Refine
Year of publication
Document Type
- Doctoral Thesis (40)
- Article (28)
Has Fulltext
- yes (68)
Is part of the Bibliography
- no (68)
Keywords
- - (25)
- Streptococcus pneumoniae (7)
- Saccharomyces cerevisiae (6)
- Arxula adeninivorans (4)
- Biochemische Analyse (3)
- Enzym (3)
- Hefe (3)
- Pneumokokken (3)
- Virulenz (3)
- Yeast (3)
Institute
- Institut für Mikrobiologie - Abteilung für Genetik & Biochemie (68) (remove)
Publisher
- Frontiers Media S.A. (11)
- MDPI (8)
- S. Karger AG (3)
- ASM Journals (1)
- Frontiers (1)
- John Wiley & Sons, Inc. (1)
- Public Library of Science (PLoS) (1)
Gallic acid, protocatechuic acid, catechol, and pyrogallol are only a few examples of industrially relevant aromatics. Today much attention is paid to the development of new microbial factories for the environmentally friendly biosynthesis of industrially relevant chemicals with renewable resources or organic pollutants as the starting material. The non–conventional yeast, Blastobotrys raffinosifermentans, possesses attractive properties for industrial bio-production processes such as thermo- and osmotolerance. An additional advantage is its broad substrate spectrum, with tannins at the forefront. The present study is dedicated to the characterization of catechol-1,2-dioxygenase (Acdo1p) and the analysis of its function in B. raffinosifermentans tannic acid catabolism. Acdo1p is a dimeric protein with higher affinity for catechol (KM = 0.004 ± 0.001 mM, kcat = 15.6 ± 0.4 s–1) than to pyrogallol (KM = 0.1 ± 0.02 mM, kcat = 10.6 ± 0.4 s–1). It is an intradiol dioxygenase and its reaction product with catechol as the substrate is cis,cis-muconic acid. B. raffinosifermentans G1212/YIC102-AYNI1-ACDO1-6H, which expresses the ACDO1 gene under the control of the strong nitrate-inducible AYNI1 promoter, achieved a maximum catechol-1,2-dioxygenase activity of 280.6 U/L and 26.9 U/g of dry cell weight in yeast grown in minimal medium with nitrate as the nitrogen source and 1.5% glucose as the carbon source. In the same medium with glucose as the carbon source, catechol-1,2-dioxygenase activity was not detected for the control strain G1212/YIC102 with ACDO1 expression under the regulation of its respective endogenous promoter. Gene expression analysis showed that ACDO1 is induced by gallic acid and protocatechuic acid. In contrast to the wild-type strain, the B. raffinosifermentans strain with a deletion of the ACDO1 gene was unable to grow on medium supplemented with gallic acid or protocatechuic acid as the sole carbon source. In summary, we propose that due to its substrate specificity, its thermal stability, and its ability to undergo long-term storage without significant loss of activity, B. raffinosifermentans catechol-1,2-dioxygenase (Acdo1p) is a promising enzyme candidate for industrial applications.
The full genome of a Methanomassiliicoccales strain, U3.2.1, was obtained from enrichment cultures of percolation fen peat soil under methanogenic conditions, with methanol and hydrogen as the electron acceptor and donor, respectively. Metagenomic assembly of combined long-read and short-read sequences resulted in a 1.51-Mbp circular genome.
Allicin (diallyl thiosulfinate) is the major thiol-reactive organosulfur compound produced by garlic plants (Allium sativum) upon tissue damage. Allicin exerts its strong antimicrobial activity against bacteria and fungi via S-thioallylation of protein thiols and low molecular weight thiols. Here, we investigated the effect of allicin on SARS-CoV-2 infected Vero E6 and Calu-3 cells. Toxicity tests revealed that Calu-3 cells showed greater allicin tolerance, probably due to >4-fold higher GSH levels compared to the very sensitive Vero E6 cells. Exposure of infected Vero E6 and Calu-3 cells to biocompatible allicin doses led to a ∼60–70% decrease of viral RNA and infectious viral particles. Label-free quantitative proteomics was used to investigate the changes in the Calu-3 proteome after SARS-CoV-2 infection and the effect of allicin on the host-virus proteome. SARS-CoV-2 infection of Calu-3 cells caused a strong induction of the antiviral interferon-stimulated gene (ISG) signature, including several antiviral effectors, such as cGAS, Mx1, IFIT, IFIH, IFI16, IFI44, OAS, and ISG15, pathways of vesicular transport, tight junctions (KIF5A/B/C, OSBPL2, CLTCL1, and ARHGAP17) and ubiquitin modification (UBE2L3/5), as well as reprogramming of host metabolism, transcription and translation. Allicin treatment of infected Calu-3 cells reduced the expression of IFN signaling pathways and ISG effectors and reverted several host pathways to levels of uninfected cells. Allicin further reduced the abundance of the structural viral proteins N, M, S and ORF3 in the host-virus proteome. In conclusion, our data demonstrate the antiviral and immunomodulatory activity of biocompatible doses of allicin in SARS-CoV-2-infected cell cultures. Future drug research should be directed to exploit the thiol-reactivity of allicin derivatives with increased stability and lower human cell toxicity as antiviral lead compounds.
Re-Establishment Techniques and Transplantations of Charophytes to Support Threatened Species
(2021)
Re-establishment of submerged macrophytes and especially charophyte vegetation is a common aim in lake management. If revegetation does not happen spontaneously, transplantations may be a suitable option. Only rarely have transplantations been used as a tool to support threatened submerged macrophytes and, to a much lesser extent, charophytes. Such actions have to consider species-specific life strategies. K-strategists mainly inhabit permanent habitats, are perennial, have low fertility and poor dispersal ability, but are strong competitors and often form dense vegetation. R-strategists are annual species, inhabit shallow water and/or temporary habitats, and are richly fertile. They disperse easily but are weak competitors. While K-strategists easily can be planted as green biomass taken from another site, rare R-strategists often must be reproduced in cultures before they can be planted on-site. In Sweden, several charophyte species are extremely rare and fail to (re)establish, though apparently suitable habitats are available. Limited dispersal and/or lack of diaspore reservoirs are probable explanations. Transplantations are planned to secure the occurrences of these species in the country. This contribution reviews the knowledge on life forms, dispersal, establishment, and transplantations of submerged macrophytes with focus on charophytes and gives recommendations for the Swedish project.
Abstract
Amphidiploid fungal Verticillium longisporum strains Vl43 and Vl32 colonize the plant host Brassica napus but differ in their ability to cause disease symptoms. These strains represent two V. longisporum lineages derived from different hybridization events of haploid parental Verticillium strains. Vl32 and Vl43 carry same‐sex mating‐type genes derived from both parental lineages. Vl32 and Vl43 similarly colonize and penetrate plant roots, but asymptomatic Vl32 proliferation in planta is lower than virulent Vl43. The highly conserved Vl43 and Vl32 genomes include less than 1% unique genes, and the karyotypes of 15 or 16 chromosomes display changed genetic synteny due to substantial genomic reshuffling. A 20 kb Vl43 lineage‐specific (LS) region apparently originating from the Verticillium dahliae‐related ancestor is specific for symptomatic Vl43 and encodes seven genes, including two putative transcription factors. Either partial or complete deletion of this LS region in Vl43 did not reduce virulence but led to induction of even more severe disease symptoms in rapeseed. This suggests that the LS insertion in the genome of symptomatic V. longisporum Vl43 mediates virulence‐reducing functions, limits damage on the host plant, and therefore tames Vl43 from being even more virulent.
The function and mode of action of small regulatory RNAs is currently still understudied in archaea. In the halophilic archaeon Haloferax volcanii, a plethora of sRNAs have been identified; however, in-depth functional analysis is missing for most of them. We selected a small RNA (s479) from Haloferax volcanii for detailed characterization. The sRNA gene is encoded between a CRISPR RNA locus and the Cas protein gene cluster, and the s479 deletion strain is viable and was characterized in detail. Transcriptome studies of wild-type Haloferax cells and the deletion mutant revealed upregulation of six genes in the deletion strain, showing that this sRNA has a clearly defined function. Three of the six upregulated genes encode potential zinc transporter proteins (ZnuA1, ZnuB1, and ZnuC1) suggesting the involvement of s479 in the regulation of zinc transport. Upregulation of these genes in the deletion strain was confirmed by northern blot and proteome analyses. Furthermore, electrophoretic mobility shift assays demonstrate a direct interaction of s479 with the target znuC1 mRNA. Proteome comparison of wild-type and deletion strains further expanded the regulon of s479 deeply rooting this sRNA within the metabolism of H. volcanii especially the regulation of transporter abundance. Interestingly, s479 is not only encoded next to CRISPR–cas genes, but the mature s479 contains a crRNA-like 5′ handle, and experiments with Cas protein deletion strains indicate maturation by Cas6 and interaction with Cas proteins. Together, this might suggest that the CRISPR–Cas system is involved in s479 function.
Background: Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the control of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of PTW on the vitality and biofilm formation of Listeria monocytogenes, a common foodborne pathogen.
Results: Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100, 300, and 900 s (pre-treatment time), after which the bacterial biofilm was exposed to the PTW for 1, 3, and 5 min (post-treatment time) for each pre-treatment time, separately. Colony-forming units (CFU) were significantly reduced by 4.7 log10 ± 0.29 log10, as well as the metabolic activity decreased by 47.9 ± 9.47% and the cell vitality by 69.5 ± 2.1%, compared to the control biofilms. LIVE/DEAD staining and fluorescence microscopy showed a positive correlation between treatment and incubation times, as well as reduction in vitality. Atomic force microscopy (AFM) indicated changes in the structure quality of the bacterial biofilm.
Conclusion: These results indicate a promising antimicrobial impact of plasma-treated water on Listeria monocytogenes, which may lead to more targeted applications of plasma decontamination in the food industry in the future.
Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name-giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses confirm the partition of functions in lichen partnerships. The ample functional diversity of the mycobiont contrasts the predominant function of the photobiont in production (and secretion) of energy-rich carbohydrates, and the cyanobiont’s contribution by nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify the bacterial community present on L. pulmonaria as a surprisingly abundant and structurally integrated element of the lichen symbiosis. Comparative metaproteome analyses of lichens from different sampling sites suggest the presence of a relatively stable core microbiome and a sampling site-specific portion of the microbiome. Moreover, these studies indicate how the microbiota may contribute to the symbiotic system, to improve its health, growth and fitness.
Proteomic Adaptation of Clostridioides difficile to Treatment with the Antimicrobial Peptide Nisin
(2021)
Abstract
Aerated topsoils are important sinks for atmospheric methane (CH4) via oxidation by CH4‐oxidizing bacteria (MOB). However, intensified management of grasslands and forests may reduce the CH4 sink capacity of soils. We investigated the influence of grassland land‐use intensity (150 sites) and forest management type (149 sites) on potential atmospheric CH4 oxidation rates (PMORs) and the abundance and diversity of MOB (with qPCR) in topsoils of three temperate regions in Germany. PMORs measurements in microcosms under defined conditions yielded approximately twice as much CH4 oxidation in forest than in grassland soils. High land‐use intensity of grasslands had a negative effect on PMORs (−40%) in almost all regions and fertilization was the predominant factor of grassland land‐use intensity leading to PMOR reduction by 20%. In contrast, forest management did not affect PMORs in forest soils. Upland soil cluster (USC)‐α was the dominant group of MOBs in the forests. In contrast, USC‐γ was absent in more than half of the forest soils but present in almost all grassland soils. USC‐α abundance had a direct positive effect on PMOR in forest, while in grasslands USC‐α and USC‐γ abundance affected PMOR positively with a more pronounced contribution of USC‐γ than USC‐α. Soil bulk density negatively influenced PMOR in both forests and grasslands. We further found that the response of the PMORs to pH, soil texture, soil water holding capacity and organic carbon and nitrogen content differ between temperate forest and grassland soils. pH had no direct effects on PMOR, but indirect ones via the MOB abundances, showing a negative effect on USC‐α, and a positive on USC‐γ abundance. We conclude that reduction in grassland land‐use intensity and afforestation has the potential to increase the CH4 sink function of soils and that different parameters determine the microbial methane sink in forest and grassland soils.
Urm1: A Non-Canonical UBL
(2021)
Summary
This study aimed to establish a robust and reliable metaproteomics protocol for an in‐depth characterization of marine particle‐associated (PA) bacteria. To this end, we compared six well‐established protein extraction protocols together with different MS‐sample preparation techniques using particles sampled during a North Sea spring algae bloom in 2009. In the final optimized workflow, proteins are extracted using a combination of SDS‐containing lysis buffer and cell disruption by bead‐beating, separated by SDS‐PAGE, in‐gel digested and analysed by LC–MS/MS, before MASCOT search against a metagenome‐based database and data processing/visualization with the in‐house‐developed bioinformatics tools Prophane and Paver. As an application example, free‐living (FL) and particulate communities sampled in April 2009 were analysed, resulting in an as yet unprecedented number of 9354 and 5034 identified protein groups for FL and PA bacteria, respectively. Our data suggest that FL and PA communities appeared similar in their taxonomic distribution, with notable exceptions: eukaryotic proteins and proteins assigned to Flavobacteriia, Cyanobacteria, and some proteobacterial genera were found more abundant on particles, whilst overall proteins belonging to Proteobacteria were more dominant in the FL fraction. Furthermore, our data points to functional differences including proteins involved in polysaccharide degradation, sugar‐ and phosphorus uptake, adhesion, motility, and stress response.
Glutathione (GSH) was initially identified and characterized for its redox properties andlater for its contributions to detoxification reactions. Over the past decade, however, the essentialcontributions of glutathione to cellular iron metabolism have come more and more into focus. GSH isindispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeSclusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the exportof the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is anessential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeStrafficking. In this review, we summarize the recent advances and progress in this field. The mosturgent open questions are discussed, such as the role of GSH in the export of FeS precursors frommitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins andthe cluster transfer between Grxs and recipient proteins
Acidobacteria represents one of the most dominant bacterial groups across diverse ecosystems. However, insight into their ecology and physiology has been hampered by difficulties in cultivating members of this phylum. Previous cultivation efforts have suggested an important role of trace elements for the proliferation of Acidobacteria, however, the impact of these metals on their growth and metabolism is not known. In order to gain insight into this relationship, we evaluated the effect of trace element solution SL10 on the growth of two strains (5B5 and WH15) of Acidobacteria belonging to the genus Granulicella and studied the proteomic responses to manganese (Mn). Granulicella species had highest growth with the addition of Mn, as well as higher tolerance to this metal compared to seven other metal salts. Variations in tolerance to metal salt concentrations suggests that Granulicella sp. strains possess different mechanisms to deal with metal ion homeostasis and stress. Furthermore, Granulicella sp. 5B5 might be more adapted to survive in an environment with higher concentration of several metal ions when compared to Granulicella sp. WH15. The proteomic profiles of both strains indicated that Mn was more important in enhancing enzymatic activity than to protein expression regulation. In the genomic analyses, we did not find the most common transcriptional regulation of Mn homeostasis, but we found candidate transporters that could be potentially involved in Mn homeostasis for Granulicella species. The presence of such transporters might be involved in tolerance to higher Mn concentrations, improving the adaptability of bacteria to metal enriched environments, such as the decaying wood-rich Mn environment from which these two Granulicella strains were isolated.
Regulated ATP-dependent proteolysis is a common feature of developmental processes and plays also a crucial role during environmental perturbations such as stress and starvation. The Bacillus subtilis MgsR regulator controls a subregulon within the stress- and stationary phase σB regulon. After ethanol exposition and a short time-window of activity, MgsR is ClpXP-dependently degraded with a half-life of approximately 6 min. Surprisingly, a protein interaction analysis with MgsR revealed an association with the McsB arginine kinase and an in vivo degradation assay confirmed a strong impact of McsB on MgsR degradation. In vitro phosphorylation experiments with arginine (R) by lysine (K) substitutions in McsB and its activator McsA unraveled all R residues, which are essentially needed for the arginine kinase reaction. Subsequently, site directed mutagenesis of the MgsR substrate was used to substitute all arginine residues with glutamate (R-E) to mimic arginine phosphorylation and to test their influence on MgsR degradation in vivo. It turned out, that especially the R33E and R94/95E residues (RRPI motif), the latter are adjacently located to the two redox-sensitive cysteines in a 3D model, have the potential to accelerate MgsR degradation. These results imply that selective arginine phosphorylation may have favorable effects for Clp dependent degradation of short-living regulatory proteins. We speculate that in addition to its kinase activity and adaptor function for the ClpC ATPase, McsB might also serve as a proteolytic adaptor for the ClpX ATPase in the degradation mechanism of MgsR.
Recently, we engineered a tunable rhamnose promoter-based setup for the production of recombinant proteins in E. coli. This setup enabled us to show that being able to precisely set the production rate of a secretory recombinant protein is critical to enhance protein production yields in the periplasm. It is assumed that precisely setting the production rate of a secretory recombinant protein is required to harmonize its production rate with the protein translocation capacity of the cell. Here, using proteome analysis we show that enhancing periplasmic production of human Growth Hormone (hGH) using the tunable rhamnose promoter-based setup is accompanied by increased accumulation levels of at least three key players in protein translocation; the peripheral motor of the Sec-translocon (SecA), leader peptidase (LepB), and the cytoplasmic membrane protein integrase/chaperone (YidC). Thus, enhancing periplasmic hGH production leads to increased Sec-translocon capacity, increased capacity to cleave signal peptides from secretory proteins and an increased capacity of an alternative membrane protein biogenesis pathway, which frees up Sec-translocon capacity for protein secretion. When cells with enhanced periplasmic hGH production yields were harvested and subsequently cultured in the absence of inducer, SecA, LepB, and YidC levels went down again. This indicates that when using the tunable rhamnose-promoter system to enhance the production of a protein in the periplasm, E. coli can adapt its protein translocation machinery for enhanced recombinant protein production in the periplasm.
Invasion of the bacterial pathogen Listeria monocytogenes into human host cells requires specialized surface molecules for attachment and induction of phagocytosis. However, efficient invasion is also dependent on factors with house-keeping functions, such as SecA2-dependent secretion of autolysins for post-divisional segregation of daughter cells. Mutations in this pathway prevent degradation of peptidoglycan cross-walls, so that long cell chains are formed that cannot be phagocytosed. The extreme chaining of such mutants manifests as rough colony phenotype. One rough clone was isolated from a transposon library with a transposon insertion in the uncharacterized lmo0720 gene (lftS) together with a spontaneous point mutation in the secA2 gene. We separated both mutations and demonstrated that this point mutation in the intramolecular regulator 2 domain of SecA2 was sufficient to inactivate the protein. In contrast, lftS deletion did not cause a ΔsecA2-like phenotype. lftS is located in an operon with lftR (lmo0719), encoding a PadR-like transcriptional regulator, and lftR deletion affected growth, invasion and day-light dependent coordination of swarming. Inactivation of lftS partially suppressed these phenotypes, suggesting a functional relationship between LftR and LftS. However, the invasion defect of the ΔlftR mutant was only marginally suppressed by lftS removal. LftR regulates expression of the lmo0979–0980 (lieAB) operon, encoding a putative multidrug resistance transporter and lieAB transcription was strongly upregulated in the absence of LftR. Deletion of lieAB in the ΔlftR background restores wild type-like invasion levels. Hence, we conclude that tight transcriptional repression of the lieAB operon is essential for efficient listerial host cell invasion.
Purines of exogenous and endogenous sources are degraded to uric acid in human beings. Concentrations >6.8 mg uric acid/dl serum cause hyperuricemia and its symptoms. Pharmaceuticals and the reduction of the intake of purine-rich food are used to control uric acid levels. A novel approach to the latter proposition is the enzymatic reduction of the purine content of food by purine-degrading enzymes. Here we describe the production of recombinant guanine deaminase by the yeast Arxula adeninivorans LS3 and its application in food. In media supplemented with nitrogen sources hypoxanthine or adenine, guanine deaminase (AGDA) gene expression is induced and intracellular accumulation of guanine deaminase (Agdap) protein occurs. The characteristics of the guanine deaminase isolated from wild-type strain LS3 and a transgenic strain expressing the AGDA gene under control of the strong constitutive TEF1 promoter were determined and compared. Both enzymes were dimeric and had temperature optima of 55°C with high substrate specificity for guanine and localisation in both the cytoplasm and vacuole of yeast. The enzyme was demonstrated to reduce levels of guanine in food. A mixture of guanine deaminase and other purine degradation enzymes will allow the reduction of purines in purine-rich foods.
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.
Background: The association of polyomaviruses BK and JC with other opportunistic infections and graft-versus-host disease (GvHD) in allogeneic stem cell transplantation is controversially discussed. Methods: We conducted a retrospective study of 64 adult patients who received their first allogeneic stem cell transplantation between March 2010 and December 2014; the follow-up time was 2 years. Results: Acute leukemia was the most frequent underlying disease (45.3%), and conditioning included myeloablative (67.2%) and nonmyeloablative protocols (32.8%). All patients received 10 mg of alemtuzumab on day -2 (20 mg in case of mismatch) as GvHD prophylaxis. Twenty-seven patients (41.5%) developed cytomegalovirus (CMV) reactivation. BKPyV-associated hemorrhagic cystitis was diagnosed in 10 patients (15.6%). Other opportunistic infections caused by viruses or protozoa occurred rarely (<10%). There was no association of BKPyV or JCPyV with CMV reactivation, Epstein-Barr virus reactivation, human herpes virus 6, or parvovirus B19 infection requiring treatment. There was a significant correlation of BKPyV-associated hemorrhagic cystitis with toxoplasmosis (p = 0.013). Additionally, there was a significant link of simultaneous BKPyV and JCPyV viruria with toxoplasmosis (p = 0.047). BKPyV and JCPyV were not associated with GvHD, relapse, or death. Conclusion: We found no association of BKPyV or JCPyV with viral infections or GvHD. Only the correlation of both polyomaviruses with toxoplasmosis was significant. This is a novel and interesting finding.
Hyperuricemia and its symptoms are becoming increasingly common worldwide. Elevated serum uric acid levels are caused by increased uric acid synthesis from food constituents and reduced renal excretion. Treatment in most cases involves reducing alcohol intake and consumption of meat and fish or treatment with pharmaceuticals. Another approach could be to reduce uric acid level in food, either during production or consumption. This work reports the production of recombinant urate oxidase by Arxula adeninivorans and its application to reduce uric acid in a food product. The A. adeninivorans urate oxidase amino acid sequence was found to be similar to urate oxidases from other fungi (61-65% identity). In media supplemented with adenine, hypoxanthine or uric acid, induction of the urate oxidase (AUOX) gene and intracellular accumulation of urate oxidase (Auoxp) was observed. The enzyme characteristics were analyzed from isolates of the wild-type strain A. adeninivorans LS3, as well as from those of transgenic strains expressing the AUOX gene under control of the strong constitutive TEF1 promoter or the inducible AYNI1 promoter. The enzyme showed high substrate specificity for uric acid, a broad temperature and pH range, high thermostability and the ability to reduce uric acid content in food.
A Metabolic Labeling Strategy for Relative Protein Quantification in Clostridioides difficile
(2018)
Clostridioides difficile is an intestinal human pathogen that uses the opportunity of a depleted microbiota to cause an infection. It is known, that the composition of the intestinal bile acid cocktail has a great impact on the susceptibility toward a C. difficile infection. However, the specific response of growing C. difficile cells to diverse bile acids on the molecular level has not been described yet. In this study, we recorded proteome signatures of shock and long-term (LT) stress with the four main bile acids cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), and lithocholic acid (LCA). A general overlapping response to all tested bile acids could be determined particularly in shock experiments which appears plausible in the light of their common steroid structure. However, during LT stress several proteins showed an altered abundance in the presence of only a single or a few of the bile acids indicating the existence of specific adaptation mechanisms. Our results point at a differential induction of the groEL and dnaKJgrpE chaperone systems, both belonging to the class I heat shock genes. Additionally, central metabolic pathways involving butyrate fermentation and the reductive Stickland fermentation of leucine were effected, although CA caused a proteome signature different from the other three bile acids. Furthermore, quantitative proteomics revealed a loss of flagellar proteins in LT stress with LCA. The absence of flagella could be substantiated by electron microscopy which also indicated less flagellated cells in the presence of DCA and CDCA and no influence on flagella formation by CA. Our data break down the bile acid stress response of C. difficile into a general and a specific adaptation. The latter cannot simply be divided into a response to primary and secondary bile acids, but rather reflects a complex and variable adaptation process enabling C. difficile to survive and to cause an infection in the intestinal tract.
Die Maul- und Klauenseuche (MKS) stellt eine Tierseuche dar, die bei Ausbruch zu dramatischen wirtschaftlichen Verlusten durch Beeinträchtigung der anfälligen Tiere führt. Das verursachende Agens der Krankheit ist das Maul- und Klauenseuche Virus (MKSV), welches der Familie der Picornaviren und der Gattung der Aphthoviren angehört. Ausbrüche der MKS weltweit sind selten, jedoch sollte der Erreger weiterhin erforscht werden, um ablaufende Prozesse besser verstehen, sichere und effiziente Impfstoffe entwickeln und im Falle eines Ausbruches angemessene Gegenmaßnahmen ausüben zu können. Das aus in etwa 8500 Basenpaaren bestehende Genom des Virus codiert unter anderem für die Leader Protease, ein wichtiger Virulenzfaktor, welcher unter anderem die Expression der Wirtsproteine durch die Spaltung des eukaryotischen Initiationsfaktors 4G (eIF4G) beeinträchtigt und ebenfalls die Immunantwort des Wirtes beeinflusst. In dieser Arbeit sollten verschiedene Systeme zur Untersuchung und Differenzierung der Funktionen der Leader Protease analysiert werden. Unter Zuhilfenahme unterschiedlich komplexer Systeme (Infektionssystem, Replikonsystem und Einzelexpressionssystem) erfolgte die Untersuchung der Translationsinhibierung, vermittelt über die eIF4G-Spaltung und der damit einhergehende Einfluss auf die Analyse auf andere Funktionen der Leader Protease. Sowohl im Infektionssystem als auch im hier etablierten Replikonsystem konnte die MKSV-induzierte Spaltung des eukaryotischen Initiationsfaktors 4G verifiziert werden. Hingegen konnte im Einzelexpressionssystem die Spaltung erst nach Lyse der Zellen nachgewiesen werden. Diese bisher noch nicht beschriebene Problematik lässt die bisher veröffentlichten Resultate und Schlussfolgerungen aus Einzelexpressionssystemen in Frage stellen. Die mit Hilfe des Einzelexpressionssystems durchgeführten Studien dieser Arbeit weisen darauf hin, dass ein zusätzlicher translationsinhibierender Mechanismus der Leader Protease, unabhängig von der proteolytischen eIF4G-Spaltung, ausgeübt wird. Dementsprechend sind die Möglichkeiten der Untersuchung zur Leader Protease mittels Einzelexpressionssystem sehr eingeschränkt, da eine Analyse spezifischer Leader Protease-Effekte unabhängig von einer Translationsinhibierung, dem „host-shut-off“, experimentell kaum möglich ist. Dies betrifft insbesondere die durchgeführten InterferonReportergenversuche. Somit konnten unter Verwendung verschiedener Untersuchungssysteme experimentelle Möglichkeiten, aber auch entscheidende experimentelle Limitierungen für die proteinbiochemische Analyse der Leader Protease-vermittelten eIF4G-Spaltung aufgezeigt werden.
Microbial cell factories have been largely exploited for the controlled production of recombinant proteins, including industrial enzymes and biopharmaceuticals. The advent of high-throughput ‘-omics’ techniques have boosted the design of these production systems due to their valuable contribution to the field of systems metabolic engineering, a discipline integrating metabolic engineering with systems and synthetic biology. In order to thrive, the field of systems metabolic engineering needs absolute proteomics data to be generated, as proteins are the central players in the complex metabolic and adaptational networks. Due to advent of mass spectrometry-based proteomics, a substantial amount of absolute proteomic data became available in the past decade. However, membrane proteins remained inaccessible to these efforts.
Nonetheless, comparative studies targeting the membrane proteome have been quite successful in characterizing physiological processes. Hence, label-free proteomics was used in a study (Quesada-Ganuza et al, 2019 – Article I) to identify and optimize PrsA in Bacillus subtilis, for improved yield of amylase. Amylase is one of the most relevant enzymes in the biotechnological sector. By employing a label-free mass spectrometry approach targeting the membrane proteome of this bacterium, relative changes in heterologous and native levels of PrsA could be quantified. The results of this study evidenced that each PrsA shows different relative abundancies, but with no relevant impact in the yield of amylase.
Even though relative protein quantification can already provide a good visualization of the physiological changes occurring between different conditions, they are not sufficient to understand how resources are allocated in the cell under certain physiological conditions. Therefore, a global method for absolute membrane protein quantification remains the biggest requirement for systems metabolic engineering.
Hence, with this work, we successfully developed a mass spectrometry-based approach enabling the absolute quantification of membrane proteins (Antelo-Varela et al, 2019 – Article II). This study was also performed in the Gram-positive model organism Bacillus subtilis, regarded as a prolific microbial cell factory. The method developed in this work combines the comprehensiveness of shotgun proteomics with the sensitivity and accuracy of targeted mass spectrometry. Fundamental to the method is that it relies on the application of a correction and an enrichment factor to calibrate absolute membrane protein abundances derived from shotgun mass spectrometry. This has permitted, for the first time reported, the calculation of absolute membrane protein abundances in a living organism.
The newly developed approach enabled to accurately quantify ~40% of the predicted proteome of this bacterium, offering a clear visualization of the physiological rearrangements occurring upon the onset of osmotic stress. In addition, this work also provides evidence for new membrane protein stoichiometries.
Overall, this study enabled the development of a straightforward methodology long-needed in the scientific and biotechnological community and, for the first time reported, providing absolute abundances of one of the most puzzling fractions of the cell – the membrane proteome.
The next step of the work summarized here was to implement the afore described method to a biotechnological relevant strain, as absolute membrane protein abundances are essential to understand the fundamental principles of protein secretion and production stress. Hence, this work was applied in a genome-reduced B. subtilis strain, ‘midiBacillus’, expressing the major staphylococcal antigen IsaA (Antelo-Varela et al, submitted – Article III). The employed absolute membrane protein quantification methodology enabled the analysis of physiological rearrangements occurring upon the induction of heterologous protein production. This work showed that, even though IsaA was successfully secreted into the growth medium, one of the main requirements for the biotechnological sector, it was still partly accumulated in the cell membrane of this bacterium. This led to an exacerbated physiological response where membrane proteins involved in the management of secretion stress were activated. In addition, this study also showed that a rearrangement of the cell’s translocation machinery occurs upon induction of production, where a ‘game’ of in- and decrease of transporters takes place.
Anticipating the impact of genetic and environmental insults, such as the ones caused by production stress, is essential for the field of systems metabolic engineering. Thus, the highly accurate and comprehensive dataset generated during this work can be implemented in predictive mathematical models, thereby contributing in the rational design of next-generation secretion systems.
Escherichia coli has been commonly used as a platform for recombinant protein production and accounts for approximately 30% of current biopharmaceuticals on the market. Nowadays, many recombinant proteins require post-translational modifications which E. coli normally cannot facilitate. Therefore, novel technological advancements are unceasingly being developed to improve the E. coli expression system. In this work, some of the most recently engineered platforms for the production of disulfide bond-containing proteins were used to study the E. coli proteome under heterologous protein production stress. The effects of protein secretion via the Sec and Tat translocation pathways were examined using a comparative LC-MS/MS analysis. The E. coli proteome responds to foreign protein production by activation of several overlapping stress responses with a high degree of interaction. In consequence, a number of important cellular processes such as cellular metabolism, protein transport, redox state of the cytoplasm and membrane structure are altered by the production stress. These changes lead to the reduction of cellular growth and recombinant product yields. Resolving the identified bottlenecks will increase the efficiency of recombinant protein expression processes in E. coli.
Currently, plastic materials are an integral part of our lives, but their production mostly bases on fossil fuels or derivatives, which resources are decreasing. Extraction and processing of non-renewable resources have also negative impact on environment. One of the most promising and environmentally friendly approaches is use of microorganism. This PhD dissertation presents the non-conventional yeast Arxula adeninivorans as a host for production of bio-based and biodegradable poly(hydroxyalkanoates) plastics poly(hydroxybutyrate) and co-polymer poly(hydroxybutyrate-co-hydroxyvalerate). Additionally, the constructed yeast strain was able to secrete enantiomerically pure (R)-3-hydroxybutyric acid.
The production of PHAs requires three enzymes: β-ketothiolase, acetoacetyl-CoA reductase and PHA synthase. The strategy followed in this project was divided into two parts. While all three enzymes are responsible for intracellular production of PHA polymer, first two only lead to secretion of (R)-3-HB into culture media, which was used in a first stage of work to establish and optimize polymer production. Both, different bacterial strains and yeast A. adeninivorans were taken into account in screening of the genes encoding aforementioned enzymes. Bacterial genes were chemically synthesized using codon optimization pattern and endogenous genes were obtained using PCR and genomic DNA template from A. adeninivorans LS3 wild-type strain. Each gene was cloned into Xplor2 vector between TEF1 constitutive promoter and PHO5 terminator. Vector containing both thiolase and reductase genes was used for A. adeninivorans transformation.
The best combination of heterologous genes was overexpression of β-ketothiolase gene from Clostridium acetobutylicum and acetoacetyl-CoA reductase gene from Cupriavidus necator which led to secretion of 4.84 g L−1 (R)-3-HB, at a rate of 0.023 g L−1 h−1 over 214 h in shaking flask cultivation. Further optimization by fed-batch culturing with glucose as a carbon source did not improve (R)-3-HB secretion, but the rate of production was doubled to 0.043 g L−1 h−1 [3.78 g L−1 of (R)-3-HB at 89 h].
The product of acetoacetyl-CoA reductase is (R)-3-HB-CoA and further removing of CoA moiety is needed for acid secretion into culture media. A. adeninivorans is able to conduct this process without any additional modification but the conversion rate is unknown. Two thioesterases, cytosolic TesBp encoded by TesB gene from E. coli and mitochondrial ATes1p encoded by ATES1 gene from A. adeninivorans, were analysed to enhance secretion process. Additionally, a cytosolic version of ATES1 gene (ATES1cyt) was tested. All three genes were expressed in A. adeninivorans cells under TEF1 constitutive promoter together with thiolase and reductase genes. Despite detected enzymatic activity the yield of (R)-3-HB synthesis and secretion was not increased. Moreover, overexpressed thioesterases negatively influenced cell growth, indicating that they act on other metabolic components. The results provided two sets of information, first, the endogenous secretion system is sufficient for (R)-3-HB production; second, further screening of suitable genes needs to be performed.
Based on optimization of (R)-3-HB synthesis, thiolase gene (thl) from C. acetobutylicum and reductase gene (phaB) from C. necator were chosen to combine with PHA synthase gene (phaC) for creating the PHB-V producing strain. The PHA synthase expression module, containing TEF1 promoter and PHO5 terminator, was cloned into Xplor2 vector together with thiolase and reductase expression modules and used for A. adeninivorans transformation. The engineered strain accumulated up to 7.47% PHB of dcw. During the set of cells passaging A. adeninivorans lost the ability to accumulate polymer with maximal 23.1 % of primary accumulation level. Additionally, use of a vector including hygromycin B antibiotic resistance marker (instead of auxotrophic marker in Xplor2) did not improve polymer accumulation and stability.
To counteract the effect of loss of accumulation stability, phasin gene (phaP1), originated from C. necator, was introduce together with PHA pathway genes. First screening cultivations resulted in stabilizing of polymer production reaching 9.58 % PHB of dcw and only 12.0 % loss of production ability. Further experiments increased PHB content with 19.9% PHB of dcw (3.85 g L-1) after 180 h of cultivation using rich medium. Use of another thiolase gene, the second thiolase from C. necator (bktB), which theoretically should induce production of PHBV copolymer, led to accumulation only 11.4% PHB of dcw after 139 h and no PHV fraction was detected.
Variation of the ratio between flask volume and amount of media influences the level of aeration. Importantly, decrease of aeration level significantly increased polymer synthesis. Additionally, PHB-V copolymer accumulation has been induced by use of different carbon source co-substrates. Use of rich media supplemented with ethanol allow the strain with thl thiolase to accumulate up to 42.9 % PHB of dcw without PHV fraction and with bktB thiolase to 30.5 % PHB of dcw. Nevertheless, despite of lower total amount of polymer, supplementation with 1-propanol allow both strains to accumulate PHB-V copolymer with 7.30 %mol and 22.5 %mol of PHV for thl and bktB strains, respectively.
Optimization based on genetic engineering further enhanced polymer production yield led to exceeding of 50 % PHB-V of dcw. For doubling the gene dosage, PHA synthesizing strains of A. adeninivorans were again transformed with Xplor2 vector containing PHA pathway genes. Resulting strains exhibited twice the level of enzymatic activities of thiolase and reductase compared with strains transformed once with expression vector. In a shaking flask experiment the strain transformed twice with vector containing bktB thiolase reached after 240 h 52.1% PHB-V of dcw (10.8 g L-1) with 12.3 %mol of PHV fraction which is the highest level found in yeast. As another genetic approach, a fusion strain has been created. Two different strains have been established and merged using protoplast fusion technique. Doubling of genetic material resulted in similar level of copolymer produced by Arxula as in former experiments (50.2% of dcw, 10.7 g L-1).
Culture conditions were optimized in controllable cultivation using fed-batch mode. Although optimal oxygen and pH level and continuous carbon source and nitrogen feeding were maintained, final polymer level in % of dry mass was around three times lower than for shaking flask experiment. Nevertheless, efficient growth of Arxula in fed-batch mode led to increase of total copolymer level in g L-1 (16.5 g L-1 compare to 10.8 g L-1 for shaking flasks) showing the feasibility of using Arxula strain for up-scaling production of copolymer.
Acetyl-CoA is a main precursor in synthesis of PHB-V copolymer and change of its pool was investigated. ATP citrate lyase is a cytosolic enzyme converting citrate into oxaloacetate and acetyl-CoA, supporting the biosynthesis of fatty acids. Two genes encoding Acl subunits from Aspergillus nidulans (AnAcl1 and AnAcl2) were again cloned into Xplor2 vector and transformed into A. adeninivorans PHA producing strain. Despite of higher enzymatic activity of AnAclp, accumulation of polymer was around three times higher for control without expression of lyase genes. Expectedly, the strain expressing AnAcl1/2 genes accumulated larger amount of each stearic, palmitic and oleic acid in both standard and fatty acid inducing conditions (lower nitrogen level). Thus, overexpression of AnAcl1/2 genes in A. adeninevorans cells may improve biosynthesis of fatty acids but is ineffective for PHB polymer accumulation.
The aim of the project was use of starch-based media, manufactured as by-products, for polymer production. Genetically engineered Arxula strains were cultivated using these media instead of glucose-based media. Although yeast cells were both able to secrete (R)-3-HB and to accumulate PHB, the yield was lower than for previous media. Additionally, only trace of PHV was found at the end of cultivation time when 1-propanol was supplemented. Obtained results showed that use of cheaper media is a promising approach to decrease production costs but further optimization needs to be performed especially for extended scale of production.
Determination of produced copolymer has been done based on microscopic analysis and studies of physical and chemical properties. Results revealed that Arxula accumulated PHA polymer in cytosolic granules with a similar size range compared to the ones produced by bacteria. The physicochemical study showed that produced polymer exhibited slightly different properties in comparison to bacterial polymer with similar content of PHV, i.e. very-low molecular mass, higher melting and glass transition temperature.
All above results showed that A. adeninivorans is a promising host for PHB-V production. Expression of phasin greatly increased production and stability of polymer, which led to an accumulation level never found before in yeast. Further optimization in higher production scale using cheap starch-based media may establish Arxula strain as a valuable tool for industrial production of PHB-V copolymer.
Bacteria are exposed to oxidative stress as an unavoidable consequence of their aerobic lifestyle. Reactive oxygen species (ROS) are generated in the stepwise one-electron reduction of molecular oxygen during the respiration. Pathogens encounter ROS during the oxidative burst of macrophages as part of the host immune defense. Besides ROS, bacteria also have to cope with reactive chlorine, electrophilic and nitrogen species (RCS, RES, RNS). To cope with these reactive species, bacteria have evolved different defense and repair mechanisms. To maintain the reduced state of the cytoplasm, they utilize low molecular weight (LMW) thiols. LMW thiols are small thiol-containing compounds that can undergo post-translational thiolmodifications with protein thiols, termed as S-thiolations. S-thiolations function as major redox regulatory and thiol-protection mechanism under oxidative stress conditions. In eukaryotes and Gram-negative bacteria, the tripeptide glutathione (GSH) functions as major LMW thiol, which is present in millimolar concentrations. The Actinomycetes, such as Mycobacterium and Corynebacterium species do not produce GSH and utilize instead mycothiol (MSH) as their alternative LMW thiol. In Firmicutes, including Bacillus and Staphylococcus species, bacillithiol (BSH) functions as the major LMW thiol. LMW thiols protect protein thiols against the irreversible overoxidation of cystein residues to sulfinic and sulfonic acids. In addition, LMW thiols contribute to the virulence and survival of pathogens, function in metal homeostasis and serve as enzyme cofactors for detoxification of xenobiotics and antibiotics. In this doctoral thesis, we aimed to investigate the roles of MSH and BSH in redox regulation of main metabolic enzymes under oxidative stress in the pathogens Corynebacterium diphtheriae and Staphylococcus aureus. Previous redox proteomics studies identified the glyceraldehyde-3-phosphate dehydrogenase GapDH and the aldehyde dehydrogenase AldA as S-thiolated in S. aureus and C. diphtheriae. Thus, we aimed to study the redox regulation of the metabolic enzyme GapDH in C. diphtheriae in response to NaOCl and H2O2 stress by S-mycothiolation, which is described in chapter 1. Moreover, we studied the involvement of the mycoredoxin-1 (Mrx1) and thioredoxin (Trx) pathways in reactivation of S-mycothiolated GapDH in vitro. Using shotgun proteomics, 26 S-mycothiolated proteins were identified under NaOCl stress in C. diphtheriae. These are involved in energy metabolism (Ndh, GlpD) and in the biosynthesis of amino acids (ThrA, LeuB), purines (PurA) and cell wall metabolites (GlmS). The glycolytic GapDH was identified as conserved target for S-thiolation across Gram-positive bacteria. GapDH was the most abundant protein, contributing with 0.75 % to the total cystein proteome. Moreover, GapDH is a conserved target for redox regulation and S-glutathionylation in response to oxidative stress in several prokaryotic and eukaryotic organisms. Treatment of GapDH with NaOCl and H2O2 in the absence of MSH resulted in irreversible enzyme inactivation due to overoxidation. Pretreatment of GapDH with MSH prior to H2O2 or NaOCl exposure resulted in reversible inactivation due to S-mycothiolation of the active site Cys153. Since S-mycothiolation is faster compared to overoxidation, S-mycothiolation efficiently protects the GapDH active site against overoxidation. The activity of S-mycothiolated GapDH could be restored by both, the Mrx1 and Trx pathway in vitro. Interestingly, the recovery of Smycothiolated GapDH by Mrx1 was faster compared to its reduction by the Trx pathway. In previous studies, the reactivation of S-mycothiolated Mpx and MrsA by the mycoredoxin pathway occurred also faster compared to the Trx pathway, which is consistent with our results. We were further interested to analyze the redox regulation of the glyceraldehyde-3phosphate dehydrogenase Gap of S. aureus under NaOCl and H2O2 stress, which is described in chapter 2. Using the quantitative redox proteomic approach OxICAT, 58 NaOCl-sensitive cystein residues with >10% thiol oxidation under NaOCl stress were identified. Gap and AldA showed the highest oxidation increase of 29% under NaOCl stress at their active site cystein residues. Using shotgun proteomics, five S-bacillithiolated proteins were identified, including Gap, AldA, GuaB, RpmJ and PpaC. Gap contributed with 4 % as most abundant cystein protein to the total cystein proteome. Our activity assays demonstrated that Gap of S. aureus is highly sensitive to overoxidation by H2O2 and NaOCl in vitro in the absence of BSH. The active site Cys151 of Gap was oxidized to the BSH mixed disulfide under H2O2 and NaOCl stress in the presence of BSH in vitro, which resulted in the reversible Gap inactivation. Moreover, inactivation of Gap by NaOCl and H2O2 due to S-bacillithiolation was faster compared to overoxidation, indicating that S-bacillithiolation protects the Gap active site against overoxidation in vitro. We further showed that the bacilliredoxin Brx catalyzes the reduction of S-bacillithiolated Gap in vitro. Molecular docking of BSH into the Gap active site revealed that S-bacillithiolation does not require major structural changes. Apart from Gap, the aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus previously. Thus, the expression, function, redox regulation and structural changes of AldA were analysed under NaOCl and aldehyde stress in S. aureus as summarized in chapter 3. AldA was S-bacillithiolated in the presence of H2O2 and BSH as demonstrated in BSH-specific Western blots in vitro. The expression of aldA was previously shown to be regulated by the alternative sigma factor SigmaB in S. aureus. Transcription of aldA was strongly increased in a SigmaB-independent manner under formaldehyde, NaOCl and diamide stress in S. aureus. Using an aldA deletion mutant, we demonstrated that aldA is required for growth and survival under NaOCl stress in S. aureus. The purified AldA enzyme was shown to catalyze the oxidation of various aldehyde substrates, including formaldehyde, methylglyoxal, glycolaldehyde and acetaldehyde in vitro. In addition, the function of the conserved Cys279 for AldA activity was investigated in vivo and in vitro. The purified AldAC279S mutant was shown to be inactive for aldehyde oxidation in vitro. Moreover, the aldAC279S mutant was very sensitive under NaOCl stress in vivo, and this phenotype could be reversed using the aldA complemented strain. These experiments demonstrate the function of Cys279 for AldA activity both in vitro and in vivo. AldA activity assays showed that AldA is sensitive to overoxidation and irreversible inactivation by H2O2 alone in vitro. In the presence of BSH, AldA is protected against overoxidation by reversible Sbacillithiolation in vitro. Molecular docking and molecular dynamics simulations revealed that BSH occupies two different positions in the Cys279 active site, which depend on the NAD+ cofactor. In the apoenzyme, BSH forms the disulfide with Cys279 in the “resting” state position, while Cys279 is S-bacillithiolated in the “attacking” state position in the holoenzyme in the presence of the NAD+ cofactor.
The highly oncogenic alphaherpesvirus Marek’s disease virus (MDV) causes immense economic losses in the poultry industry. The main targets of in vivo MDV infection are primary B and T lymphocytes. The cytolytic infection of B cells leads to depletion of lymphoid cells results in severe immunosuppression. Infected B cells recruit and activate T cells. The close interaction between B cells and T cells enables efficient intercellular transfer of MDV. During infection of T cells, the virus enters a latent state. Infection of T cells can lead to transformation of these cells and formation of lymphoma, which manifest in various visceral organs. This study aimed at the characterization of the proteomes of MDV-infected lymphocytes during the lytic and latent phases of infection.
Previous in vitro studies concerning the MDV pathogenesis and host-virus interactions have been mainly conducted with primary fibroblasts or kidney cells, due to the short lifespan of primary lymphocytes in cell culture. Recently, a cultivation system has been established that extents the lifespan of primary lymphocytes through the addition of cytokines to the growth medium. This allowed the infection of B cells in vitro and to conduct quantitative proteomic analysis of primary lymphocytes. Infection with GFP labelled virus recombinants allowed the isolation of infected cells by FACS for the proteome analysis of MDV infected B lymphocytes. An efficient quantitative proteomic workflow was developed, which consisted of a filter-aided (FASP) digest of the extracted proteins, followed by differential dimethyl chemical labeling of the peptides for quantitative evaluation prior to LC-MALDI TOF/TOF mass spectrometry. Only few alterations of the protein and transcript expression profiles were observed after infection of primary B cells with the very virulent RB-1B and the live-attenuated vaccine strain CVI988/Rispens. Relevant changes in relative protein levels were found for only twelve and six interesting host proteins after RB1B and CVI988 infection, respectively. However, the regulations were confirmed by inspection of the spectra from all experiments. The identified candidates play a role in immune response, translation and inflammatory response.
To confirm the potential infection markers, RNA-seq analysis of three biological replicates of each RB-1B -, CVI988- and mock-infected B cells was performed. Eighty expressed MDV transcripts could be identified, which were associated with lytic infection. The same MDV proteins were identified after infection with RB-1B or CVI988. However, transcriptome and proteome analysis of MDV-infected primary B cells showed only poor correlation. This indicates that the changes in protein expression profiles are mostly due to posttranscriptional events. Infection marker candidates were identified by the RNA-seq analysis, for which the gene expression was altered by MDV infection. Although almost 12,000 transcripts were identified, only few transcript levels changed markedly after MDV infection. The biological processes immune response, apoptotic process, signal transduction, cell migration and response to virus were enriched after MDV infection. The RNA-seq results confirm the observation that alterations of protein levels early after MDV infection are rare.
Most notably, MDV induces transformation of lymphocytes leading to malignant T-cell lymphomas in visceral organs with mortalities of up to 100 %. While several factors involved in MDV tumorigenesis have been identified, the transformation process is not fully understood. Therefore, we set out to fill this knowledge gap using proteome analysis of transformed T-cells ex vivo. In addition, the role of the viral telomerase RNA during transformation was assessed by comparison of tumors that had formed after infection with WT-virus or a telomerase RNA negative mutant. A major obstacle for tumor proteome analyses is the preparation of sufficient amounts of homogenous tumor tissue, as tumors appear with a dispersed morphology in the affected organs. The quantitation of cell types within the tumors indicated varying portions of hepatocytes, connective tissue, and CD3+ lymphocytes even with the same virus strain in different animals. However, the ∆vTR-induced tumors contained lower levels of hepatocytes and higher levels of CD3+ lymphocytes compared to WT tumors in all tested tumor samples. Thus, ∆vTR tumors were chosen for determination of differences in protein expression profiles of tumors and naïve T cells for their lower content of liver cells. We developed a workflow for the proteome analysis of T cell tumors from livers of MDV-infected chickens. Samples included laser capture micro-dissected tissue cuts from tumors and surrounding healthy liver tissue as well as naïve T-cells prepared from thymus. To enable quantitative proteome analysis, samples were digested using the FASP protocol and peptides were isotope-coded by differential dimethyl labeling. To improve proteome analysis peptides were fractionated by preparative isoelectric focusing prior to nano-HPLC MALDI/TOF-TOF mass- spectrometric analysis.
Proteomic analyses of LCM dissected ΔvTR tumor compared to naïve T cells, the main targets of transformation, identified nineteen potential transformation markers but again only minor changes in relative levels were observed. Several of the identified markers could also be verified by RT-qPCR on transcript level. The identified transformation candidates were associated with nucleosome assembly, regulation of transcription, inflammatory response, immune response and oxidation-reduction process.
However, further functional analyses are necessary to fully elucidate the role of the identified markers during MDV infection and transformation.
Streptococcus pneumoniae (pneumococci) and Staphylococcus aureus (S. aureus) are human-specific commensals of the upper respiratory tract. Every individual is asymptomatically colonized with both bacteria at least once in their life-time. The opportunistic pathogens can affect further organs and invade into deeper tissue. The occupation of normally sterile niches of the human body with the bacteria can lead to local infections such as sinusitis, otitis media and abscesses, or to life-threatening diseases like pneumonia, meningitis or sepsis. A strong interaction between the bacterium and the respiratory epithelial cells is a prerequisite for a successful colonization. This interaction is ensured by bacterial surface proteins, so called adhesins. The binding of the adhesins to the epithelial lineage occurs predominantly indirectly via components of the extracellular matrix (ECM), but also directly to cellular receptors. Pneumococci and S. aureus bind to various ECM glycoproteins, amongst others: fibronectin, fibrinogen, vitronectin, and collagen. Also binding of both pathogens to human thrombospondin-1 has been described. Thrombospondin-1 is mainly stored in the α-granula of thrombocytes (platelets) and released into the circulation upon activation. However, thrombospondin-1 is also produced and secreted by other cell types like endothelial cells, macrophages, and fibroblasts, which gets subsequently incorporated as component into the ECM. So far, no thrombosponin-1-binding adhesins of pneumococci were identified. PspC, Hic, and PavB are important surface-localized virulence factors, which were shown to interact with human ECM and plasma proteins. PspC and Hic bind to vitronectin and factor H, which inhibits the complement cascade of the human immune system. PavB interacts with fibronectin and plasminogen, and a pavB-deficient mutant of S. pneumoniae showed diminished capacity in colonization in a mouse model. Among the surface proteins of S. aureus, only Eap was identified as thrombospondin-1-binding adhesin. Beyond colonization, pneumococci and S. aureus can enter the blood circulation, interact with platelets, and cause their activation. The aggregation of platelets, especially initiated by S. aureus, plays an important role in the clinic, because most of the septic patients develop thrombocytopenia. Surface localized factors of
S. pneumoniae triggering platelet activation are unknown to date. In contrast, few proteins of S. aureus with potential to activate platelets, including Eap, were identified previously.
This study identified the surface proteins PavB, PspC, and Hic of S. pneumoniae as specific ligands of the human thrombospondin-1. Flow cytometric, surface plasmon resonance spectroscopic and immunological analyses revealed interactions between the pneumococcal proteins and soluble as well as immobilized thrombospondin-1. The use of specific pneumococcal deletion mutants verified the importance of the three virulence factors as binding partners of soluble thrombospondin-1. The results suggest that pneumococci are capable of acquiring soluble thrombospondin-1 from blood as well as utilizing immobilized glycoprotein of the ECM as substrate for adhesion. Furthermore, the thrombospondin-1-binding domain within the pneumococcal proteins was analyzed by use of recombinant fragments of PavB, PspC, and Hic. The binding capacity of thrombospondin-1 increased proportionally with the amount of repetitive sequences in PavB and PspC, and the length of the α-helical region within the Hic molecule. The binding behavior of thrombospondin-1 towards PavB and PspC is comparable with that of the ECM proteins vitronectin and fibronectin, but is unique towards Hic.
The localization of the binding domain of the adhesins within the thrompospondin-1 molecule occurred via use of glycosaminoglycans as competitive inhibitors for the interaction. The results suggest that the pneumococcal proteins Hic and PspC target the identical binding region within thrombospondin-1, which differs from the binding domain for PavB. However, all three virulence factors seem to bind in the N-terminal part of thrombospondin-1.
Two-dimensional gel electrophoresis, thrombospondin-1 overlay assay and subsequent mass spectrometric analysis identified AtlA of S. aureus as a surface localized interaction partner of human thrombospondin-1. Moreover, a vitronectin binding activity for AtlA was determined. Immunological and surface plasmon resonance binding studies with recombinant AtlA fragments revealed that interactions with both matrix proteins is mediated via the C-terminal located repeats R1R2 of the AtlA amidase domain. Binding of thrombospondin-1 and vitronectin occurred not simultaneously, due to a competitive inhibition.
The second part of the study focused on the activation of human platelets by recombinant pneumococcal and staphylococcal proteins. In total, 28 proteins of S. pneumoniae and 52 proteins of S. aureus were incubated with human platelets. The activation of the cells was detected by flow cytometry using the activation markers P-selectin and the dimerization of the integrin αIIbβIII. The proteins CbpL, PsaA, PavA, and SP_0899 of S. pneumoniae induced platelet activation, however, the detailed mechanism has to be deciphered in further studies. Furthermore, the secreted proteins CHIPS, FLIPr, and AtlA of S. aureus were discovered as inductors for the activation of platelets. In addition, the domains of AtlA and Eap, crucial for platelet activation, were narrowed down. Interestingly, CHIPS, FLIPr, and Eap were described as inhibitors of neutrophil recruitment. Platelets are recently recognized as immune cells, due to the expression of immune receptors. The data obtained in this study highlight a comprehensive spectrum of effects of the S. aureus proteins towards different type of immune cells. Besides the activation of platelets in suspension buffer and plasma, the aggregation of platelets in whole blood was triggered by the proteins CHIPS, AtlA, and Eap. These results suggest a contribution of the proteins during the S. aureus-induced infectious endocarditis. Secretion of the platelet activating virulence factors, which were identified within this study, might represent a pathogenic strategy during S. aureus infection in which a direct contact between S. aureus and platelets is not required or even avoided.
In conclusion, PavB, PspC, and Hic of S. pneumoniae and AtlA of S. aureus were identified as interaction partners of human thrombospondin-1. Furthermore, CHIPS, FLIPr, AtlA, and Eap were characterized as platelet activators. This study provides candidates for the development of protein-based vaccines, to prevent bacterial colonization and to neutralize secreted pathogenic factors.
Natürliche Hormone und Substanzen mit einer hormonellen Wirkung werden als organischen Spurenstoffen oder Mikroschadstoffe bezeichnet und werden über verschiedene Quellen in die Umwelt eingetragen. Dies führt insbesondere bei aquatischen Lebewesen zu Veränderungen im endokrinen System. Um die Belastung der Gewässer mit hormonell aktiven Substanzen zu verringern und einen guten chemischen und ökologischen Status nach europäischer Wasserrahmenrichtlinie zu erreichen, wird eine Reduktion des Eintrags hormonell aktiver Substanzen angestrebt. Die meisten Abwässer werden in Kläranlagen gesammelt, die somit Punktquellen für den Eintrag von hormonell aktiven Substanzen in die Umwelt darstellen. Zur Untersuchung neuer Methoden zur Abwasserreinigung sind zuverlässige und sensitive analytische Messtechniken notwendig. Da aktuelle instrumentelle Messmethoden nicht in der Lage sind hormonell aktive Substanzen im wirkungsrelevanten Konzentrationsbereich zu messen, wurden Hefezellenassays zur Detektion der östrogenen (A-YES) und androgenen (A-YAS) Aktivitäten für eine Anwendung in Oberflächengewässern und Abwässern evaluiert. Im Anschluss wurden diese Assays zur Beurteilung und Optimierung der Eliminationsleistung einer großtechnischen Ozonung auf einer kommunalen und einer Krankenhaus Kläranlage eingesetzt. Die untersuchten Abwassermatrices zeigten keine Effekte auf die Enzym Substrat Reaktion und die optische Dichte der A-YES Hefezellensuspension. Proben eines Oberflächengewässers sowie von Kläranlagen Zuläufen verursachten im A-YAS eine erhöhte optische Dichte der Zellsuspension im Vergleich zur Referenz. Eine verringerte optische Dichte der A-YAS Hefezellsuspension konnte in Extrakten von Zulaufproben bestimmt werden. Durch die Dotierung unterschiedlicher Konzentrationen der Referenzsubstanzen zu Oberflächengewässer- und Abwasserproben konnten Dosis Wirkungskurven mittels A-YES und A-YAS Assays abgebildet werden. Dabei konnte gezeigt werden, dass insbesondere in Kläranlagen-Zulaufproben sowohl eine östrogene als auch eine androgene Aktivität bereits in der undotierten Ausgangsprobe vorhanden war. Des Weiteren konnten inhibierende Effekte in den Proben detektiert werden, die auf antagonistische Substanzen hindeuten. Die Analyse von Kläranlagen Abläufen zeigte östrogene Aktivitäten zwischen 0,035 und 5,5 ng EEQ/L sowie androgene Aktivitäten zwischen < 0,31 und 6,1 ng DHTEQ/L. Während der großtechnischen Ozonung konnte die östrogene Aktivität in einer kommunalen sowie einer Krankenhaus Kläranlage um bis zu 97% bzw. 83% reduziert werden. Die Reduktion der androgenen Aktivität lag bei 80% und 66%. Für zwei Verfahren zur bedarfsabhängigen Steuerung der Ozonung basierend auf der östrogenen Aktivität und auf dem DOC Gehalt konnte die Machbarkeit gezeigt werden. Allerdings stellten sich beide Methoden zum jetzigen Zeitpunkt als nicht wirtschaftlich heraus. Antagonistische Aktivitäten konnten in einem Konzentrationsbereich von 330 - 2.700 µg OHTEQ/L (anti-östrogene Aktivität) und 550 - 730 µg FEQ/L (anti-androgene Aktivität) mittels anti A-YES und anti A-YAS detektiert werden. Während der einzelnen Reinigungsstufen konnte keine Reduktion der antagonistischen Aktivitäten nachgewiesen werden. Sowohl A-YES als auch A-YAS sind für die Analyse von Abwasserproben geeignet und ermöglichen so erstmals die Beurteilung von Verfahren zur Abwasserreinigung im wirkungsrelevanten Konzentrationsbereich.
Streptococcus pneumoniae (pneumococci), a human pathobiont, express and expose several proteinaceous colonization and virulence factors on its surface to facilitate on the one hand colonization of the upper respiratory tract and on the other hand pathogenesis in the host. In this study the interaction of two of such factors referred to as pneumococcal virulence factor A (PavA) and pneumococcal virulence factor B (PavB) and acting as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), was delineated with the two host matricellular proteins fibronectin (Fn) and vitronectin (Vn). Despite similarity in nomenclature, PavA and PavB represent two diverse pneumococcal proteins with respect to their structure and association with the pneumococcal surface. PavA is a non-classical surface protein (NCSP) with an ambiguous mode of secretion and anchorage while PavB is a characteristic MSCRAMM, anchored via sortase A to pneumococcal peptidoglycan. PavB has a signature of repetitive modules termed as streptococcal surface repeats (SSURE). Pneumococci preferentially interact with immobilized human Fn. In vitro cell culture adherence assays demonstrated that cell bound Fn facilitates the adherence of pneumococci to the host cells and this particular interaction is indifferent to host cell type and is species non-specific. Flow cytometry and immunoblot analyses further indicated the ability of pneumococci to interact with the soluble form of Fn in a dose-dependent but species non-specific manner. The molecular interaction of PavA and PavB (via its SSURE domains) with Fn was delineated further in detail via several direct protein-protein interaction approaches. Ligand overlay assays, surface plasmon resonance studies and SPOT peptide arrays demonstrated that PavA and PavB target at least 13 out of the 15 type III fibronectin domains located in the C-terminal part of Fn. Strikingly, both pneumococcal fibronectin-binding proteins (FnBPs) recognize similar peptides in targeted type III repeats. Structural comparisons revealed that the targeted type III epitopes cluster on the inner strands of both β-sheets forming the fibronectin domains. Importantly, synthetic peptides of FnIII1, FnIII5 or FnIII15 bind directly to FnBPs PavA and PavB, respectively. Thus, analysis of interaction of pneumococcal FnBPs PavA and PavB revealed a probable conserved and/or common pattern of molecular interaction with human Fn. In addition to Fn, pneumococcal PavB interacts with other host matricellular proteins such as human plasminogen (Plg) and human thrombospondin-1 (hTSP-1). Pneumococcal proteins such as PspC and PspC-like Hic have earlier been demonstrated to interact with hTSP-1 as well as human Vn, thereby depicting a redundant function as MSCRAMMs. In this study the role of PavB as a pneumococcal vitronectin binding protein (VnBP) was assessed. Flow cytometric analysis suggested PavB as VnBP, because strains deficient for PavB exhibited a significantly decreased ability to acquire vitronectin compared to wild-type pneumococci. When using a double knockout, deficient in expression of PavB and the VnBP PspC, the pneumococcal interaction with vitronectin was completely abolished. The direct protein-protein interaction assays such as far western ligand overlay, ELISA, and surface plasmon resonance indicated the interaction of SSURE domains with both soluble and immobilized Vn. However, the binding activity depends on the number of SSURE domains with five SSURE showing the highest binding activity to Vn. The interaction of PavB with Vn was charge dependent and heparin sensitive as analyzed by ELISA. The importance of the heparin binding domains of Vn in this interaction was further analyzed via direct protein-protein interaction approaches. Binding studies (far western ligand overlay, ELISA, and surface plasmon resonance) with truncated recombinant Vn fragments indicated that PavB targets the C-terminal heparin-binding domain (HBD3) of vitronectin, a characteristic shared with PspC, hence, suggesting a conserved molecular interaction of pneumococci with Vn. In addition to its function as an MSCRAMM, PavB has the capability to interact directly with host epithelial cells via an unknown cellular receptor. Thus, this study aimed to identify cellular receptor(s) for PavB. In vitro cell culture adherence and invasion assays confirmed that pneumococcal PavB is involved in promoting pneumococcal adherence to respiratory epithelial cells without employing any molecular bridge. The direct interaction between PavB and host epithelial cells was further confirmed via direct binding assays when using Cy5-labeled PavB and flow cytometric analysis. Strikingly, exogenously added human vitronectin competitively inhibited binding of PavB to respiratory epithelial cells. This observation led us to hypothesize that the major vitronectin receptor αvβ3 integrin acts as a potential receptor for PavB. This hypothesis was supported by functional blocking assays with monoclonal antibodies recognizing specific integrin subunits. The results revealed reduced binding of PavB in the presence of bound antibodies recognizing αv integrin indicating that PavB employs αvβ3 integrin as its direct receptor on eukaryotic cells. This was further confirmed via a direct binding assay of PavB to mouse embryonic fibroblasts (MEFs) where cells lacking αvβ3 demonstrated a marked decrease in binding to PavB. Although functional blocking assay and direct binding assay with MEFs supported the role of αvβ3 integrin as a direct adhesin for PavB, RNA interference of αv integrin in epithelial cells did not impair the binding of PavB in αv-knocked down cells in comparison to non-transfected cells. Finally, surface plasmon resonance (SPR) analysis indicated the direct interaction between pneumococcal PavB and recombinant αvβ3 integrin. In this study we report for the first time the interaction of a Gram-positive extracellular pathogen, namely Streptococcus pneumoniae, with one of the host ICAMs, namely the αvβ3 integrin. In conclusion, the present study analysed some of the aspects of molecular interaction of pneumococcal MSCRAMMs PavA and PavB with hFn and hVn. The hot spots of interaction on C-terminal FnIII repeats were delineated for PavA and PavB. HBD3 was revealed to be pivotal for PavB-Vn interaction. In addition the redundant role of pneumococcal PavB as an MSCRAMM was demonstrated. Furthermore this study successfully identifies a direct receptor for pneumococcal PavB, namely αvβ3 integrin. The mechanism and biological rationale of this newly identified interaction is a matter of debate and awaits further scientific analyses.
Das Genus Pestivirus gehört zur Familie der Flaviviridae und enthält eine Reihe von tierpathogenen Erregern, welche (fast) ausschließlich Paarhufer befallen. Das bei Pestiviren vorkommende Strukturprotein ERNS ist einzigartig in der Familie Flaviviridae, es finden sich keine homologen Proteine in den anderen Genera dieser Familie. ERNS ist ein sehr ungewöhnliches Protein, da es für ein virales Strukturprotein verschiedene untypische Eigenschaften aufweist. Neben einer intrinsischen RNase-Aktivität findet sich am C Terminus eine sehr ungewöhnliche Signalpeptidase-Spaltstelle. Während die RNase Aktivität einen wichtigen Virulenzfaktor darstellt, sorgt die ungewöhnliche Spaltstelle mutmaßlich für die verlangsamte Prozessierung des ERNS-E1-Vorläuferproteins. Inwieweit die verlangsamte Spaltung des Vorläuferproteins für das Virus wichtig sein könnte, ist bis dato noch ungeklärt. Auch ist die Ausbildung von Dimeren wichtig für die Virulenz von ERNS. Darüber hinaus erfolgt eine partielle Sekretion von ERNS in den extrazellulären Raum, während ein Großteil in der Zelle verbleibt. Zusätzlich verfügt ERNS über eine untypische Membranverankerung, die durch eine lange, C-terminale amphipathische Helix vermittelt wird. Innerhalb dieser amphipathischen Helix findet sich eine Reihe geladener Aminosäuren, deren Lokalisation und Anordnung zu zwei spiegelsymmetrisch komplementären Gruppen bei Pestiviren konserviert ist. Es stellte sich die Frage, welche biologische Relevanz dieses Muster an geladenen Aminosäuren haben könnte. Ausgehend von der vorgeschlagenen Ausbildung eines „Charge Zippers“ – durch Rückfaltung und Ausbildung von Salzbrücken zwischen den komplementären Ladungen –, wurden mittels transienten Expressionsexperimenten die sechs hoch konservierten Ladungen im „Inneren“ des möglichen „Reißverschlusses“ untersucht, und es zeigte sich, dass der postulierte Charge-Zipper-Mechanismus bei ERNS vermutlich keine Rolle spielt. Für einige der betrachteten Aminosäuren konnten Hinweise erhalten werden, dass sie eine Rolle bei der Prozessierung, der Retention und bei der Dimerisierung von ERNS spielen. Vor allem ein Austausch der Ladung an der Position 194 im ERNS zeigte einen signifikanten Einfluss auf die Prozessierung und Retention von ERNS. Auch bei der Dimerisierung stach diese Position hervor, da entgegen anderer Mutationen ein Austausch hier zu einer vermehrten Dimerbildung führte. Weiterführend wurden diese Mutationen in rekombinante Viren eingeführt, und es zeigte sich, dass vor allem die spezifischen Ladungen an den Positionen 184 und 191 im ERNS wichtig für die effiziente Virusvermehrung sind. Ladungsaustausche an diesen Positionen sorgten für nicht lebensfähige Virusmutanten, während Alaninsubstitutionen im Lauf von Passagen zur ursprünglichen Ladung revertierten. Diese Ergebnisse zeigen die elementare Bedeutung der Ladungen für die Generierung von infektiösen Viren. Die molekularen Mechanismen, in denen diese Reste von Bedeutung sind, müssen in weiteren Arbeiten noch aufgeklärt werden.
Alcohol dehydrogenases as biocatalysts for the production of enantiomerically pure chiral alcohols
(2016)
Summary Enantiomerically pure chiral alcohols are key compounds in the production of certain chemicals including pharmaceuticals. Chemical synthesis allows to obtain maximal yield of 50% for one enantiomer ( >50% yield is achievable with chiral catalysts used in chemical synthesis), whereas biosynthesis leads to nearly 100% yield. Hence, expensive and time consuming resolution of racemic mixture can be avoided. Alcohol dehydrogenases are the most popular enzymes used in the chiral alcohols synthesis due to high activity with appropriate aldehydes or ketones. ADHs require a cofactor which has to be regenerated after the conversion of aldehyde/ketone to the respective alcohol. Thereby, different regeneration methods were used in the practical work to compare and choose the better one. R. erythropolis and C. hydrogenoformans alcohol dehydrogenases were chosen based on the literature screening. Each gene was cloned into Xplor2 vector and pFPMT vector. Xplor2 vector was used for the transformation of A. adeninivorans and pFPMT vector was used for the transformation of H. polymorpha. Chemically synthesized alcohol dehydrogenase sequences from R. erythropolis (ReADH) and C. hydrogenoformans (ChADH) were cloned between TEF1 promoter and PHO5 terminator which are components of Xplor2 vector or between FMD promoter and MOX terminator which are genetic elements of pFPMT vector. Moreover, ChADH and ReADH sequences with His-tag encoding sequence at the 5’ or 3’ end were constructed and the most active form of the protein was selected for further studies. ReADH-6H was used for the synthesis of 1-(S)-phenylethanol and ethyl (R)-4-chloro-3-hydroxybutanoate whereas ChADH-6H was used for the production of ethyl (R)-mandelate. ReADH-6H synthesized in A. adeninivorans and H. polymorpha was fully biochemically characterized. The enzymes from the two yeast species showed some differences in their pH and temperature optima, thermostability and activity levels. A-ReADH (A. adeninivorans) and H-ReADH (H. polymorpha) were highly active with the same substrates which were: acetophenone, 4-hydroxy-3-butanone and ethyl 4-chloroacetoacetate for reduction reaction along with 1-phenylethanol and 1,6-hexanediol for oxidation reaction. Recombinant A-ReADH-6H and H-ReADH-6H were synthesized in A. adeninivorans and H. polymorpha, respectively. Both enzymes were used for the synthesis of 1-(S)-phenylethanol and ethyl (R)-4-chloro-3-hydroxybutanoate with the use of substrate-coupled cofactor regeneration system. The enantiopurity of the products was >99%. Moreover, A. adeninivorans whole cell catalyst was also used for the synthesis of both chiral alcohols. BmGDH (Bacillus megaterium glucose dehydrogenase) was co-expressed with ReADH-6H for NADH cofactor regeneration. Comparison between isolated enzymes and permeabilized whole cell catalysts indicate that cell biocatalysts are more suitable for the production of 1-(S)-phenylethanol with 92% of acetophenone being converted in 60 min. However, cells did not show any significant advantage over isolated enzymes in the synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate although the velocity of the synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate was slightly improved using whole-cell catalysts, giving an 80% substrate conversion in 120 min. Recombinant C. hydrogenoformans alcohol dehydrogenase was synthesized in A. adeninivorans and biochemically characterized. Enzyme showed high activity only with one substrate, ethyl benzoylformate. The A. adeninivorans and H. polymorpha cell catalysts synthesizing ChADH and BmGDH (Bacillus megaterium glucose dehydrogenase) were constructed and used in the synthesis of ethyl (R)-mandelate (reduction product of ethyl benzoylformate) with the enantiopurity of the reaction product being >98%. H. polymorpha catalysts were more effective in the synthesis than A. adeninivorans cells. The first were able to convert 93% of ethyl benzoylformate within 180 min and the latter were converting 94% of the substrate within 360 min. Re-use of non-immobilized cells and catalysts entrapped in Lentikat® was performed and the improvement of the stability of immobilized catalysts was reported. Space time yield of 3.07 mmol l-1 h-1 and 6.07 mmol l-1 h-1 was achieved with A. adeninivorans and H. polymorpha cell catalysts, respectively. Alcohol dehydrogenase 1 from A. adeninivorans was analyzed concerning the synthesis of enantiomerically pure chiral alcohols. The enzyme did not synthesize industrially attractive products. However, based on biochemical characterization enzyme plays a role in the synthesis of 1-butanol or ethanol and thereby it is of biotechnological interest.
Die Hefe Saccharomyces cerevisiae reagiert auf die sich ständig ändernden Umweltbedingungen durch eine präzise Regulation der Genexpression. Möglich wird dies durch ein komplexes Netzwerk aus spezifischen Regulatoren und pleiotropen Faktoren. Aktivatorproteine binden an Aktivierungssequenzen (UAS-Elemente) in ihren Zielpromotoren und rekrutieren basale Transkriptionsfaktoren sowie Coaktiva¬toren. Dadurch erhöhen sich Wahrscheinlichkeit und Häufigkeit der Transkriptions¬initiation und die DNA im Promotorbereich wird durch die Aktivität von Komplexen der Chromatinremodellierung und -modifizierung für die Transkriptionsmaschinerie zugänglich gemacht. Dagegen binden spezifische Repressor¬proteine an ihre Regula¬tionssequenzen (URS-Elemente) oder an Aktivatorproteine, inhibieren deren Wirkung oder rekrutieren Histondeacetylase-Komplexe wie den Sin3-Corepressor, die eine Verdichtung des Chromatins bewirken. Der Sin3-Corepressorkomplex ist an einer Vielzahl von Regulationsprozessen beteiligt. In Hefe existieren zwei Sin3-Varianten, die als Rpd3L bzw. Rpd3S bezeichnet werden und sich in ihrer Zusammensetzung unterscheiden. Neben Sin3 als zentralem Gerüst¬protein in beiden Komplexen sind im Rpd3L strukturelle Untereinheiten wie Sds3, Sap30 und Pho23 sowie die Histondeacetylase (HDAC) Rpd3 als enzymatische Komponenten enthal¬ten. Durch Funktionsanalysen von Mutanten einzelner Unterein¬heiten wurde festge¬stellt, dass zusätzlich zu Rpd3 weitere HDACs an der Repression ICRE-abhängiger Gene der Phospholipid-biosynthese Gene beteiligt sind. Interaktionsstudien zeigten, dass auch die HDACs Hda1 und Hos1 an Sin3 binden. Die Bindung erfolgt über drei sogenannte HDAC-Interaktionsdomänen (HID1-3), wobei Hda1 und Hos1 an HID2 und HID3 binden, Rpd3 dagegen an HID1 und HID3. In dieser Arbeit konnte gezeigt werden, dass die HDACs direkt an ihre jeweiligen HIDs binden. Außerdem inter¬agieren Hda1 und Hos1 auch in vivo mit Sin3. Die HID1 wurde auf die Aminosäuren 801-950 verkürzt und es wurde nachge¬wiesen, dass eine funktionsfähige katalyti¬sche Domäne von Rpd3 nicht für die Wechselwirkung mit Sin3 notwendig ist. Außerdem wurden die Interaktionsdomänen von Sds3 und Sin3 kartiert. Die erhaltenen Befunde ergänzen die Daten zu Protein-Protein-Inter¬aktionen im Sin3-Corepressorkomplex und komplettieren funktionelle Aspekte der HDAC-Rekrutierung. Eine weitere Zielstellung dieser Arbeit war die Erstellung eines Interaktionsnetzwerks zwischen spezifischen Aktivatoren und allgemeinen Faktoren der Transkription. Eukaryotische Aktivatorproteine sind modular aufgebaut und besitzen voneinander separierbare Funktionsdomänen. Die Erkennung und Bindung von UAS-Elementen in den Zielpromotoren erfolgt über die DNA-Bindedomäne (DBD), während Tran¬skriptions¬¬aktivierungs¬domänen (TADs) basale Transkriptionsfaktoren und Co¬aktiva¬toren rekrutieren und somit die aktivierende Wirkung vermitteln. Im Gegensatz zu den DBDs folgen TADs meist keinen durch Sequenzanalysen vorhersagbaren Strukturmotiven und müssen manuell eingegrenzt werden. Für die Kartierung funktioneller TADs wurden Längenvarianten von über 30 Aktiva-toren aus verschiedenen Familien DNA-bindender Proteine an die Gal4DBD fusioniert und auf ihre Fähigkeit überprüft, ein UASGAL-abhängiges Reportergen zu aktivieren. Dabei konnten 15 neue TADs eingegrenzt werden. Weiterhin wurden die bisher nicht charakterisierten Zinkcluster¬proteine Yjl206c, Yer184c, Yll054c und Ylr278c als Aktivatoren bestätigt. Dadurch stand eine Samm¬lung aus 20 bekannten und neukartierten TADs zur Verfügung, die nach Konstruktion von GST-Fusionen für in vitro-Interaktionsexperimente mit Unter¬einheiten des Mediators, des TFIID- und des SWI/SNF-Komplexes eingesetzt wurden. Es konnten direkte Wechselwirkungen von Aktivatoren (u. a. Aft2, Aro80, Mac1 und Zap1) mit den TFIID-Komponenten TBP, Taf1, Taf4 und Taf5 detektiert werden. Die Bindung an Taf1 erfolgte im Bereich von aa 1-250, der zwei Aktivator¬interaktions-domänen (AID) enthält und in vorangegangenen Experimenten auch mit Ino2 und Adr1 interagierte. Die Rap1-Bindedomäne (RBD) von Taf4 (aa 253-344) interagierte auch mit Mac1, Aft2 und Ino2. Daher wurde dieser Bereich als allgemeine AID klassifiziert. Für die Aktivatorinteraktion essentielle Aminosäuren konnten allerdings nicht identi¬fiziert werden. 17 von 20 TADs interagierten direkt mit der Mediator-Untereinheit Med15, während für Med17 10 Kontakte zu Aktivatoren detektiert wurden, was die Relevanz des Mediators für die Aktivatorfunktion unterstreicht. Die katalytische Untereinheit des SWI/SNF-Komplexes Swi2 zeigte ähnlich viele TAD-Interaktionen wie Med15. Der N-terminale Bereich von Swi2 (aa 1-450) stellte sich als ausreichend für die Bindung der Aktivatoren heraus und enthält demnach eine oder mehrere AIDs. Damit konnte das Interaktionsnetzwerk zwischen Aktivatoren und allgemeinen transkriptionalen Cofaktoren substantiell erweitert werden.
In der Hefe S. cerevisiae erfolgt die Transkriptionsregulation der Strukturgene der Phospholipid-Biosynthese in Abhängigkeit der intrazellulären Konzentration der beiden Phospholipid¬vorstufen Inositol und Cholin (IC). Bei IC-Mangel kommt es zu einer Akkumulation des Signalmoleküls Phosphatidsäure, wodurch der Repressor Opi1 extranukleär am endoplasmatischen Retikulum (ER) verankert wird. Dadurch kann der heterodimere Aktivator Ino2/Ino4 an eine spezifische „upstream activation site” (UAS) in der Promotorregion, die als ICRE-Motiv („inositol/choline-responsive element“) bezeichnet wird, binden und die Initiation der Transkription vermitteln. Die aktivierende Wirkung geht dabei von zwei Transkriptions¬aktivierungsdomänen (TAD) im N-Terminus von Ino2 aus. Da bisher unbekannt war, wie die Ino2-vermittelte Genaktivierung erfolgt, bestand das Ziel dieser Arbeit in der Identifizierung der Coaktivatoren, die direkt an die TADs von Ino2 binden. Ferner sollten die für die Transkriptionsaktivierung wichtigen Wechselwirkungen innerhalb der Coaktivatoren präzise kartiert werden. Es konnte hier mit Hilfe der affinitätschromatographischen Methode des GST-„Pulldown“ gezeigt werden, dass TAD1 und TAD2 von Ino2 mit den generellen Transkriptionsfaktoren TFIID und TFIIA interagieren. Innerhalb des TFIID wurden die Untereinheiten Taf1, Taf4, Taf6, Taf10 und Taf12 in vitro als direkte Ino2-Interaktionspartner identifiziert. Dabei binden alle identifizierten Taf-Proteine an die starke TAD1, Taf10 zusätzlich an die TAD2. Frühere Untersuchungen hatten gezeigt, dass Mutationen innerhalb der TAD1 von Ino2 (D20K, F21R) zu einem vollständigen Verlust der Aktivierungsleistung führen. In dieser Arbeit wurde nachgewiesen, dass die gerichtete Mutation dieser Aminosäuren zu einem vollständigen Interaktionsverlust mit den Taf-Proteinen führt. Mit Hilfe von Interaktionsexperimenten wurden innerhalb von Taf1 zwei distinkte Aktivatorinteraktionsdomänen (AID1: AS 1-100; AID2: AS 182-250) kartiert, die die Bindung an Ino2 vermitteln. Mutationen hydrophober und basischer Aminosäure-Reste innerhalb der Taf1-AID2 hatten einen vollständigen Verlust der Interaktion mit Ino2 zur Folge. Möglicherweise sind also ionische und hydrophobe Wechselwirkungen an der Interaktion von Ino2 und Taf1 beteiligt. Mit Hilfe der Chromatin-Immunopräzipitation (ChIP) erfolgte der Nachweis, dass Taf1 in Abhängigkeit von Ino2 auch in vivo an den ICRE-haltigen Promotoren INO1 und CHO2 vorhanden ist. Im Folgenden wurden auch die Ino2-Interaktionsbereiche innerhalb der Proteine Taf6, Taf10 und Taf12 durch die Generierung sukzessiver GST-Verkürzungen eingegrenzt. Taf10 und Taf12 besitzen wie Taf1 zwei separate AIDs (Taf10: AID1 AS 1-100; AID2 AS 131-176; Taf12: AID1 AS 50-100; AID2 AS 100-178). Untersuchungen mit mutagenisierten Varianten, bei denen wie zuvor im Fall von Taf1 hydrophobe und basische Aminosäuren innerhalb der Taf12 AID2 ausgetauscht wurden, führten lediglich zu einer Verringerung der Bindungsintensität. Dies lässt vermuten, dass mehrere kleine Domänen innerhalb der AID2 existieren, die funktionell redundant sind. Mit Hilfe weiterer ChIP-Experimente konnte auch nachgewiesen werden, dass Taf6 und Taf12 abhängig von Ino2 an den untersuchten Promotoren INO1 und CHO2 vorhanden sind. Die Proteine Taf1 und Taf6 wurden exemplarisch für Genexpressionsstudien ausgewählt, um ihren Einfluss auf die Transkription des Gens INO1 unter in vivo Bedingungen nachzuweisen. Durch vergleichende Northernblot-Hybridisierungen mit temperatursensitiven (ts) taf-Mutanten wurde gezeigt, dass die INO1-Expression unter nichtpermissiven Bedingungen (37°C) auf 7% (taf1ts) bzw. 4% (taf6ts) abfällt. Diese Befunde belegen, dass INO1 zu den Taf-abhängigen Genen zählt. Der generelle Transkriptionsfaktor TFIIA wurde ebenfalls auf eine Interaktion mit Ino2 untersucht. Bekannt war bereits, dass der Aktivator Rap1, der ähnlich wie Ino2 mit mehreren TFIID-Untereinheiten interagiert, auch TFIIA kontaktiert. Durch GST-„Pulldown“-Studien konnte die Untereinheit Toa1 als direkter Ino2-Interaktionspartner identifiziert werden. Dabei zeigte sich, dass Toa1 sowohl mit der TAD1 als auch der TAD2 von Ino2 interagiert und die TAD1 Aminosäuresubstitutionen D20K und F21R zu einem vollständigen Interaktionsverlust führen. In dieser Arbeit konnte somit gezeigt werden, dass die generellen Transkriptionsfaktoren TFIID und TFIIA als Coaktivatoren des für die Transkription der Strukturgene der Phospholipid-Biosynthese essentiellen Aktivators Ino2 fungieren.
Die ADHs aus Rhodococcus ruber (RrADH) und Lactobacillus brevis (LbADH) wurden erstmals in der Hefe Arxula adeninivorans (Blastobotrys adeninivorans) hergestellt und zur Synthese von enantiomerenreinen 1-Phenylethanol eingesetzt. Die entsprechenden Gene wurden hierfür mit dem starken konstitutiven TEF1-Promotor und dem PHO5-Terminator flankiert und unter Nutzung der etablierten Xplor2®-Transformations-/Expressionsplattform in der Hefe exprimiert. Die erhaltenen selektierten Transformanden wiesen dabei ADH-Aktivitäten von 21 bzw. 320 U g-1 dcw für die Reduktion von Acetophenon zu 1-Phenylethanol in Schüttelkultur auf. RrADH und LbADH sind für die Reduktion von Acetophenon und Acetophenon-Derivaten, alpha-Ketoestern und aliphatischen Ketonen geeignet. Die RrADH synthetisiert (S)-konfigurierte Alkohole und ist NAD+/NADH-abhängig, während die LbADH die Reduktion von Acetophenon zu 1-(R)-Phenylethanol mithilfe des Cofaktors NADPH katalysiert. Rohextrakt des RrADH produzierenden Hefestamms konnte erfolgreich für die Synthese von enantiomerenreinem 1-(S)-Phenylethanol mit einer Ausbeute von 90 % und einem Enantiomerenüberschuss (ee) von >99 % über Substrat-gekoppelte Regeneration mit Isopropanol eingesetzt werden. Die Erhöhung der Ausbeute auf 100 % gelang durch Enzym-gekoppelte Regenerierung des Cofaktors NADH mit der GDH aus Bacillus megaterium (Bm) für RrADH bzw. NADPH mit der BmGDH und G6PDH aus Bacillus pumilus (Bp) für LbADH katalysierte Reaktionen. ADHs und Cofaktor-regenerierende Enzyme wurden simultan durch die konstitutive Coexpression der entsprechenden Gene in A. adeninivorans für die Synthese von enantiomerenreinem 1-Phenylethanol hergestellt. Die Enzymrohextrakte der RrADH-BmGDH, LbADH-BmGDH und LbADH-BpG6PDH produzierenden Hefestämme katalysieren ohne Ausnahme die Synthese des jeweiligen Enantiomers von 1-Phenylethanol mit ee >99 % und Ausbeuten von 100 % für Substratkonzentrationen bis 40 mM. Nach der Extraktion des 1-Phenylethanols liegt dieses chemisch rein vor, sodass aufwendige Aufarbeitungs- und Reinigungsschritte erspart bleiben. GDH bzw. G6PDH sind hervorragend für die Regeneration von NADH und NADPH bzw. ausschließlich letzterem geeignet. Dabei wurden standardmäßig 40 mol 1-Phenylethanol pro Mol NAD+ oder NADP+ erreicht. Auch intakte Hefezellen der rekombinanten ADH und BmGDH bzw. BpG6PDH synthetisierenden Stämme wurden für die Synthese von 1-(S)- bzw. 1-(R)-Phenylethanol verwendet. Nach Permeabilisierung mit Triton X-100 wiesen sie vergleichbare Aktivitäten zu den entsprechenden Rohextrakten auf. Der RrADH-BmGDH produzierende Stamm synthetisiert 1-(S)-Phenylethanol mit einer Aktivität von 20 U g-1 dcw, während die LbADH-BmGDH und LbADH-BpG6PDH Hefestämme sogar 45,6 und 87,9 U g-1 dcw lieferten. Die Ausbeuten und ee waren im Vergleich zu den Rohextrakten ähnlich. Die Erhöhung der Konzentration des Ausgangsstoffs Acetophenon reduzierte unabhängig von den verwendeten Enzymen die erhaltene Ausbeute. Die katalytische Produktivität der Biokatalysatoren wurde durch ihre Wiederverwendung erhöht. Hierfür wurden permeabilisierte Zellen, die einfach aus der Syntheselösung abzentrifugiert werden können, genutzt. Außerdem konnten der Rohextrakt und die Zellen nach ihrem Einschluss in unlösliches Calciumalginat in Form von kleinen Kügelchen aus der Synthese abfiltriert und wiederverwendet werden. Permeabilisierte Zellen und Immobilisate wurden wiederholt für die Reduktion von Acetophenon zu 1-Phenylethanol eingesetzt, wobei immobilisierter Rohextrakt und Zellen für drei bis maximal sechs Synthesezyklen verwendet werden konnten. Immobilisierte und permeabilisierte Zellen sind wesentlich stabiler. Sie können ohne erhebliche Aktivitätsverluste 14 (LbADH-BpG6PDH), 29 (RrADH-BmGDH) bzw. mehr als 50 Mal (LbADH-BmGDH) wiederholt zur Acetophenon-Reduktion eingesetzt werden. Auf ihrer Grundlage wurde ein erster Reaktor für die semi-kontinuierliche Synthese von 1-(R)-Phenylethanol im Labormaßstab konstruiert und in Betrieb genommen. Es konnten 206 mol 1-(R)-Phenylethanol pro Mol NADP+ und 12,78 g 1-(R)-Phenylethanol mit einem ee von 100 % und einer Raum-Zeit-Ausbeute von 9,74 g L-1 d-1 oder 406 g kg-1 dcw d-1 erhalten werden. Weitere Optimierungen der Hefestämme, Reaktionsbedingungen und Reaktionsführung sind zur Erhöhung der Ausbeute und zum Erreichen vergleichbarer Produktivität mit derzeitigen Syntheseprozessen für 1-Phenylethanol nötig. Der ee ist bereits optimal. Zusammenfassend ist A. adeninivorans ein hervorragender Wirt zur Herstellung von ADHs für die Synthese enantiomerenreiner Alkohole wie 1-(S)- und 1-(R)-Phenylethanol. Nach Extraktion liegt das Produkt rein und mit optimalen ee vor. Durch die in dieser Arbeit gezeigten Untersuchungen können bisher chemische Synthesen durch enzymatische Reaktionen unter Einsatz von ADHs, deren Produktion in A. adeninivorans erfolgte, ersetzt werden, was Kosten und natürlichen Ressourcen spart.
The influence of regulatory proteins on the physiology and virulence of Streptococcus pneumoniae
(2015)
In conclusion, this work identifies the regulator ArgR2 as activator of the S. pneumoniae TIGR4 arginine deiminase system and arginine-ornithine transporter ArcD, which is needed for uptake of the essential amino acid arginine. Although ArgR2 activates ArcD expression and uptake of arginine is required to maintain pneumococcal fitness, the deficiency of ArgR2 increases TIGR4 virulence under in vivo conditions, suggesting that other factors regulated by ArgR2 counterbalance the reduced uptake of arginine by ArcD. Thus this works illustrates that the physiological homeostasis of pneumococci is complex and that ArgR2 plays a key role in maintaining bacterial fitness. Moreover, Rex was identified as a regulator of housekeeping genes including genes encoding glycolytic enzymes. In vitro studies and gene expression analyses suggested that the regulator Rex does not have an influence on the physiology of S. pneumoniae. However, a co-infection experiment demonstrated that Rex is involved in maintaining pneumococcal fitness and robustness under in vivo conditions.
Streptococcus pneumoniae (pneumococci) are lancet-shaped, Gram-positive, alpha-hemolytic, facultative anaerobic human specific commensals of the upper and lower respiratory tract. Pneumococci may convert to pathogenic bacteria and spread to the lungs and blood. In different population groups, such as children, the elderly and immunocompromised individuals, pneumococci can cause local infections such as bronchitis, rhinitis, acute sinusitis, and otitis media as well as life-threatening invasive diseases such as community-acquired pneumonia, sepsis and meningitis. Pneumococci are surrounded by a rigid and complex exoskeleton, the peptidoglycan, also referred to as murein sacculus. The peptidoglycan (PNG) protects the cells from rupture by osmotic pressure and maintains their characteristic shape. The PNG is a heteropolymer made up of glycan strands that are cross-linked by short peptides and during growth the existing murein is continuously hydrolyzed by specific lytic enzymes to enable the insertion of new peptidoglycan. Bacterial cell-wall hydrolases are essential for peptidoglycan turnover and crucial to preserve cell shape. The D,D-carboxypeptidase DacA and L,D-carboxypeptidase DacB of Streptococcus pneumoniae function in a sequential manner. This study determined the crystal structure of the surface-exposed lipoprotein DacB, which differs considerably from the DacA structure. DacB contains a Zn2+ ion in its catalytic center located in the middle of a fully exposed, large groove. Two different conformations with differently arranged active site topology were identified. In addition the critical residues for catalysis and substrate specificity were identified. Deficiency in DacA or DacB resulted in a modified peptidoglycan peptide composition and led to an altered cell shape of the dac-mutants. In contrast, lgt-mutant lacking lipoprotein diacylglyceryl transferase activity required for proper lipoprotein maturation retained L,D-carboxypeptidase activity and showed an intact murein sacculus. Furthermore, this study demonstrated the pathophysiological effects of disordered DacA or DacB activities. Real-time bioimaging of intranasally infected mice indicated a substantially attenuated virulence of dacB- and dacAdacB-mutants pneumococci, while loss of function of DacA had no significant effect. In addition, uptake of these mutants by professional phagocytes was enhanced, while their adherence to lung epithelial cells was decreased. The second part of this study focused on the functional and structure determination of the soluble dimeric pneumococcal lipoprotein PccL. Because of its calycin fold and structural homology with the lipocalin YxeF from Bacillus subtilis, PccL was introduced as the first member of the lipocalin protein family in pneumococci and named “PccL” (Pneumococcal calycin fold containing Lipoprotein). Similar to other lipocalins, the distinct beta-barrel, which is open at one end, is significantly conserved in PccL. Moreover, the application of the in vivo acute pneumonia mouse infection model and the in vitro phagocytosis as well as adherence invasion studies revealed considerable differences in colonization and invasive infection between the wild-type D39 and the pccL-mutant. In conclusion, this study characterized the crucial role of pneumococcal carboxypeptidases DacA and DacB for PGN architecture, bacterial shape and pathogenesis. By applying in vivo and in vitro approaches, a close relationship between PGN metabolism and pathophysiological effects was discovered. In addition, the high resolution structure of DacB has been solved and analyzed and a structure model with a resolution of 2.0 Å is provided. Furthermore, analysis of the PGN composition was applied to indicate the impact of an impaired lipoprotein biogenesis pathway on localization and activity of DacB. The major impact of carboxypeptidases on cell shape and virulence proposes DacB as a promising target for the development of novel drugs or due to its surface exposition also as a promising vaccine candidate. PccL is the first pneumococcal lipocalin-like protein and this study indicated its contribution to pneumococcal virulence. However, the mechanism and the mode of action of PccL are still unknown and have to be deciphered in further studies.
Die chronische Herzinsuffizienz (HI) bezeichnet das Unvermögen des Herzens, die vom Körper benötigte Blutmenge bedarfsgerecht zu befördern und stellt in der Allgemeinbevölkerung das Endstadium vieler Herzerkrankungen dar. Trotz großer Fortschritte in der medikamentösen Therapie ist die Prognose der HI auch heute noch schlecht. Der progrediente Verlauf erstreckt sich von einer kompensierten Herzhypertrophie mit aufrechterhaltener Pumpfunktion bis hin zu einer massiven Ventrikeldilatation mit stark eingeschränkter Herzfunktion und weist dementsprechend eine schlechte Prognose auf. Die zellulären Veränderungen auf Protein- und Genexpressionsebene während der Progression einer HI sind sehr komplex und trotz ausgiebiger wissenschaftlicher Arbeiten nicht ausreichend geklärt. Dabei ist es von entscheidender Bedeutung, in welcher Phase der Erkrankung spezifische Änderungen in der Genregulation entstehen und inwiefern sich diese auf den Phänotyp auswirken. Auf Grund dessen beschäftigt sich die vorliegende Arbeit mit den zeitabhängigen Veränderungen auf mRNA-und Proteinebene während der Progression der HI. Um alle Stadien beginnend von einer subklinischen Organschädigung bis hin zur Ausbildung einer HI experimentell untersuchen zu können, wurde zunächst ein Mausmodell etabliert, welches durch eine chronische Nachlasterhöhung mittels Einengung des Aortenlumens eine Myokardschädigung durch eine arterielle Hypertonie simuliert (transverse aortic constriction, TAC). Die Herzfunktion der Mäuse wurde an den postoperativen Tagen 4, 14, 21, 28, 42, und 56 durch Messungen im Kleintier-MRT (Magnetresonanztomografie) evaluiert. Dabei konnte gezeigt werden, dass sich die linksventrikuläre Ejektionsfraktion (LVEF) TAC-operierter Mäuse vom postoperativen Tag 4 zu 14 verschlechtert, bis Tag 42 auf einem konstanten Niveau hält und bis Tag 56 nochmals stark absinkt. Im Gegensatz dazu zeigten Sham-operierte Mäuse über den gesamten Zeitraum eine stabile LVEF. Ein vergleichbarer stufenartiger Verlauf konnte bei den Parametern der linksventrikulären Masse und den endsystolischen bzw. enddiastolischen Volumina beobachtet werden. Zusätzlich konnte durch histologische Untersuchungen zu den verschiedenen postoperativen Zeitpunkten eine verstärkte Fibrosierung des Herzgewebes nach der TAC-OP aufgezeigt werden. Für die longitudinalen Transkriptom- und Proteomuntersuchungen wurden die Herzen (jeweils linke und rechte Ventrikel) nach den MRT-Messungen entnommen, gruppen- und zeitpunktspezifisch gepoolt und einer Microarray- bzw. massenspektrometrischen Analyse unterzogen. Auf Transkriptomebene zeigten sich vor allem an den Tagen 4 und 56 starke TAC-induzierte Veränderungen im Expressionsmuster, wohingegen der Zeitraum zwischen 14 und 42 Tagen weniger differenziell exprimierte Gene aufwies. Der Verlauf der Erkrankung konnte anhand bereits bekannter Hypertrophie- und HI-marker sehr gut charakterisiert werden. So zeigten Nppa (ANP) und Nppb (BNP) im linken Ventrikel bereits kurz nach Aortenstenose stark erhöhte Expressionslevel, die über die gesamte Versuchsdauer erhalten blieben. Weiterhin wurde die Expression von Genen reguliert, die an kardialen Remodelingprozessen maßgeblich beteiligt sind, wie beispielsweise Acta1 (a-Aktin), Myh7 (b-Myosin Heavy Chain) und Postn (Periostin). Im Vergleich beider Ventrikel zeigte der rechte Ventrikel bezüglich der Anzahl der regulierten Gene als auch bei der Expression HI-assoziierter Gene eine verzögerte und weniger stark ausgeprägte Reaktion. In den linken Ventrikeln wurden vor allem die Gene reguliert, deren Genprodukte der extrazelluären Matrix angehören. Eine Validierung der Microarray-Ergebnisse mittels realtime-PCR konnte die Richtigkeit der Analysemethode sehr präzise bestätigen. Da diese anhand ausgewählter Gene auf Einzeltierebene durchgeführt wurde, konnte zusätzlich auf Korrelation zwischen mRNA-Expression und den kardialen Funktionsparametern getestet werden. Wie erwartet spiegelten die Epressionslevel der HI-assozierten Markergene Nppa (ANP), Nppb (BNP) und Myh7 (b-Myosin Heavy Chain) die progressive Verschlechterung der Herzfunktion wider. Zusätzlich konnten durch die Validierung und Korrelationsanalysen weitere interessante Kandidatengene, wie beispielsweise Sfrp2 (Secreted frizzled-related protein 2) und Wisp2 (WNT1-inducible signaling pathway protein 2) für weiterführende Studien identifiziert werden. Auch auf Proteomebene konnten vergleichbare Ergebnisse erzielt werden. Auch hier zeigte der linke Ventrikel eine deutlich ausgeprägtere Reaktion auf die Drucküberlastung, der rechte Ventrikel antwortete deutlich schwächer und verzögert. Änderungen im Proteinmuster nach TAC waren in den linken Ventrikeln vor allem an den Tagen 14, 21 und 28 stark ausgeprägt. Ingenuity Pathway Analysen der veränderten Proteine weisen auf Veränderungen im Kalzium-, Rho A- und PKA-Signaling vor allem zu den frühen Zeitpunkten hin, wohingegen zu späteren Zeitpunkten hauptsächlich metabolische Prozesse betroffen waren.
Transcriptional repression of regulated structural genes in eukaryotes often depends on pleiotropic corepressor complexes. A well-known corepressor conserved from yeast to mammalian systems is Sin3. In addition to Sin3, yeast Cyc8/Tup1 corepressor complex also regulates a diverse set of genes. Both corepressors can be recruited to target genes via interaction with specific DNA-binding proteins, leading to down-regulation of a large number of unrelated structural genes by associated histone deacetylases (HDACs). In vitro interaction studies performed in this work by GST pull-down assays showed that various repressor proteins (such as Whi5, Stb1, Gal80, Rfx1, Ure2, Rdr1, Xbp1, Yhp1, Rox1, Yox1, Dal80 and Mot3) are indeed able to bind pleiotropic corepressors Sin3 and/or Cyc8/Tup1. All repressors interacting with Sin3 contact its paired amphipathic helix domains PAH1 and/or PAH2. Mapping experiments allowed the characterization of minimum repressor domains and to derive a sequence pattern which may be important for repressor interaction with Cyc8 or Sin3. Interactions for some pathway-specific repressors such as Cti6 and Fkh1 have been studied comprehensively; minimal domains of Cti6 and Fkh1 required for interaction with Sin3 have been mapped and subsequently investigated by mutational analysis. In vitro interaction studies could show that amino acids 350-506 of Cti6 bind PAH2 of Sin3. To analyze this Cti6-Sin3 interaction domain (CSID) in more detail, selected amino acids within CSID were replaced by alanine. It turned out that hydrophobic amino acids V467, L481 and L491 L492 L493 are important for Cti6-Sin3 binding. The results of this work also suggest that repression is not executed entirely via Sin3, but rather CSID is also important for contacting pleiotropic corepressor Cyc8. In addition to PAH2 of Sin3, CSID also binds to tetratricopeptide repeats (TPR) of Cyc8. Furthermore, in vitro mapping studies revealed that Fkh1 also binds PAH2 of corepressor Sin3 via its N-terminal domain (aa 51-125). Binding studies with mutagenized Fkh1-Sin3 interaction domain (FSID) showed that Fkh151-125 variants L74A and I78A were unable to bind PAH2 of Sin3. Confirming in vitro studies, Cti6350-506 and Fkh151-125 also displayed in vivo interaction with PAH2 of Sin3 by using the “yeast two -hybrid” system. Chromatin immunoprecipitation (ChIP) analyses have demonstrated Cti6 recruitment to promoters of genes such as RNR3 and SMF3 containing iron responsive elements (IRE). Importantly, Sin3 was also recruited to these promoters but only in the presence of functional Cti6. Similarly, recruitment of Fkh1 and Sin3 to promoters of cell-cycle regulated genes CLB2 and SWI5 was shown. Recruitment of Sin3 was completely Fkh1-dependent. Additional findings of this work shed light on the fact that not only repressor proteins may contact Sin3 but also activator proteins not yet considered for interaction, e. g. specific activators such as Pho4 and Ino2. These findings indicate that Sin3 may fulfill functions beyond acting as a corepressor. In vitro studies on Sin3-Pho4 interaction showed that aa 156-208 of Pho4 are able to bind both PAH1 and PAH2 of Sin3, while an internal region of Ino2 comprising amino acids 119-212 binds to both Sin3 and Cyc8.
Streptococcus pneumoniae (the pneumococcus) is a harmless resident of the human nasopharyngeal cavity, and, in general, every individual is likely to be colonized asymptomatically at least once during life. However, under certain conditions, the bacterium can spread to other tissues and organs causing local, non-invasive infections but also lifethreatening, invasive diseases. Pneumococcal carriage and infection is a highly regulated interplay between pathogen- and host-specific factors and the intimate contact of S. pneumoniae with the surface of the nasopharynx is the crucial step in pneumococcal pathogenesis. Pneumococcal adherence to the respiratory epithelium is mediated by surface-exposed adhesins. These adhesins engage host cell receptors either directly or indirectly by recognizing glycoproteins of the extracellular matrix (ECM) including structural components, such as collagens, laminins, and fibronectins, as well as plasma-derived ECM modulators, like vitronectin and Factor H. Pneumococcal surface protein C (PspC) is a surface-exposed protein and important virulence factor of S. pneumoniae. The multifunctional PspC protein promotes pneumococcal adherence to host cells by interacting with the secretory component of the human polymeric Immunoglobulin receptor of respiratory cells. In addition, PspC facilitates pneumococcal immune evasion by recruiting the complement inhibitor proteins C4b-binding protein (C4BP) and Factor H. Moreover, Factor H bound to the pneumococcal surface promotes bacterial adhesion to human epithelial and endothelial cells. S. pneumoniae also interacts with the human glycoprotein vitronectin. In plasma, monomeric vitronectin regulates thrombosis, fibrinolysis and the terminal complement cascade, while it additionally mediates cell-matrix interactions, cell adhesion and migration in the ECM. It was shown that multimeric, ECM-associated vitronectin facilitates pneumococcal adherence to respiratory epithelial cells. In addition, the interaction of pneumococci with vitronectin promotes their uptake by mucosal epithelial cells via the engagement of the integrin αvβ3 receptor and activation of intracellular signaling pathways culminating in cytoskeletal rearrangements. This study aims to identify and characterize the surface-exposed protein(s) that mediate binding of pneumococci to vitronectin and to elucidate the impact of vitronectin on pneumococcal pathogenesis beyond its function as molecular bridge between pneumococcus and host. Flow cytometric, immunosorbent and surface plasmon resonance experiments revealed that PspC is a vitronectin-binding protein of S. pneumoniae. The specificity of the interaction with vitronectin was confirmed using recombinant PspC proteins and Lactococcus lactis heterologously expressing PspC on their surface. Factor H did not hinder vitronectinbinding to PspC indicating that vitronectin recognizes the central part of PspC. Secretory IgA inhibited but not completely prevented vitronectin-binding to PspC, strongly suggesting that vitronectin binds near, but not directly to, the SC-binding region within the R domain(s) of PspC. In addition, PspC proteins comprising two R domains bound with higher affinity to vitronectin than PspC containing only one R domain, indicating that two interconnected R domains are required for efficient vitronectin-binding. Despite the sequential and structural differences to classical PspC, the PspC-like protein Hic specifically interacted with vitronectin with similar affinity than PspC containing two linked R domains. Binding studies confirmed that Factor H interacts with the very N-terminal region of Hic showing high sequence homology to classical PspC proteins, while vitronectin recognizes an adjacent region in the N-terminal region of Hic. The studied PspC proteins bound to both soluble and immobilized vitronectin, and the C-terminal heparin-binding domain (HBD3) was identified as PspC-binding motif in soluble vitronectin. However, in its immobilized form, vitronectin likely exposes additional binding sites for PspC since a region N-terminally to the identified HBD3 conferred binding of PspC. Vitronectin inhibits the terminal complement pathway, thereby preventing proinflammatory immune reactions and tissue damage. In general, pneumococci are protected from opsonization and MAC-dependent lysis by their capsule. However, pneumococci in close contact to human cells can become susceptible to complement attack due to reduced amounts of capsule. In addition, they can be severely affected by TCC-induced inflammatory responses. Vitronectin bound to PspC significantly inhibited the formation of terminal complement complexes. Thus, the interaction of PspC with vitronectin might aid in immune evasion of S. pneumoniae by inhibiting complement-mediated lysis and/or suppressing proinflammatory events. In conclusion, the results revealed the multifunctional PspC and Hic as vitronectin-binding proteins and proposed a novel role for the specific interaction of S. pneumoniae with vitronectin in regulating the complement cascade, beside its function as molecular bridge to the respiratory epithelium.
Gout was described by Hippocrates in the 5th century BC as a disease of rich people and linked with excess food and alcohol. It is caused by long-lasting hyperuricemia, which is a result of an imbalance between excretion and production of uric acid. The surplus of uric acid leads to deposition of monosodium urate crystals in the joints, which can initiate a painful inflammation called a gout attack. Despite various pharmacological treatments for this disease, a low purine diet remains the basis of all gout therapies. Since food is rich in purines, the aim of this project was to develop a novel enzyme system to decrease the purine content of food, what should result in reduced serum urate concentration in patients with hyperuricemia. The system consists of five degrading enzymes (adenine deaminase, guanine deaminase, xanthine oxidoreductase, urate oxidase and purine nucleoside phosphorylase) that combined in one product are able to hydrolyse all purines to a highly soluble allantoin, which can be easily removed from the body. This approach provides the patients a possibility to reduce the symptoms and frequency of gout attacks or even doses of prescribed drugs. In order to obtain necessary system components, yeast Arxula adeninivorans LS3 was screened for enzyme activities. A. adeninivorans is known to utilise various purines and this ability is a result of activity of desired enzymes, two of which, adenine deaminase and xanthine oxidoreductase, are in focus of this thesis. The analysis of growth of A. adeninivorans on various carbon and nitrogen sources gave the first insight into the cells’ nutrient preferences indicating the presence of purine degrading enzymes, such as adenine deaminase and xanthine oxidoreductase. Purines, such as adenine and hypoxanthine, could be utilised by this yeast as sole carbon and nitrogen sources and were shown to trigger the gene expression of the purine degradation pathway. Enzyme activity tests and quantitative real-time PCR method allowed for identification of the best inducers for adenine deaminase and xanthine oxidoreductase, as well as their concentration and time of induction. The adenine deaminase (AADA) and the xanthine oxidoreductase (AXOR) genes were isolated and subjected to homologous expression in A. adeninivorans cells using Xplor®2 transformation/expression platform. The selected transgenic strains accumulated the recombinant adenine deaminase in very high concentrations. The expression of AXOR gene posed difficulties and remained a challenge. Additional expression of both proteins in alternative E. coli system was undertaken but failed for AXOR gene. The recombinant adenine deaminase and wild-type xanthine oxidoreductase were purified and characterized biochemically. The characterization included determination of optimal pH and temperature, stability in different buffers and temperatures, molecular weight, substrate spectrum, enzyme activators and inhibitors, kinetics and intracellular localisation. The determination of these parameters was necessary to ensure optimal conditions for application of these enzymes in the industry. At the final stage, the enzymes were combined in one mix with provided guanine deaminase and urate oxidase and used to degrade purines in selected food constituents. The application was successful and demonstrated the potential of this approach for the production of food with lower purine concentration.
In der Hefe Saccharomyces cerevisiae werden die Strukturgene der Phospholipid-Biosynthese auf Transkriptionsebene in Abhängigkeit der Verfügbarkeit der Phospholipidvorstufen Inositol und Cholin (IC) über ein in der Promotorregion befindliches UAS-Element, genannt ICRE („inositol/choline-responsive element“), reguliert. Bei Mangel an IC kommt es zu einer Anhäufung des Intermediats Phosphatidsäure, wodurch der Repressor Opi1 außerhalb des Zellkerns am endoplasmatischen Reticulum verankert wird. Dadurch kann ein Heterodimer, bestehend aus den bHLH-Proteinen Ino2 und Ino4, an das ICRE-Motiv binden und die transkriptionelle Aktivierung vermitteln. Ist ausreichend IC vorhanden, gelangt der Repressor Opi1 in den Zellkern und bindet an Ino2. Dadurch ist eine Aktivierung nicht mehr möglich. Ferner kontaktiert Opi1 über seine Opi1-Sin3-Interaktionsdomäne (OSID) die Corepressor-Komplexe Sin3 und Cyc8/Tup1, die durch Rekrutierung von Histondeacetylasen (HDACs) zur Chromatinverdichtung und damit zur Genrepression führen. In einer früheren Arbeit wurde beobachtet, dass die regulierte Expression von Genen der Phospholipid-Biosynthese auch durch die Phosphatkonzentration beeinflusst wird. Es konnte festgestellt werden, dass bei Phosphatmangelbedingungen die Expression ICRE-abhängiger Gene auf 10 % reduziert ist. Eine Δopi1-Mutante zeigte dieses Expressionsmuster jedoch nicht mehr. Dieser Befund wies darauf hin, dass Opi1 seine Repressorfunktion sowohl bei IC-Überschuss als auch bei Phosphatmangel ausführt. Ein Protein, welches die Phosphatverfügbarkeit an Opi1 möglicherweise über eine Phosphorylierung vermitteln könnte, ist die cyclinabhängige Proteinkinase Pho85, für die eine in vitro Interaktion mit Opi1 gezeigt wurde. Um diese Hypothese zu überprüfen, wurden mittels gerichteter Mutagenese Aminosäurereste mutmaßlicher Pho85-Phosphorylierungsstellen im Opi1-Protein (S321, T51) gegen das nicht mehr phosphorylierbare Alanin ausgetauscht. Hefestämme, die solche Opi1-Protein-varianten (S321A, T51A) synthetisierten, zeigten jedoch weiterhin einen klaren Einfluss des Phosphatmangels auf die Expression eines ICRE-regulierten Reportergens. Dies lässt darauf schließen, dass die Repression unter Phosphatmangelbedingungen nicht über eine Phosphorylierung von Opi1 durch Pho85 zu Stande kommt. Parallel durchgeführte in vitro-Interaktionsstudien zeigten, dass die Bindung von Pho85 an Opi1 über zwei unabhängig voneinander funktionierende Interaktionsdomänen im Opi1-Protein (aa 30-70 und aa 321-350) erfolgt. Mit Hilfe des „Two-Hybrid“-Systems wurde festgestellt, dass die Opi1-Pho85 Wechselwirkung in vivo phosphatabhängig stattfindet. Die Befunde erlauben die Hypothese, dass Pho85 bei Phosphatüberschuss u. a. die OSID im Opi1 abdeckt, dadurch die Wechsel-wirkung mit Sin3/Cyc8 verhindert und eine gesteigerte Genexpression zulässt. Mittels Chromatin-Immunopräzipitation (ChIP) konnte gezeigt werden, dass Opi1, Co-Repressoren wie Sin3 und Cyc8 als auch die HDACs Hda1 und Hos1 an Promotoren ICRE-regulierter Gene Ino2-abhängig anwesend sind. Des Weiteren wurde festgestellt, dass sich Sin3 unabhängig von Opi1 an ICRE-haltigen Promotoren befindet. Dieses Ergebnis wider-sprach einer früheren Arbeitshypothese, konnte aber durch weitere Versuche, die eine direkte in vitro Interaktion von Sin3 mit dem Ino2-Aktivator zeigten, plausibel in ein neues Rekrutierungsmodell eingefügt werden. Abschließend wurden die am Beispiel von Opi1 gewonnenen Erkenntnisse durch in vitro Interaktionsanalysen diverser spezifischer Repressoren mit den pleiotropen Co-Repressoren Sin3 und Cyc8/Tup1 erweitert. Für zahlreiche Repressoren wurde gefunden, dass sie parallel mit Sin3 und Cyc8 interagieren (u. a. Rox1, Yox1, Dal80 und Mot3). Durch Kartierungsexperimente konnten minimale Repressordomänen charakterisiert werden, die die Interaktion zu Sin3 bzw. Cyc8 vermitteln, und sequenzhomologe Domänenstrukturen analysiert werden. Des Weiteren zeigte sich, dass alle Repressoren, die mit Sin3 wechselwirken, dessen Domänen PAH1 oder PAH2 („paired amphipathic helix“) kontaktieren.
Streptococcus pneumoniae (Pneumokokken) sind Gram-positive und Katalase-negative humanspezifische Kommensalen der oberen und unteren Atemwege. Diese Bakterien sind andererseits auch als schwere Krankheitserreger bekannt und verursachen bei verschiedenen Bevölkerungsgruppen, wie beispielsweise Kindern, Älteren und immungeschwächten Personen sowohl Atemwegs- als auch lebensbedrohliche invasive Erkrankungen wie eine ambulant erworbene Pneumonie, Meningitis und Sepsis. Pneumokokken haben aufgrund ihrer Besiedelung des Respirationstraktes effiziente Mechanismen entwickelt, um in einer sauerstoffreichen Nische überleben zu können. Dabei richten sich die Mechanismen vor allem gegen reaktive Sauerstoffspezies (Reactive Oxygen Spezies, ROS), die einerseits als Abwehrfunktion des Wirts (oxidative burst) vom angeborenen Immunsystem und andererseits von den Pneumokokken selbst produziert werden, um als chemische Waffe zur Bekämpfung bakterieller Konkurrenten in ihrem Habitat eingesetzt zu werden. In der vorliegenden Arbeit wurde ein hochkonserviertes Zwei-Operon-System, das für die extrazelluläre oxidative Stress-Resistenz in S. pneumoniae verantwortlich ist, identifiziert und auf pathophysiologischer sowie struktureller Ebene charakterisiert. Dieses komplexe System besteht aus zwei integralen Cytochrom C-ähnlichen Membranproteinen (CcdA1 und CcdA2), zwei Thioredoxin-ähnlichen Lipoproteinen (Etrx1 und Etrx2) und einer Methioninsulfoxid-Reduktase AB2 (MsrAB2). Die Etrx-Proteine werden zwar in zwei räumlich voneinander getrennten Operonen kodiert, sind aber funktionell miteinander verbunden. Der Einfluss des Systems auf die Pathogenese der Pneumokokken wurde in Maus-Virulenz-Studien und Untersuchungen der Phagozytose unter Verwendung von isogenen Mutanten gezeigt. Sowohl in den in vivo als auch den in vitro Experimenten konnte gezeigt werden, dass der Verlust der Funktion beider Etrx-Proteine beziehungsweise der Methioninsulfoxid-Reduktase MsrAB2 die Virulenz der Pneumokokken stark reduziert. Hieraus resultierte eine erheblich verringerte Letalität des Wirts, eine beschleunigte bakterielle Aufnahme durch die Makrophagen sowie ein schnelleres Abtöten der Pneumokokken durch eine oxidative Schädigung von Oberflächen-lokalisierten Proteinen mittels Wasserstoffperoxid. Die Ergebnisse deuten darauf hin, dass Etrx2 die Abwesenheit von Etrx1 und umgekehrt Etrx1 das Defizit von Etrx2 kompensieren kann. Durch Strukturaufklärung der beiden Thioredoxin-ähnlichen Proteine Etrx1 und Etrx2 sowie der Modellierung der beteiligten Komponenten CcdA und MsrAB2 konnte die Rolle jedes einzelnen Proteins dieses Systems (CcdA-Etrx-MsrAB2-System) bei der Reparatur beschädigter Oberflächen-lokalisierter Proteine in einem Modell dargestellt werden. Das postulierte Modell konnte über in vivo und in vitro Untersuchungen des Elektronentransfers innerhalb dieses Systems bestätigt werden. Mit der Bestimmung der Standardredoxpotentiale der rekombinanten Proteine Etrx1, Etrx2 und der Einzeldomänen MsrA2 und MsrB2 konnte in vitro gezeigt werden, dass der Elektronenfluss in Richtung von Etrx1 und Etrx2 zu MsrAB2 erfolgen muss. Die direkte Elektronenübertragung zwischen diesen Proteinen konnte in kinetischen Experimenten gezeigt werden. Die Messungen ergaben, dass Etrx1 bevorzugt mit der MsrA2-Untereinheit interagiert beziehungsweise Etrx2 sowohl mit der MsrA2-Untereinheit als auch mit der MsrB2-Untereinheit in Wechselwirkung treten kann. Der in vivo Redoxzustand von MsrAB2 wurde unter Verwendung der nicht-reduzierenden/reduzierenden „2D-Diagonal“-SDS-PAGE in den isogenen ccdA- und etrx-Mutanten bestimmt. Hierbei konnte ein Unterschied im Redoxzustand von MsrAB2 in den isogenen Einzelmutanten und Doppelmutanten von ccdA und etrx beobachtet werden. Während in den Einzelmutanten der Elektronenfluss innerhalb des CcdA-Etrx-MsrAB2-Systems unverändert war, zeigte sich in den Doppelmutanten ccdA1/ccdA2 und etrx1/etrx2 eine deutliche Beeinträchtigung der Elektronenübertragung auf MsrAB2, welche sich in der Zunahme der oxidierten Form von MsrAB2 deutlich machte. Somit konnte der Elektronenfluss von sowohl von CcdA1 über Etrx1 zu MsrAB2 als auch von CcdA2 über Etrx2 zu MsrAB2 in vivo betätigt werden. In Anbetracht der Ergebnisse dieser Arbeit könnte das hochkonservierte CcdA-Etrx-MsrAB2-System der extrazellulären oxidativen Stress-Resistenz von S. pneumoniae zur Entwicklung proteinbasierter Pneumokokken-Impfstoffe und zum Angriffspunkt für Behandlungen gegen diese wichtigen humanpathogenen Erreger beitragen.