### Refine

#### Year of publication

- 2013 (11) (remove)

#### Keywords

- Plasmaphysik (4)
- Plasma (3)
- Magnetron (2)
- Plasmadiagnostik (2)
- Stellarator (2)
- plasma diagnostics (2)
- Absorptionsspektroskopie (1)
- Adsorption (1)
- AlfvĂ©n-Welle (1)
- Astrophysik (1)

#### Institute

- Institut fĂĽr Physik (11) (remove)

The thesis describes experimental results based on optical diagnostics of low- pressure discharges. The models, which are necessary for the interpretation of the experimental data, are developed and simulations are done. The contents can be categorized into the following topics: 1) the time-resolved tunable diode laser absorption spectroscopy of excited states of argon in pulsed magnetron discharge and modeling the plasma afterglow; 2) optical emission- and laser absorption spectroscopy of excited states of argon in radio-frequency (rf) discharge and calculation of the escape factor for self-absorption; 3) fast video recording of the oscillatory motion of a dust particle in rf discharge and analysis of the data.

There is a wide variety of AlfvĂ©n waves in tokamak and stellarator plasmas. While most of them are damped, some of the global eigenmodes can be driven unstable when they interact with energetic particles. By coupling the MHD code CKA with the gyrokinetic code EUTERPE, a hybrid kinetic-MHD model is created to describe this waveâ€“particle interaction in stellarator geometry. In this thesis, the CKA-EUTERPE code package is presented. This numerical tool can be used for linear perturbative stability analysis of AlfvĂ©n waves in the presence of energetic particles. The equations for the hybrid model are based on the gyrokinetic equations. The fast particles are described with linearized gyrokinetic equations. The reduced MHD equations are derived by taking velocity moments of the gyrokinetic equations. An equation for describing the AlfvĂ©n waves is derived by combining the reduced MHD equations. The AlfvĂ©n wave equation can retain kinetic corrections. Considering the energy transfer between the particles and the waves, the stability of the waves can be calculated. Numerically, the AlfvĂ©n waves are calculated using the CKA code. The equations are solved as an eigenvalue problem to determine the frequency spectrum and the mode structure of the waves. The results of the MHD model are in good agreement with other sophisticated MHD codes. CKA results are shown for a JET and a W7-AS example. The linear version of the EUTERPE code is used to study the motion of energetic particles in the wavefield with fixed spatial structure, and harmonic oscillations in time. In EUTERPE, the gyrokinetic equations are discretized with a PIC scheme using the delta-f method, and both full orbit width and finite Larmor radius effects are included. The code is modified to be able to use the wavefield calculated externally by CKA. Different slowing-down distribution functions are also implemented. The work done by the electric field on the particles is measured to calculate the energy transfer between the particles and the wave and from that the growth rate is determined. The advantage of this approach is that the full magnetic geometry is retained without any limiting assumptions on guiding center orbits. Extensive benchmarks have been performed to test the new CKA-EUTERPE code. Three tokamak benchmarks are presented, where the stability of TAE modes are studied as a function of fast particle energy, or in one case as a function of the fast particle charge. The benchmarks show good agreement with other codes. Stellarator calculations were performed for Wendelstein 7-AS and the results demonstrate that the finite orbit width effects tend to be strongly stabilizing.

The confinement of energy has always been a challenge in magnetic confinement fusion devices. Due to their toroidal shape there exist regions of high and low magnetic field, so that the particles are divided into two classes - trapped ones that are periodically reflected in regions of high magnetic field with a characteristic frequency, and passing particles, whose parallel velocity is high enough that they largely follow a magnetic field line around the torus without being reflected. The radial drift that a particle experiences due to the field inhomogeneity depends strongly on its position, and the net drift therefore depends on the path taken by the particle. While the radial drift is close to zero for passing particles, trapped particles experience a finite radial net drift and are therefore lost in classical stellarators. These losses are described by the so-called neoclassical transport theory. Recent optimised stellarator geometries, however, in which the trapped particles precess around the torus poloidally and do not experience any net drift, promise to reduce the neoclassical transport down to the level of tokamaks. In these optimised stellarators, the neoclassical transport becomes small enough so that turbulent transport may limit the confinement instead. The turbulence is driven by small-scale-instabilities, which tap the free energy of density or temperature gradients in the plasma. Some of these instabilities are driven by the trapped particles and therefore depend strongly on the magnetic geometry, so the question arises how the optimisation affects the stability. In this thesis, collisionless electrostatic microinstabilities are studied both analytically and numerically. Magnetic configurations where the action integral of trapped-particle bounce motion, J, only depends on the radial position in the plasma and where its maximum is in the plasma centre, so-called maximum-J configurations, are of special interest. This condition can be achieved approximately in quasi-isodynamic stellarators, for example Wendelstein 7-X. In such configurations the precessional drift of the trapped particles is in the opposite direction from the direction of propagation of drift waves. Instabilities that are driven by the trapped particles usually rely on a resonance between these two frequencies. Here it is shown analytically by analysing the electrostatic energy transfer between the particles and the instability that, thanks to the absence of the resonance, a particle species draws energy from the mode if the frequency of the mode is well below the charateristic bounce frequency. Due to the low electron mass and the fast bounce motion, electrons are almost always found to be stabilising. Most of the trapped-particle instabilities are therefore predicted to be absent in maximum- J configurations in large parts of parameter space. Analytical theory thus predicts enhanced linear stability of trapped-particle modes in quasi-isodynamic stellarators compared with tokamaks. Moreover, since the electrons are expected to be stabilising, or at least less destabilising, for all instabilities whose frequency lies below the trapped-electron bounce frequency, other modes might benefit from the enhanced stability as well. In reality, however, stellarators are never perfectly quasi-isodynamic, and the question thus arises whether they still benefit from enhanced stability. Here the stability properties of Wendelstein 7-X and a more quasi-isodynamic configuration, QIPC, are investigated numerically and compared with another, non-quasiisodynamic stellarator, the National Compact Stellarator Experiment (NCSX) and a typical tokamak. In gyrokinetic simulations, performed with the gyrokinetic code GENE in the electrostatic and collisionless approximation, several microinstabilities, driven by the density as well as both ion and electron temperature gradients, are studied. Wendelstein 7-X and QIPC exhibit significantly reduced growth rates for all simulations that include kinetic electrons, and the latter are indeed found to be stabilising when the electrostatic energy transfer is analysed. In contrast, if only the ions are treated kinetically but the electrons are taken to be in thermodynamic equilibrium, no such stabilising effect is observed. These results suggest that imperfectly optimised stellarators can retain most of the stabilising properties predicted for perfect maximum-J configurations. Quasi-isodynamic stellarators, in addition to having reduced neoclassical transport, might therefore also show reduced turbulent transport, at least in certain regions of parameter space.

The development of innovative coatings with multifunctional properties is an ambitious task in modification of material surfaces. A novel approach is a hybrid method combining the non-thermal plasma processing with nanotechnology for the development of multifunctional surface coatings. The conception of the hybrid coating process is based on three steps: the preparation of a suspension consisting of an organic liquid and functional nanoparticles, the deposition of the suspension as a thin liquid film on the material surface, and the plasma modification of the liquid organic film to achieve a thin solid composite film with embedded nanoparticles demonstrating multifunctional properties and good adherence on the substrate material. In this work the liquid polydimethylsiloxane (PDMS) was applied as a model system, and the experimental investigations were focused on the PDMS plasma modification. In particular, the specific role of the different plasma components and the influence of the plasma and processing parameters on the PDMS modification were studied. The applied capacitively coupled radio frequency (CCRF) plasma was analyzed by electric probe measurements and optical emission spectroscopy, whereas the molecular changes in PDMS due to plasma-induced chemical reactions were studied by the Fourier transform infrared reflection absorption spectroscopy. Additionally, the photocatalytic activity of thin composite films consisting of plasma cross-linked PDMS with embedded TiO2 nanoparticles was demonstrated. During the investigation it was found that the CCRF discharge modifies efficiently thin liquid PDMS films to solid coatings. The samples were positioned in the plasma bulk at floating potential. The penetration depth of particles like neutrals, ions, electrons and radicals in the film is strongly limited. The heating of samples in the CCRF discharge is weak to modify PDMS by itself and only the plasma radiation is able to transform the liquid bulk to solid one. It is known that the absorption onset of PDMS lies in the VUV region (below 200 nm). The energetic VUV radiation penetrates into the PDMS film on a thickness from several hundred nanometers to few micrometers and initiates photochemical reactions there. Thus, different gases like Ar, Xe, O2, H2O, air and H2 were tested to provide the strongest VUV emission intensity of the CCRF discharge. Discharge pressure and power were varied for all these gases and it was found that at all conditions the H2 plasma demonstrates drastically stronger emission. Thus, H2 gas was selected for the plasma treatment of liquid PDMS films. The IRRAS analysis revealed the transformation process of PDMS with the degradation of CH3 groups, the formation of new groups like SiOH, CH2 and SiH, the formation of the SiOx material and crosslinking. It was found that the modification effect is not uniform across the film thickness. The top region with an initial thickness up to 100 nm loses all CH3 groups, in the underlying region the CH3 concentration increases gradually from zero to the value for PDMS, if the film was thick enough. The methyl-free SiOx top layer contains also SiOH and SiH groups. Furthermore, the SiH groups are concentrated only in a very thin layer with a thickness below 10 nm. The presence of the unscreened polar SiOSi and SiOH groups on the surface causes the adsorption of H2O from the atmosphere, which was also observed by IRRAS. By means of the spectroscopic ellipsometry it was found out that all above described regions experience a shrinking. The reason is the crosslinking and loss of material. The most shrunken layer is the top SiOx layer with the shrinking ratio (final thickness/initial thickness) of 0.55 - 0.60. Further, this ratio gradually rise up to the value of 0.95 in the deeper region, which has the concentration of CH3 groups of about that for PDMS. After the analysis of all results the depth of effective modification was estimated at 300 400 nm for the most optimal conditions. The optimization of the plasma VUV intensity was realized by variation of discharge pressure and power. The strongest plasma emission at studied conditions provided the irradiance of the sample of ca. 13 mW/cm2. However, such strong radiation causes very strong production rate of the gases. These products leave the modifying film slower as they are produced, what causes their accumulation in there. Their pressure grows up leading to formation of bubbles, which later explode. Finally, the film becomes heavily damaged. To avoid this effect the pressure and the RF power were changed to reduce the irradiance to 6 - 7 mW/cm2. This resulted in the absence of any damages.

The absolute density of the metastable N2(A,v=0) molecule was extensively studied in nitrogen barrier discharges at 500 mbar. For the detection of the metastables laser-induced fluorescence spectroscopy (LIF) was used, at which for the calibration of the absoute metastables density a comparison with Rayleigh scattering was performed. To get the ratio of the LIF signal to the Rayleigh signal it is shown that the LIF signal is the convolution of the Rayleigh signal with an exponential decay. Besides, the different cross sections are calculated and the ratio of the detection sensitivities at the laser and fluorescence wavelength is determined. As a first step on the way to atmospheric pressure barrier discharges, the laser-induced fluorescence spectroscopy was implemented in low pressure capacitively coupled radio-frequency discharges. The determined metastables density in the capacitively coupled radio-frequency discharge is somewhat below 10^12 cm^(-3) at 40 Pa and somewhat below 10^13 cm^(-3) at 1000 Pa. The axial density profiles show a nearly symmetric shape due to the long lifetime of the metastable state. At a pressure of 500 mbar the two discharge modes of the barrier discharge, the filamentary and the diffuse mode, were analysed. The filamentary mode was mainly investigated in an asymmetric discharge configuration. Typical densities in the detection volume are in the range of 10^13 cm^(-3), resulting in maximal densities of up to 10^15 cm^(-3) in the microdischarge channel. Such large densities are in agreement with the fast decay by the pooling reaction after the maximum of the metastables density in the afterglow of the discharge pulse. The time dependent measurements in the afterglow of single microdischarges offer a delay of the metastables production with respect to the discharge current. This delay indicates that the metastables production takes place mostly by cascades from higher triplet states, which are in turn excited by electron impact. The axial density profiles show a maximum in metastables density in front of the anode in agreement with optical emission spectroscopy, but which cannot be clearly identified because of the asymmetric discharge configuration. The measurements for the diffuse discharge mode were performed in a symmetric discharge configuration. The metastables density is in the range of 10^13 cm^(-3). It increases during the current pulse of the discharge and decays afterwards. The maximum of the metastables density is delayed with respect to the maximum of the discharge current. The depletion of metastables in the early discharge afterglow is dominated by the pooling reaction, afterwards quenching by nitrogen atoms becomes important assuming a nitrogen atom density in the order of 10^14 cm^(-3). As for the filamentary mode, the losses by diffusion are negligible for the measurement positions. The measured axial density profiles show an accumulation of metastables in front of the anode, whereas the density in front of the cathode is below the detection limit. To calculate the metastables current density to the dielectrics after the discharge pulse a simulation is developed including the dominant volume processes for the depletion of metastables and the axial diffusion. Starting point for the simulation is the axial metastables density distribution at the end of the discharge pulse. The calculated metastables current density at the dielectrics is in the range of 10^14 cm^(-2)s^(-1). With the use of recently calculated secondary electron emission coefficients a comparison of the secondary electron emission by metastables with the discharge current is done. It is figured out that the secondary electron emission current is large enough to be important during the discharge ignition. To expand the simulation to the whole voltage cycle, the excitation of metastables is assumed to be proportional to the discharge current and electron density. Using this model, the measured time dependences of the metastables density are well reproduced for the investigated parameter variations. This is not the case for the axial profiles, where a metastables loss process is missed to explain the formation of a density plateau in front of the anode during the discharge pulse. The intended calculation of the metastables current density shows that the delay of the metastables production with respect to the discharge current might be responsible for the ignition of microdischarges at the beginning of the discharge pulse.

The concept of the electron surface layer introduced in this thesis provides a framework for the description of the microphysics of the surplus electrons immediately at the wall and thereby complements the modelling of the plasma sheath. In this work we have considered from a surface physics perspective the distribution and build-up of an electron adsorbate on the wall as well as the effect of the negative charge on the scattering of light by a spherical particle immersed in a plasma. In our electron surface layer model we treat the wall-bound electrons as a wall-thermalised electron distribution minimising the grand canonical potential and satisfying Poissons equation. The boundary between the electron surface layer and the plasma sheath is determined by a force balance between the attractive image potential and the repulsive sheath potential and lies in front of the crystallographic interface. Depending on the electron affinity x, that is the offset of the conduction band minimum to the potential in front of the surface, two scenarios for the wall-bound electrons are realised. For x<0 electrons do not penetrate into the solid but are trapped in the image states in front of the surface where they form a quasi two-dimensional electron gas. For x>0 electrons penetrate into the conduction band where they form an extended space charge. These different scenarios are also reflected in the electron kinetics at the wall which control the sticking coefficient and the desorption time. If x<0 electrons from the plasma cannot penetrate into the solid. They are trapped in the image states in front of the surface. The transitions between unbound and bound states are due to surface vibrations. Trapping of electrons is mediated by one-phonon transitions and takes place in the upper bound states. Owing to the large binding energy of the lowest bound state transitions from the upper bound states to the lowest bound state are due to multi-phonon processes. For low surface temperatures relaxation to the lowest bound state takes place while for higher temperature a relaxation bottleneck emerges. Desorption occurs in cascades for systems without relaxation bottleneck and as a one-way process in systems with a relaxation bottleneck. From the perspective of plasma physics the most important result is that the sticking coefficient for electrons is relatively small, typically on the order of 0.001. For x>0 electron physisorption takes place in the conduction band. For this case sticking coefficients and desorption times have not been calculated yet but in view of the more efficient scattering with bulk phonons, responsible for electron energy relaxation in this case, we expect them to be larger than for the case of x<0. Finally, we have studied the effects of surplus electrons on the scattering of light by a spherical particle. For x<0 the electrons form a spherical electron gas around the particle and their electrical conductivity modifies the boundary condition for the magnetic field. For x>0 the electrons in the bulk of the particle modify the refractive index through their bulk electrical conductivity. In both cases the conductivity is limited by scattering with surface or bulk phonons. Surplus electrons lead to an increase of absorption at low frequencies and, most notably, to a blue-shift of an extinction resonance in the infrared. This shift is proportional to the charge and is strongest for submicron-sized particles. The particle charge is also revealed in a blue-shift of the rapid variation of one of the two polarisation angles of the reflected light. From our work we conclude that the electron affinity is an important parameter of the surface which should affect the charge distribution as well as the charge-up. Therefore, we encourage experimentalists to study the charging of surfaces or dust particles as a function of x. Interesting in this respect is also if or under what conditions the electron affinity of a surface exposed to a plasma remains stable. Moreover, we suggest to use the charge signatures in Mie scattering to measure the particle charge optically. This would allow a charge measurement independent of the plasma parameters and could be applied to nano-dust where conventional methods cannot be applied.

In this work, various aspects of fundamental physics and chemistry of molecular gas discharges are presented with emphasis on the interaction between species, activated by low-pressure plasmas, and surfaces. As already known, synergistic effects of multiple plasma-generated species are responsible for surface modification. However, due to the large number of internal parameters of a discharge and the complex plasma processes the identification of correlations between plasma characteristics and their effects on surfaces are complicated. Therefore, the aim of this thesis is to improve the understanding of several phenomena associated with plasmaâ€“surface interactions by measuring or calculating fundamental kinetic, transport or spectroscopic data needed to interpret measurements and hereby, to support some future applications of plasmas.

This thesis describes the implementation and first on-line application of a multi-reflection time-of-flight (MR-ToF) mass analyzer for high-resolution mass separation at the ISOLTRAP mass spectrometer at ISOLDE/CERN. On the one hand, the major objective was to improve ISOLTRAPs mass-measurement capabilities with respect to the ratio of delivered contaminating ions to ions of interest. On the other hand, the time necessary to purify wanted from unwanted species should be reduced as much as possible to enable access to even more exotic nuclei. The device has been set up, optimized and tested at the University of Greifswald before its move to ISOLTRAP. The achieved performance comprises mass resolving powers of up to 200000 reached at observation times of 30ms and a contamination suppression of about four orders of magnitude by use of a Bradbury-Nielsen gate. With the characteristics, it outperforms clearly the so far state-of-the-art purification method of a gas-filled Penning trap. To improve the utilization of the MR-ToF mass analyzer, the in-trap lift method has been developed. It simplifies the application and optimization of the device, which is a crucial time factor in an on-line experiment. The device was the first of its kind successfully applied to radioactive ion beams for a mass analysis, for a mass separation (in combination with the Bradbury-Nielsen gate) as a preparatory step for a subsequent Penning-trap mass measurement and as a high-precision mass spectrometer of its own. The later was recently used for the first mass measurement of the neutron-rich calcium isotopes 53Ca and 54Ca. The so-far achieved mass-resolving power of 200000 belongs to the highest reported for time-of-flight mass analyzers at all. The first successful application of the MR-ToF system as the only mass separator at ISOLTRAP resulted in the mass measurement of 82Zn. The new mass value has been compared to mass extrapolations of the most recent Hartree-Fock-Bogoliubov (HFB) mass models, HFB-19 to HFB-21, of the BRUSLIB collaboration. The mass of the nuclide is of high interest for the compositions and depth profile of the outer crust of neutron stars. In the classical model of the outer crust of a cold, non-accrediting and non-rotating neutron star, the sequence of nuclides found within this parts is determined mainly by the binding energy of exotic nuclides. The crustal compositions determined with the three HFB mass models differed with respect to the appearance of a layer of 82Zn, originating from different mass extrapolations of this mass. With the new experimental data, the extrapolations could be evaluated. It was found that the HFB-21 mass value differs less from the experimental data than the ones from HFB-19 and 20. Therefore, in the classical model, 82Zn does not appear anymore in the outer crust. Due to its high resolution and very fast measurement time, the MR-ToF mass analyzer will be an important instruments for future activities at ISOLTRAP, at the ISOLDE facility in general, and at other radioactive ion-beam facilities.

The electron and negative ion densities in an asymmetric capacitively coupled low-pressure RF plasma in oxygen were systematically studied and compared to the electropositive argon RF plasma during continuous and pulsed power input. This work presents the careful design and realization of a non-invasive 160.28 GHz Gaussian beam microwave interferometry (MWI) as an innovative diagnostic tool. MWI directly provides the line integrated electron density without any model assumption. The high microwave frequency enables one to accurately describe the microwave free space propagation by means of Gaussian beam theory. The microwave interferometer is simultaneously coupled with laser photodetachment to experimentally determine the negative ion density in the CCRF oxygen discharge. This is the first time that both diagnostics were combined in low-pressure capacitively coupled RF oxygen plasmas. This thesis first presents comprehensive measurements of the steady state line integrated electron density in dependence on RF power and pressure for an argon and oxygen plasma. For both gases the electron density increases with RF power. However, the line integrated electron density in oxygen is about a factor 3 to 10 smaller than in argon. The reduced electron density is accompanied by a high number of negative ions, which exceeded the electron density and resulted in a high electronegative mode. With increasing RF power, the plasma switches into a low electronegative mode. Consequently, the discharge operates in two different modes, which are distinguished by their degree of electronegativity. The transition between the high and low electronegative modes is step-like and it was concluded that one can here directly see the discharge switches from the &alpha-mode to the &gamma-mode. The &gamma-mode (low electronegative mode, high RF power) is characterized by a strong increase of the electron density and a simultaneous decrease of the negative ion density. The increase may be connected to the production of secondary electrons by collision detachment of negative ions within the RF sheath (â€śpseudo-secondary electronâ€ť), in addition to the classical &gamma process due to positive ion bombardment of the powered electrode. In comparison to the &gamma-mode the &alpha-mode (high electronegative mode, low RF power) reveals more negative ions than electrons. Furthermore, a simple 0d attachment-detachment model was applied to calculate the effective rate coefficients for dissociative electron attachment and collisional detachment from the experimentally determined values of steady state electron and negative ion density, as well as the detachment decay time constant. Hence, the attachment rate coefficient of the molecular ground and the excited metastable state in dependence on RF power were determined. Moreover, the density of metastable molecular oxygen was estimated to 10% of the molecular ground state oxygen. The influence of each electronegative mode to the entire temporal behavior of the oxygen discharge was intensively investigated by pulsing the discharge. Here it was shown that for the low electronegative mode the afterglow behavior is similar to that of an electropositive argon plasma. In the high electronegative mode an electron density peak in the early afterglow was observed. It was concluded that the electron production originates from the collisional detachment of negative ions. The negative ion loss and the electron production in the early afterglow were modeled numerically with a 0d rate equation system. The model accurately describes the afterglow behavior of both electronegative modes and the additional electron density peak in the early of the high electronegative mode. For the high electronegative mode the molecular oxygen plays an important role as a detachment partner for the production of electrons in the early afterglow. Furthermore, the presence of the negative ions causes fluctuations of plasma parameters. 2d spatial and temporal fluctuations of the ion saturation current are measured during the instability. The temporal and phase resolved optical emission spectroscopy shows a strong change in emission pattern during the instability, which becomes more obvious for one RF cycle at characteristic instability phases. Here, the excitation patterns reveal significant changes in the electron heating mechanisms.

Diese Dissertation beschĂ¤ftigt sich mit der Erzeugung von edelmetallfreien Katalysatoren fĂĽr die Sauerstoffreduktion in Brennstoffzellen. Dabei wird ein neuartiger, dualer Plasmaprozess entwickelt, aufgebaut und die so-erzeugten Schichten mit verschiedenen elektrochemischen (CV, RDE und RRDE) und strukturanalytischen Methoden (SEM, EDX, IR, XPS, LeitfĂ¤higkeit, XRD, NEXAFS, EXAFS und TEM) untersucht. Auf diese Weise ist es erstmalig gelungen edelmetallfreie Katalysatoren mit einem Plasmaprozess herzustellen, ohne dass eine zusĂ¤tzliche Pyrolyse benĂ¶tigt wird. Die katalytische AktivitĂ¤t der Schichten ist auĂźerdem deutlich hĂ¶her als die von rein chemisch hergestellten Metallâ€“Polypyrrol-Schichten.