 100-178). Untersuchungen mit mutagenisierten Varianten, bei denen wie zuvor im Fall von Taf1 hydrophobe und basische Aminosäuren innerhalb der Taf12 AID2 ausgetauscht wurden, führten lediglich zu einer Verringerung der Bindungsintensität. Dies lässt vermuten, dass mehrere kleine Domänen innerhalb der AID2 existieren, die funktionell redundant sind. Mit Hilfe weiterer ChIP-Experimente konnte auch nachgewiesen werden, dass Taf6 und Taf12 abhängig von Ino2 an den untersuchten Promotoren INO1 und CHO2 vorhanden sind. Die Proteine Taf1 und Taf6 wurden exemplarisch für Genexpressionsstudien ausgewählt, um ihren Einfluss auf die Transkription des Gens INO1 unter in vivo Bedingungen nachzuweisen. Durch vergleichende Northernblot-Hybridisierungen mit temperatursensitiven (ts) taf-Mutanten wurde gezeigt, dass die INO1-Expression unter nichtpermissiven Bedingungen (37°C) auf 7% (taf1ts) bzw. 4% (taf6ts) abfällt. Diese Befunde belegen, dass INO1 zu den Taf-abhängigen Genen zählt. Der generelle Transkriptionsfaktor TFIIA wurde ebenfalls auf eine Interaktion mit Ino2 untersucht. Bekannt war bereits, dass der Aktivator Rap1, der ähnlich wie Ino2 mit mehreren TFIID-Untereinheiten interagiert, auch TFIIA kontaktiert. Durch GST-„Pulldown“-Studien konnte die Untereinheit Toa1 als direkter Ino2-Interaktionspartner identifiziert werden. Dabei zeigte sich, dass Toa1 sowohl mit der TAD1 als auch der TAD2 von Ino2 interagiert und die TAD1 Aminosäuresubstitutionen D20K und F21R zu einem vollständigen Interaktionsverlust führen. In dieser Arbeit konnte somit gezeigt werden, dass die generellen Transkriptionsfaktoren TFIID und TFIIA als Coaktivatoren des für die Transkription der Strukturgene der Phospholipid-Biosynthese essentiellen Aktivators Ino2 fungieren.
In der Hefe Saccharomyces cerevisiae werden die Strukturgene der Phospholipid-Biosynthese auf Transkriptionsebene in Abhängigkeit der Verfügbarkeit der Phospholipidvorstufen Inositol und Cholin (IC) über ein in der Promotorregion befindliches UAS-Element, genannt ICRE („inositol/choline-responsive element“), reguliert. Bei Mangel an IC kommt es zu einer Anhäufung des Intermediats Phosphatidsäure, wodurch der Repressor Opi1 außerhalb des Zellkerns am endoplasmatischen Reticulum verankert wird. Dadurch kann ein Heterodimer, bestehend aus den bHLH-Proteinen Ino2 und Ino4, an das ICRE-Motiv binden und die transkriptionelle Aktivierung vermitteln. Ist ausreichend IC vorhanden, gelangt der Repressor Opi1 in den Zellkern und bindet an Ino2. Dadurch ist eine Aktivierung nicht mehr möglich. Ferner kontaktiert Opi1 über seine Opi1-Sin3-Interaktionsdomäne (OSID) die Corepressor-Komplexe Sin3 und Cyc8/Tup1, die durch Rekrutierung von Histondeacetylasen (HDACs) zur Chromatinverdichtung und damit zur Genrepression führen. In einer früheren Arbeit wurde beobachtet, dass die regulierte Expression von Genen der Phospholipid-Biosynthese auch durch die Phosphatkonzentration beeinflusst wird. Es konnte festgestellt werden, dass bei Phosphatmangelbedingungen die Expression ICRE-abhängiger Gene auf 10 % reduziert ist. Eine Δopi1-Mutante zeigte dieses Expressionsmuster jedoch nicht mehr. Dieser Befund wies darauf hin, dass Opi1 seine Repressorfunktion sowohl bei IC-Überschuss als auch bei Phosphatmangel ausführt. Ein Protein, welches die Phosphatverfügbarkeit an Opi1 möglicherweise über eine Phosphorylierung vermitteln könnte, ist die cyclinabhängige Proteinkinase Pho85, für die eine in vitro Interaktion mit Opi1 gezeigt wurde. Um diese Hypothese zu überprüfen, wurden mittels gerichteter Mutagenese Aminosäurereste mutmaßlicher Pho85-Phosphorylierungsstellen im Opi1-Protein (S321, T51) gegen das nicht mehr phosphorylierbare Alanin ausgetauscht. Hefestämme, die solche Opi1-Protein-varianten (S321A, T51A) synthetisierten, zeigten jedoch weiterhin einen klaren Einfluss des Phosphatmangels auf die Expression eines ICRE-regulierten Reportergens. Dies lässt darauf schließen, dass die Repression unter Phosphatmangelbedingungen nicht über eine Phosphorylierung von Opi1 durch Pho85 zu Stande kommt. Parallel durchgeführte in vitro-Interaktionsstudien zeigten, dass die Bindung von Pho85 an Opi1 über zwei unabhängig voneinander funktionierende Interaktionsdomänen im Opi1-Protein (aa 30-70 und aa 321-350) erfolgt. Mit Hilfe des „Two-Hybrid“-Systems wurde festgestellt, dass die Opi1-Pho85 Wechselwirkung in vivo phosphatabhängig stattfindet. Die Befunde erlauben die Hypothese, dass Pho85 bei Phosphatüberschuss u. a. die OSID im Opi1 abdeckt, dadurch die Wechsel-wirkung mit Sin3/Cyc8 verhindert und eine gesteigerte Genexpression zulässt. Mittels Chromatin-Immunopräzipitation (ChIP) konnte gezeigt werden, dass Opi1, Co-Repressoren wie Sin3 und Cyc8 als auch die HDACs Hda1 und Hos1 an Promotoren ICRE-regulierter Gene Ino2-abhängig anwesend sind. Des Weiteren wurde festgestellt, dass sich Sin3 unabhängig von Opi1 an ICRE-haltigen Promotoren befindet. Dieses Ergebnis wider-sprach einer früheren Arbeitshypothese, konnte aber durch weitere Versuche, die eine direkte in vitro Interaktion von Sin3 mit dem Ino2-Aktivator zeigten, plausibel in ein neues Rekrutierungsmodell eingefügt werden. Abschließend wurden die am Beispiel von Opi1 gewonnenen Erkenntnisse durch in vitro Interaktionsanalysen diverser spezifischer Repressoren mit den pleiotropen Co-Repressoren Sin3 und Cyc8/Tup1 erweitert. Für zahlreiche Repressoren wurde gefunden, dass sie parallel mit Sin3 und Cyc8 interagieren (u. a. Rox1, Yox1, Dal80 und Mot3). Durch Kartierungsexperimente konnten minimale Repressordomänen charakterisiert werden, die die Interaktion zu Sin3 bzw. Cyc8 vermitteln, und sequenzhomologe Domänenstrukturen analysiert werden. Des Weiteren zeigte sich, dass alle Repressoren, die mit Sin3 wechselwirken, dessen Domänen PAH1 oder PAH2 („paired amphipathic helix“) kontaktieren.
Coenzym A ist ein essentieller und ubiquitärer Cofaktor, dessen zentrale Bedeutung für den Stoffwechsel aus der Aktivierung und Übertragung von Acylgruppen resultiert. Der Biosyn-theseweg von Coenzym A (CoA) ausgehend von Pantothenat (Pan) umfasst fünf enzymatische Schritte, die in Pro- und Eukaryoten konserviert sind. Die Hefe S. cere¬visiae ist in der Lage, sowohl eine de novo Pantothenat-Synthese durchzuführen als auch mittels Fen2-Transporter dieses Intermediat aufzunehmen. Die Phosphorylierung von Pan durch die Pantothenat Kinase (PanK) stellt vermutlich den geschwindigkeitsbestimmenden Schritt dar, der in Form einer Inhibition durch das Endprodukt bzw. dessen Derivate erfolgt. Ziel dieser Arbeit sollte es sein, grundlegende Erkenntnisse zu den Enzymen des CoA-Biosyntheseweges, deren Organisation und Regulation in der Hefe zu bekommen. Durch „metabolic engineering“ sollte versucht werden, einen Stamm zu konstruieren, der im Vergleich zu einem Wildtyp einen erhöhten CoA-Gehalt aufweist. Für das Genprodukt von YDR531W in S. cerevisiae konnte aufgrund der Verwertbarkeit von 14C-Pantothenat als Substrat die Vermutung bestätigt werden, dass es sich um eine PanK handelt, so dass dieses Gen die neue Bezeichnung CAB1 („Coenzym A Biosynthese“) erhielt. Es erfolgt eine „Feedback“-Inhibition durch CoA und in stärkerem Maße durch dessen Thioester Acetyl-CoA. Der Einfluss von Malonyl-CoA und Palmitoyl-CoA auf die Aktivität der PanK ist vernachlässigbar. Durch gerichtete Mutagenese konnte eine Acetyl-CoA insensitive deregulierte PanK-Variante CAB1W331R erzeugt werden, die, verglichen mit dem Wildtyp, eine etwa vierfach gesteigerte Aktivität aufweist. Für die vier weiteren Gene YIL083C, YKL088W, YGR277C und YDR196C, die aufgrund von Ähnlichkeiten zu humanen CoA-Genen identifiziert wurden, konnte der Nachweis erbracht werden, dass es sich um CoA-Biosynthesegene handelt. Eine Nullmutation in jedem dieser essentiellen Gene ließ sich durch das entsprechende E. coli Gen, für die der enzymatische Nachweis der Genprodukte vorliegt, heterolog komplementieren. Folgende neue Genbe-zeichnungen wurden aufgrund der Abfolge der Reaktionsschritte vergeben: YIL083C = CAB2 (codiert für die Phosphopantothenyl Cystein Synthetase, PPCS), YKL088W = CAB3 (Phosphopantothenylcystein Decarboxylase, PPCDC), YGR277C = CAB4 (Phosphopante-thein Adenyltransferase, PPAT) und YDR196C = CAB5 (Dephospho-CoA.Kinase, DPCK). Für CAB1, CAB2 und CAB5 war ein moderater Anstieg der Genexpression zu beobachten, wenn Glucose durch Ethanol als C-Quelle ersetzt wurde. Die Abwesenheit von Aminosäuren beeinflusste die Expression der CAB Gene kaum. Mit Hilfe chromatographischer Reinigungsschritte war eine Cofraktionierung der epitopmar-kierten Proteine Cab3 und Cab5 möglich, die einen ersten Hinweis auf die Existenz eines CoA-synthetisierenden Enzymkomplexes (CoA-SPC) lieferten. Dessen durch Gelfiltration bestimmte Größe beträgt ungefähr 327 kDa. In vitro-Interaktionsstudien ergaben, dass Cab1 (PanK) nicht an der Bildung dieses Komplexes beteiligt ist und dass Cab2, Cab3, Cab4 und Cab5 mit Cab3 interagieren. Weiterhin konnten Wechselwirkungen zwischen Cab4 und Cab5 nachgewiesen werden. Durch Konstruktion von Längenvarianten der genannten Proteine wurden die für die Interaktionen jeweils verantwortlichen Proteinabschnitte kartiert. Vermutlich dient Cab3 als zentrales „Gerüstprotein“ des gesamten CoA-SPC-Komplexes. Mit ausschließlich bakteriell synthetisierten Proteinen konnte zumindest für Cab3 gezeigt werden, dass die Interaktionen direkt erfolgen. In einem weiteren Teil dieser Arbeit wurde versucht, durch Überexpression der CoA-Bio-synthesegene die zelluläre CoA-Synthese zu beeinflussen. Mit Hilfe integrativer Plasmide wurden MET25-Promotor-kontrollierte Überexpressionskassetten aller CAB-Gene sukzes¬sive in einen Wildtypstamm eingeführt. Für das Gen der PanK wurde das Wildtyp-Allel CAB1 bzw. die deregulierte Variante CAB1W331R verwendet. Einen Unterschied zwischen den Stämmen konnte für den Acetyl-CoA-, allerdings nicht für den CoA-Gehalt gemessen werden. Überexpressionsstämme mit der regulierten PanK bzw. der deregulierten PanK-Variante enthielten im Vergleich zum Wildtyp die 3-fache bzw. sogar die 6-fache Menge an Acetyl-CoA. Dieser Befund belegt die Schrittmacherfunktion der PanK für den gesamten CoA-Biosyntheseweg.
Die Regulation der Phospholipid-Biosynthesegene in der Hefe Saccharomyces cerevisiae erfolgt über die Verfügbarkeit der Phospholipid-Vorstufen Inositol und Cholin (IC). Bei ICMangelbedingungen wird die Transkription der Strukturgene stimuliert und bei IC-Überschuss im Medium reprimiert. Im Promotorbereich dieser Gene befinden sich spezifische UAS-Elemente („inositol/choline-responsive element“, ICRE-Motive), welche von den Aktivatoren Ino2 und Ino4 gebunden werden. Bei IC-Mangel kommt es zu einer Anhäufung des Intermediats Phosphatidsäure, wodurch der Repressor Opi1 durch die Interaktion mit Scs2 außerhalb des Zellkerns am endoplasmatischen Reticulum gebunden wird. Wenn ausreichend IC im Medium vorhanden ist, kann der Repressor Opi1 in den Zellkern einwandern und den Aktivator Ino2 binden. Ferner kann Opi1 über seine Opi1-Sin3-Interaktionsdomäne (OSID) mit der PAH1 („paired amphipathic helix“) des Corepressors Sin3 interagieren. Ein Ziel dieser Arbeit war es, ausgewählte Aminosäuren in der OSID durch gerichtete Mutagenese gegen Alanin auszutauschen und die erhaltenen Opi1-Varianten auf ihre Repressorfunktion hin zu untersuchen. Die Substitution einzelner Aminosäuren innerhalb der OSID offenbarte die Notwendigkeit der Aminosäuren L56, V59 und V67 für die Opi1-Sin3 Bindung. Die Ergebnisse legten außerdem nahe, dass die Repression nicht allein über Sin3 vermittelt wird. Tatsächlich konnte gezeigt werden, dass die innerhalb der OSID von Opi1 kritischen Aminosäuren der Opi1-Sin3 Bindung (L56, V59 und V67) auch für die Interaktion von Opi1 mit Cyc8 wichtig sind. Dementsprechend rekrutiert Opi1 mit Hilfe der OSID zwei pleiotrope Corepressoren. Sin3 bindet über die PAH1 an die OSID, während die Opi1-Cyc8- Bindung über die TPR-Motive im Cyc8 vermittelt wird. Desweiteren zeigte sich, dass die sin3 cyc8 Doppelmutante synthetisch letal ist. Sin3 ist eine Untereinheit in mehreren Komplexen der Histondeacetylase (HDAC) Rpd3 und fungiert als Plattform für viele Protein-Protein Wechselwirkungen. Innerhalb des Sin3/Rpd3LKomplexes wurde der Einfluss mehrerer Untereinheiten (Pho23, Sap30, Sds3, Ume1 und Dep1) untersucht. Hier zeigte sich, dass Pho23 einen entscheidenden Einfluss auf die Regulation ICRE-abhängiger Gene hat. In den sich anschließenden Interaktionsanalysen konnte eine Bindung von Pho23, Sds3 und Sap30 an Sin3 gezeigt werden. Eine genauere Kartierung der Pho23-Sin3 Bindung zeigte, dass Pho23 über zwei voneinander unabhängige Domänen (Pho23-Sin3-Interaktionsdomäne; PSID1 und PSID2) mit Sin3 wechselwirkt, wobei die Interaktion der PSID1 und der PSID2 mit der HID (HDAC-Interaktionsdomäne) im Sin3 erfolgt. Die katalytische Aktivität innerhalb der Sin3/Rpd3-Komplexe ist durch die HDAC Rpd3 gegeben. Durch Untersuchungen der HDACs der Klasse I (Rpd3, Hos1 und Hos2) bzw. der Klasse II (Hda1 und Hos3) konnte für ICRE-abhängige Genorte gezeigt werden, dass eine rpd3 hda1 hos1 Dreifachmutante ähnlich dereguliert ist wie eine sin3 Mutante. Bei Interaktionsstudien der HDACs Rpd3, Hda1 und Hos1 mit Sin3 konnten neben der bereits bekannten HID im Sin3 (aa 801-1100) zwei neue HIDs (HID2: aa 473-600, HID3: aa 1100- 1210) identifiziert werden. Die Histondeacetylase Rpd3 bindet an die HID1 und an die HID3, während Hda1 und Hos1 jeweils an HID2 und HID3 binden. Interessanterweise stellte sich heraus, dass die Bindedomäne für die Sin3-Bindung innerhalb der Deacetylase-Domäne (DAC) aller drei HDACs liegt. Für Hos1 konnte die Sin3 Bindedomäne auf einen Aminosäurebereich von 236-400 eingegrenzt werden. Für die Hda1- Sin3 Bindung konnten zwei voneinander unabhängig interagierende Bereiche im Hda1 (aa 201-250 und aa 251-300) beschrieben werden. Neben der Deacetylierung wurde der regulative Einfluss einer weiteren kovalenten Histonmodifizierung, nämlich der der Methylierung durch Histonmethyltransferasen (HMT; Set1, Set2 und Dot1) und der Demethylierung durch Histondemethylasen (HDM; Jhd1, Jhd2, Ecm5, Gis1 und Rph1) auf die Genexpression der Phospholipid-Biosynthesegene untersucht. Hier konnte für die HMT Set2 (spezifisch für Lysin-36 im Histon H3) ein großer Einfluss auf die ICRE-abhängige Genexpression gezeigt werden. Desweiteren konnte gezeigt werden, das Set2 direkt an Ino2 bindet. Die Kartierung der Interaktionsdomäne offenbarte, dass die katalytische SET Domäne im Set2 mit der DNA-bindenden bHLHDomäne von Ino2 wechselwirkt.
Die Transkription von Genen der Phospholipidbiosynthese in S. cerevisiae wird durch ein ICRE (inositol/choline responsive element) genanntes UAS-Element aktiviert, welches durch die Phospholipid-Vorstufen Inositol und Cholin (IC) gesteuert wird. ICRE-Motive werden durch ein Heterodimer der bHLH-Proteine Ino2 und Ino4 erkannt, wobei Ino2 über zwei Transkriptionsaktivierungsdomänen (TAD) die Expression vermittelt, während Ino4 dem Kernimport des Komplexes dient. Negativer Regulator ist Opi1, der mit Ino2 interagiert. SUA7 (TFIIB) wird durch die Interaktion mit Ino2 an den Promotor rekrutiert. Im Rahmen dieser Arbeit wurden Untersuchungen durchgeführt, um ein Heterodimer aus heterolog exprimiertem Ino2 und Ino4 über chromatographische Methoden zu reinigen. Es wurde eine affinitätschromatographische Strategie entwickelt, die es gestattet, epitopmarkiertes Ino2 und Ino4 von einem Großteil der Fremdproteine abzutrennen. Mit größeren Zellmengen könnte es künftig gelingen, ein Ino2/Ino4-Heterodimer zu reinigen und es nach Kristallisierung zusammen mit einem ICRE-Motiv einer Röntgenstrukturanalyse zugänglich zu machen. Unter Verwendung genomischer Sequenzdaten von S. cerevisiae wurden in dieser Arbeit weitere Gene identifiziert, die ICRE-Motive in ihrer Promotorregion tragen, aber keine offensichtliche Rolle bei der Phospholipidbiosynthese spielen. Untersuchungen zeigten, dass die ICRE-tragenden Gene FAR8, RSF1, YEL073C und URA8 relativ stark, die Gene ARG4, ERG20, GPD2 und VHT1 nur moderat durch IC beeinflusst werden. Für das in S. cerevisiae stark IC-abhängige INO1 Gen (50-fache Derepression bei IC-Mangel) wurde gezeigt, dass drei distinkte ICRE-Motive für diese Regulation verantwortlich sind. Die Ergebnisse dieser Arbeit wurden mit Transkriptomanalysen anderer Gruppen verglichen und die Aussagekraft von in silico-Recherchen bewertet. Candida albicans ist eine opportunistisch pathogene Hefe. Auch C. albicans ist in der Lage, Inositol, Cholin und Fettsäuren de novo zu synthetisieren. Ein Funktionshomolog zu INO1, das CaINO1, vermag eine entsprechende Nullmutation in S. cerevisiae zu komplementieren. Ebenso wurden in C. albicans die Gene CaCHO1, CaFAS1 und CaFAS2 für die Synthese von Cholin bzw. Fettsäuren identifiziert. Ferner besitzt C. albicans das dem Opi1-Protein strukturell und funktionell ähnelnde CaOpi1, welches ebenfalls in der Lage ist, eine IC-abhängige Genregulation in S. cerevisiae zu vermitteln. Die in silico Identifikation potentieller C. albicans Orthologer zu INO2 sowie zu INO4 gab Anlass zu der Annahme, dass die Regulation der Phospholipidbiosynthese in S. cerevisiae und C. albicans konserviert vorliegt. Im Rahmen dieser Arbeit wurde ein unkonventionelles Intron im mutmaßlichen CaINO4 Gen identifiziert und durch RT-PCR eine intronfreie cDNA des CaINO4 Gens erhalten. Mit den Produkten der mu tmaßlichen Gene CaINO2 und CaINO4 wurden Protein/DNA- und Protein/Protein-Interaktionen untersucht und mit der Situation in S. cerevisiae verglichen. CaIno2 und CaIno4 sind in der Lage zu heterodimerisieren und an ICRE-Motive aus S. cerevisiae zu binden, jedoch konnte keine Bindung an den CaINO1 Promotor gezeigt werden. Weiterhin ist das Heterodimer der C. albicans-Proteine in der Lage, einer S. cerevisiae ino2 ino4 Doppelmutante ein Wachstum auf IC-freiem Medium zu ermöglichen. Keines der Gene kann jedoch allein die jeweils entsprechende ino2 oder ino4 Einfachmutation komplementieren. Weder CaIno2 noch CaIno4 interagieren mit CaOpi1, hingegen interagiert CaIno2 mit Opi1, ebenso CaOpi1 mit Ino2. Ferner interagiert CaIno2 wie auch CaIno4 mit CaSua7, nicht jedoch mit Sua7. Es konnte keine Interaktion zwischen Ino2 bzw. Ino4 mit CaIno4 bzw. CaIno2 festgestellt werden, ebensowenig eine Homodimerisierung der Proteine. Ähnlich wie Ino2 enthält auch CaIno2 zwei Transkriptionsaktivi erungsdomänen an entsprechenden Positionen und vergleichbarer Aktivierungsleistung. Es gelang im Rahmen dieser Arbeit nicht, homozygote Mutationen der Gene CaINO2 und CaINO4 durch Gendisruption in die diploide Hefe C. albicans einzuführen, es konnten lediglich heteroallele Mutanten hergestellt werden. Dieser Befund ist ein Hinweis auf eine Rolle von CaIno2 und CaIno4 bei der Aktivierung essentieller Gene in C. albicans. Daher wurde mit Genaktivierungstests nach der CaIno2/CaIno4-Konsensusbindesequenz gesucht und diese dann verwendet, um potentielle Zielgene in silico zu identifizieren. Als Konsensussequenz wurde das Motiv BWTCASRTG erhalten. Dieses Motiv wurde weder vor CaINO1, CaFAS1 oder CaCHO1 gefunden, jedoch zeigte sich eine deutliche Häufung des UAS-Elements vor mitochondrialen Genen, vor Genen der Ergosterolbiosynthese und besonders vor einer Vielzahl von Genen ribosomaler Proteine. Es kann aus diesen Daten gefolgert werden, dass CaIno2 und CaIno4 für die Aktivierung anderer, vermutlich essentieller Zielgene erforderlich sind als ihre Orthologen aus S. cerevisiae, während CaINO1 durch bisher unbekannte Faktoren reguliert wird.