Refine
Year of publication
- 2018 (48) (remove)
Document Type
- Doctoral Thesis (47)
- Article (1)
Language
- English (48) (remove)
Keywords
- Bürgerkrieg (2)
- Flavivirus (2)
- Klimawandel (2)
- Plasmaphysik (2)
- Simulation (2)
- Staphylococcus aureus (2)
- Streptococcus pneumoniae (2)
- climate change (2)
- dendrochronology (2)
- dendroecology (2)
- phenotypic plasticity (2)
- ACT-209905 (1)
- AFLP, microsatellite SSR, ITS, DNA isolation (1)
- Adaptation (1)
- African swine fever virus (1)
- Afrikanische Schweinepest Virus (1)
- Alaska (1)
- AlfvƩn Waves (1)
- Animal behavior (1)
- Annual rings (1)
- Antioxidans (1)
- Anxiety sensitivity (1)
- Arbovirus (1)
- Asymmetric synthesis (1)
- Bathymodiolus (1)
- Bathymodiolus symbiosis (1)
- Baumgrenze (1)
- Beringung (1)
- Biochemie (1)
- Biomathematik , Bioinformatik (1)
- Bodentemperatur (1)
- Buche (1)
- Cerebral Palsy Kinder (1)
- Chemo-enzymatic synthesis (1)
- Chiral amines (1)
- Civil conflicts (1)
- Clade Annotation (1)
- Climate Change (1)
- Collisions (1)
- Comparative Gene Finding (1)
- Comparative Genomics (1)
- Cytochrome P-450 (1)
- DNA-microarray (1)
- Deep-sea hydrothermal vents (1)
- Democracy (1)
- Demokratie (1)
- Dendrochronologie (1)
- Dispersal (1)
- Doxorubicin (1)
- Dual Decomposition (1)
- Ecosystem Dynamics (1)
- Elektrochemischer Sensor (1)
- Entwicklungszusammenarbeit (1)
- Environmental conditions (1)
- Evolution (1)
- Evolutionsbiologie , Tierƶkologie , Sexuelle Selektion , Sexualverhalten (1)
- Fast Particles (1)
- Feldversuch (1)
- Fettsucht (1)
- Flight ability (1)
- Flug (1)
- Foreign aid (1)
- Friedensvertrag (1)
- GAPDH, ALDH (1)
- Gene Structure Prediction (1)
- Genetic diversity (1)
- Genome Annotation (1)
- Genotyping (1)
- Glazitektonik (1)
- Global change (1)
- Glutaredoxin (1)
- Glutaredoxine (1)
- Glutathion (1)
- Glutathione (1)
- Glycoprotein B (1)
- Graphen (1)
- Greifvƶgel (1)
- Gyro-kinetic Theory (1)
- HEV (1)
- Heat-flux (1)
- Hepatitis-E-Virus , Polymerase-Kettenreaktion , Microarray , West-Nil-Virus , Flaviviren , RNS-Viren , Genotypisierung (1)
- Herpesviren (1)
- Heterostrukturen (1)
- Hirninfarkt (1)
- Hyperventilation (1)
- IDD in pregnant women (1)
- Impfstoff (1)
- Individual phenotype (1)
- Integrins (1)
- Interoception (1)
- Interozeption (1)
- Intrastate conflicts (1)
- Iodine deficiency disorders (1)
- Ionthruster (1)
- Isopropylamine (1)
- JSNZ (1)
- Jahresring (1)
- Juniperus communis (1)
- Kinetic simulation (1)
- Komplexes Plasma (1)
- Konfliktregelung (1)
- Korrespondenzprinzip (1)
- LAVH (1)
- Lagrangian Relaxation (1)
- Landformanalyse (1)
- Local adaptation (1)
- Lord's Resistance Army (1)
- Low temperature plasma (1)
- Lycaena tityrus (1)
- Lymphozyt (1)
- Machtteilungsregierungen (1)
- Magnetismus (1)
- Master-Gleichung (1)
- Mathematik (1)
- Mediation (1)
- Membranfusion (1)
- Mikrobiologie (1)
- Mitochondrium (1)
- Mixed methods (1)
- Molecular biology (1)
- Molekularbiologie (1)
- Molekularbiologie, Genotypisierung, Genetische DiversitƤt (1)
- Molybdenum (1)
- Molybdopterin (1)
- Monitoring IDD (1)
- Movement (1)
- Neuroimmunologie (1)
- Nichtlineare Dynamik (1)
- Optomechanik (1)
- Oral health, Cerebral palsy, Children, Prevention (1)
- Orale Gesundheit (1)
- Osmoregulation (1)
- Oxidativer Stress (1)
- Oxidoreduktase (1)
- PEI,PDADMA,PSS,surface forces,atomic force microscopy, colloidal probe (1)
- Partial migration (1)
- Pediatric (1)
- Picea glauca (1)
- Plasma (1)
- Plasma , Plasmaphysik , Tokamak , Stellarator , Magnetohydrodynamik , Kinetische Theorie , Simulation , AlfvƩn-Welle , Energiereiches Teilchen (1)
- Plasma Physics (1)
- PlastizitƤt (1)
- Political Economy (1)
- Politische Ćkonomie (1)
- Polyphenole (1)
- Potamopyrgus antipodarum (1)
- Power-Sharing (1)
- Profilbilanzierung (1)
- Protein engineering (1)
- Proteine (1)
- Proteomanalyse (1)
- Pterin (1)
- Quantenoptik (1)
- Quantenpunkt (1)
- RT-qPCR (1)
- Rabies (1)
- Rabies virus (1)
- RadikalfƤnger (1)
- Range shift (1)
- Reaktive Sauerstoffspezies (1)
- Relativistische Quantenmechanik (1)
- Rotbuche (1)
- S. aureus (1)
- Salztoleranz (1)
- Schlaganfall induzierte ImmunschwƤche (1)
- Schmetterling (1)
- Schnecke (1)
- Schweinekrankheit (1)
- Shrubs (1)
- Sinlge port (1)
- SozialitƤt (1)
- Sphingosine-1-Phosphate (1)
- Spinnen (1)
- Spintronik (1)
- Starch (1)
- Stark gekoppelte Systeme (1)
- Stellarator (1)
- Streutheorie (1)
- StƤrke (1)
- Teilzug (1)
- Theodoxus fluviatilis (1)
- Thiole (1)
- Thioredoxine (1)
- Third-party intervention (1)
- Thrombospondin (1)
- Tierphysiologie (1)
- Tierseuche (1)
- Tokamak (1)
- Tollwut (1)
- Tollwutvirus (1)
- Transaminases (1)
- Two component systems (1)
- Uganda (1)
- Uncoupling (1)
- VEEV (1)
- Vegetation Ecology (1)
- Verbreitung (1)
- Virologie (1)
- Virus (1)
- Virus evolution (1)
- Vogelzug (1)
- WNV (1)
- Waldgrenze (1)
- Waldƶkologie (1)
- Waldƶkosystem (1)
- Weichselvereisung (1)
- WeiĆfichte (1)
- Winter (1)
- Yeast (1)
- Zitterbewegung (1)
- Zoonose (1)
- [Fe-S] Cluster (1)
- adaptation (1)
- alanine scanning (1)
- beech (1)
- catalytic activity (1)
- climate sensitivity (1)
- climate signal age effects (1)
- climate-growth relationships (1)
- computational fluid dynamics (1)
- ecology (1)
- ecosystem dynamics (1)
- entry (1)
- experimental plant ecology (1)
- fagus sylvatica (1)
- flow tank (1)
- forest ecology (1)
- forest understory vegetation (1)
- free amino acids (1)
- fusion loops (1)
- gH/gL complex (1)
- genetic adaptation (1)
- genotyping (1)
- geometric morphometrics (1)
- glioblastoma multiforme (1)
- glutaredoxins (1)
- gradient-design field experiment (1)
- herpesvirus (1)
- host-symbiont (1)
- interactions (1)
- invasive (1)
- iodine deficiency disorders (1)
- jep Gene (1)
- katalytische AktivitƤt (1)
- membrane fusion (1)
- metabolic interactions (1)
- mixed model (1)
- myxomycetes (1)
- osmoregulation (1)
- osmotolerance (1)
- oxidoreductase (1)
- physiological responses (1)
- platelets (1)
- poly(hydroxyalkanoates) (1)
- polycrystalline gold (1)
- proteins (1)
- proteomics (1)
- radical polishing (1)
- salinity (1)
- secondary plantmetabolites (1)
- self assembled monolayer (1)
- snail (1)
- snow cover manipulation (1)
- stream ecology (1)
- surface forces (1)
- symbiosis (1)
- tiling, self-similarity, fractal, aperiodic, iterated function system (1)
- tree size (1)
- tree-growth patterns (1)
- vent (1)
- viral diagnosis (1)
- virulence (1)
- white spruce (1)
- winter ecology (1)
- wood anatomy (1)
Institute
- Institut für Physik (7)
- Zoologisches Institut und Museum (6)
- Institut für Botanik und Landschaftsökologie & Botanischer Garten (5)
- Institut für Chemie und Biochemie (5)
- Institut für Mikrobiologie - Abteilung für Genetik & Biochemie (4)
- Abteilung für Mikrobiologie und Molekularbiologie (3)
- Institut für Mathematik und Informatik (2)
- Institut für Politik- und Kommunikationswissenschaft (2)
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung (2)
- Poliklinik für Kieferorthopädie, Präventive Zahnmedizin und Kinderzahnheilkunde (2)
The fear of somatic sensations is highly relevant in the etiology and maintenance of various disorders. Nevertheless, little is known about this fear of body symptoms and many questions are yet unanswered. Especially physiological studies on interoceptive threat are rare. Therefore, the present thesis investigated defensive mobilization, autonomic arousal, and brain activation during the anticipation of, exposure to, and recovery from unpleasant body sensations. Symptoms were provoked using a standardized hyperventilation procedure in a sample of high (and as controls: low) anxiety sensitive individuals - a population high at risk for developing a panic disorder and high in fear of internal body symptoms.
In study one, anxious apprehension was investigated during anticipation of interoceptive threat (somatic sensations evoked by hyperventilation) and exteroceptive threat (electric shock). Symptom reports, autonomic arousal, and defensive mobilization assessed by the startle eyeblink response were analyzed. Extending the knowledge on anticipation of interoceptive threat, study two investigated the neural networks activated during anxious apprehension of unpleasant body sensations. Symptom reports and startle response data were collected during a learning session after which participants high and low in fear of somatic symptoms attended a fMRI session anticipating threat (hyperventilation ā learned to provoke unpleasant symptoms) or safety (normal breathing). Study three examined the actual exposure to internal body symptoms, investigating symptoms reports, autonomic arousal, and the startle eyeblink response during guided breathing (hyperventilation and, as a non-provocative comparison condition, normoventilation) and during recovery. And finally, study four addressed changes in the defensive mobilization during repeated interoceptive exposure via a hyperventilation procedure. High and low anxiety sensitive persons went through two guided hyperventilation and normoventilation procedures that were spaced one week apart while symptom reports, breathing parameters, and startle response magnitudes were measured.
In study one it was demonstrated that the anticipation of exteroceptive threat led to a defensive and autonomic mobilization in high and low anxiety sensitive individuals, while during interoceptive threat only high anxiety sensitive participants were characterized by a potentiated startle response and autonomic activation. Imaging data of study two revealed that 1) during anticipation of hyperventilation all participants were characterized by an increased activation of a fear network consisting of anterior insula/ orbitofrontal cortex and rostral parts of the dorsal anterior cingulate cortex/ dorsomedial prefrontal cortex, 2) high fear individuals showed higher anxious apprehension than low fear controls during the entire context (safe and threat conditions), indexed by an overall stronger activation of the described network, and 3) while low fear controls learned that (undisclosed to all participants) in the fMRI scanner the threat cue was not followed by an unpleasant hyperventilation task, high fear participants continued to show stronger fear network activation to this cue. In study three it was demonstrated, that the hyperventilation procedure led to a marked increase in somatic symptoms and to autonomic arousal. While high and low anxiety sensitive groups did not differ during hyperventilation, in the early recovery only high anxiety sensitive individuals showed defensive mobilization, indicated by potentiated startle response magnitudes, and increased autonomic arousal after hyperventilation as compared to after normoventilation. Substantiating these findings, in study four all participants reported more symptoms during hyperventilation than during normoventilation, in both sessions. Nevertheless, only high anxiety sensitive participants displayed a potentiation of startle response magnitudes after the first hyper- vs. normoventilation. One week later, when the exercise was repeated this potentiation was no longer present and thus both groups no longer differed in their defensive mobilization. Even more, the number of reported baseline symptoms decreased from session one to session two in the high-AS group. While high anxiety sensitive persons reported increased baseline anxiety symptoms in session one, groups did not anymore differ in session two.
These data indicate that the standardized hyperventilation procedure is a valid paradigm to induce somatic symptoms. Moreover, it induces anxious apprehension especially in persons highly fearful of internal body symptoms. The repetition of interoceptive exposure, however, reduces associated fear in highly fearful individuals. Thus, this paradigm might provide an innovative method to study anxious apprehension and also treatment effects in patients with panic disorder. The present findings are integrated and discussed in the light of the current literature.
Many intrastate conflicts see more than one mediation effort. As the sequencing of mediation efforts in intrastate conflicts is neglected in existing research, this project addresses the question how and why previous mediation outcomes have an impact on subsequent mediation onset and subsequent mediation success. Drawing on bargaining theory, it is argued that governments and rebel groups engaged in intrastate conflicts account for previous mediation outcomes in their cost-benefit calculations on subsequent mediation onset, and, should subsequent talks set on, their behaviour during subsequent mediation efforts, which influences subsequent mediation success.
If mediation did not produce an agreement, the persistence of the private information problem is noted by the conflict parties. Yet, no new costs of mediation are uncovered, and hence the conflict parties will agree to subsequent mediation onset. Being aware of the necessity to overcome the private information and the commitment problem, the mediator will seek to account for the concerns of the conflict parties, and thereby work towards subsequent mediation success. If mediation produced a partial agreement, the benefits of mediation are underlined. The private information and the commitment problem seem solved with the assistance of the mediator. Subsequent mediation onset and eventually subsequent mediation success are observed. If a mediated agreement was reneged on by the rebel group, the government will refrain from further talks, pointing out the rebel groupās illegitimacy. If the government reneged on the agreement itself, it will also decide against subsequent mediation, as the previous mediation effort produced an agreement which did not mirror the power distribution in the dyad. Costs of mediation, which outweigh the benefits of it, were highlighted. Rebel groups will opt for mediation regardless which side reneged on an agreement. As both governments and rebel groups have to agree to subsequent mediation for talks to set on, subsequent mediation onset is unlikely if a mediated agreement was reneged on. Given the onset of subsequent mediation after a mediated agreement was reneged on, subsequent mediation success is unlikely to be observed, due to the previously underlined hazards of sharing private information and the persistence of the commitment problem.
The theoretical argument is tested with a mixed-methods approach. The quantitative analysis accounts for mediation efforts in African intrastate conflicts between 1993 and 2007. The qualitative analysis scrutinises the mediation efforts between the Government of Uganda and the Lordās Resistance Army. The results of both parts of analysis largely go hand-in-hand, and show that partial mediation success and mediation which did not produce an agreement have a positive impact on subsequent mediation onset in particular, but also on subsequent mediation success. Reneged on mediated agreements have a severe negative impact on subsequent mediation onset and subsequent mediation success though.
By addressing the question which impact previous mediation outcomes have on subsequent mediation efforts, this research shows that mediation which does not produce an agreement is not the mediation outcome which needs to be feared by the international community. Instead, the deteriorating impact of short-lived agreements, a mediation outcome which is unaccounted for in existing research as an explanatory variable, becomes apparent. This research has important policy implications, especially for mediators, as it suggests that accepting mediation efforts to end without an agreement is more conducive for subsequent mediation efforts. Moreover, this research points towards the necessity of including reneged on agreements in mediation research as an explanatory variable more extensively, thereby shedding more light onto the dynamics at play in consecutive mediation efforts.
Humanity is constantly confronted with the emergence and reemergence of infectious diseases. Many of them produce large or devastating epidemics, like AIDS (HIV) and Ebola. Others have been long neglected, yet pose immediate threats to global public health as evidences the abrupt emergence of Zika virus in South America and its association with microcephaly in babies. The examples illustrate, that many of these diseases are provoked by RNA viruses. One of the first steps in understanding and eliminating those threats is the development of sensitive and rapid diagnostic methods. A general and relatively rapid method is the direct detection and examination of the agentās genome. However, the nature of (re)emerging RNA viruses poses a series of very specific problems for the design of such methods. Therefore, a systematic approach was proposed for the design of DNA-hybridization-base methods to detect and characterize RNA viruses that will have both a high sensitivity and a specificity sufficiently broad to detect, per reaction, down to a single copy of any of the possible variants of the viral genome.
Following this approach a series of assays were designed, developed or adapted and put into use for detection and characterization of important RNA viruses. One of those viruses is West Nile virus (WNV), which after its explosive introduction into USA become the most widespread flavivirus throughout the world and, consequently, many countries began an intensive monitoring. While existing assay detected predominantly the Lineage 1, in Europa Lineage 2 was expected. Two new RT-qPCR for the detection of both lineages were developed, and reportedly used by independent laboratories. Due to more than 50000 associated deaths per year, the Hepatitis E virus also received an increasing attention to elucidate novel routes of transmission. This virus (especially genotype 3) has the zoonotic potential of transmission from pigs and wild boar to humans. RT-qPCR and nested qPCR for detection and characterization of this virus as well as a methodology for subtyping were developed and the first detected case of subtype 3b in a German wild animal was documented. In addition a novel assay for flaviviruses conformed by a RT-qPCR coupled with a low density DNA microarray was developed, which enabled the identification of WNV in mosquitoes from Greece. A RT-qPCR suitable for surveillance and diagnostic of all known variants of Venezuelan equine encephalitis virus was developed too. A causative agent of hemorrhagic infections, the Ngari virus, was detected and characterized in animal samples from Mauritania. These achievements were supported by the development of software applications for selection and visualization of primers and probes from aligned DNA sequences and for modeling of DNA hybridizations using unaligned sequences.
In conclusion a general methodology for rapid development of sensitive diagnostic methods based in DNA-hybridization technics (PCR, sequencing and microarray) was stablished and successful applications are reported.
Rabies virus (RABV) is an ancient, highly neurotropic rhabdovirus that causes lethal encephalitis. Most RABV pathogenesis determinants have been identified with laboratory-adapted or attenuated RABVs, but details of natural RABV pathogenesis and attenuation mechanisms are still poorly understood. To provide a deeper insight in the cellular mechanism of pathogenies of field RABV, this work was performed to assess virus strain specific differences in intra-neuronal virus transport, to identify cell culture adaptive mutations in recombinant field viruses and to explore shRNA-expressing RABVs as research tools for targeted host manipulation in infected cells.
Comparison of chimeric RABVs with glycoprotein (G) ecto-domains of different lyssaviruses, together with field RABVs from dog and fox in dorsal root ganglion (DRG) neurons revealed no detectable differences in the axonal accumulation of the viruses. This indicates that previously described G-dependent transport of newly formed RABV in axons can occur both in laboratory-adapted and field RABV. Moreover, partial overlap of nucleoprotein (N) and G protein particles in field virus infected DRG axons supported the hypothesis of the āseparate modelā for anterograde RABV transport.
Serial passages of recombinant dog and fox field clones in different cell lines led to the identification of general (D266N) and cell line specific (K444N) adaptive mutations in the G ecto-domain of both viruses. In BHK cells, synergistic effects of D226N, K444N and A417T on field dog virus G protein surface localization led to the loss of endoplasmic reticulum (ER) retention of G and increased virus titers in the supernatant, indicating that limited virus release by ER retention is a major bottleneck in cell culture adaptation. In addition, selection of mutations within the C-terminus of the RABV phosphoprotein (P) (R293H and R293C in fox and dog viruses, respectively) led to the hypothesis of altered binding affinities to nucleoprotein and RNP complexes. Identification of the above mentioned amino acid substitutions together with alterations in a suboptimal transcription stop signal in the P/M gene border indicated that adaptation to cell culture replication occurs on both levels, RNA transcription/replication and virus release.
To evaluate the possibility of an expression of a functional microRNA-adapted short-hairpin RNAs (miR-shRNA) expressing RABV, recombinant RABVs encoding miR-shRNAs against cellular Dynein Light Chain 1 (DYNLL1) and Acidic Nuclear Phosphoprotein 32 family member B (ANP32B) were generated. In spite of cytoplasmic transcription of the respective mRNAs, downregulation of DYNLL1 and ANP32B mRNA and respective protein levels in infected cells revealed correct processing to functional shRNAs. Specific downregulation of the cellular genes at 2, 3 and 4 days post infection further demonstrated feasibility of the approach in standard cell lines. However, it remained open whether miR-shRNA expressing RABV can be used to study neuro-infection in vivo. Since first attempts in primary rat neuron cultures failed, it has to be clarified in further experiments whether this strategy can be used in mature, non-dividing neurons or whether breakdown of the nucleus in the course of cell division is a requirement for the processing of cytoplasmically expressed miR-RNA by nuclear RNases.
By providing novel insights in axonal RABV transport and cell culture adaptive mutations this work extends the current understanding of RABV pathogenesis in natural and non-natural cell environments. Moreover, it provides a basis for further pathogenicity studies in which the impact of cell culture adaptation through increased virus release on RABV virulence can be investigated. With successful expression of functional miR-shRNAs from RABV vectors, this work also provides a tool for RABV gene targeting in infected cell lines and thus may contribute to the further investigation of RABV-host-cell-interactions.
Bacteria are exposed to oxidative stress as an unavoidable consequence of their aerobic lifestyle. Reactive oxygen species (ROS) are generated in the stepwise one-electron reduction of molecular oxygen during the respiration. Pathogens encounter ROS during the oxidative burst of macrophages as part of the host immune defense. Besides ROS, bacteria also have to cope with reactive chlorine, electrophilic and nitrogen species (RCS, RES, RNS). To cope with these reactive species, bacteria have evolved different defense and repair mechanisms. To maintain the reduced state of the cytoplasm, they utilize low molecular weight (LMW) thiols. LMW thiols are small thiol-containing compounds that can undergo post-translational thiolmodifications with protein thiols, termed as S-thiolations. S-thiolations function as major redox regulatory and thiol-protection mechanism under oxidative stress conditions. In eukaryotes and Gram-negative bacteria, the tripeptide glutathione (GSH) functions as major LMW thiol, which is present in millimolar concentrations. The Actinomycetes, such as Mycobacterium and Corynebacterium species do not produce GSH and utilize instead mycothiol (MSH) as their alternative LMW thiol. In Firmicutes, including Bacillus and Staphylococcus species, bacillithiol (BSH) functions as the major LMW thiol. LMW thiols protect protein thiols against the irreversible overoxidation of cystein residues to sulfinic and sulfonic acids. In addition, LMW thiols contribute to the virulence and survival of pathogens, function in metal homeostasis and serve as enzyme cofactors for detoxification of xenobiotics and antibiotics. In this doctoral thesis, we aimed to investigate the roles of MSH and BSH in redox regulation of main metabolic enzymes under oxidative stress in the pathogens Corynebacterium diphtheriae and Staphylococcus aureus. Previous redox proteomics studies identified the glyceraldehyde-3-phosphate dehydrogenase GapDH and the aldehyde dehydrogenase AldA as S-thiolated in S. aureus and C. diphtheriae. Thus, we aimed to study the redox regulation of the metabolic enzyme GapDH in C. diphtheriae in response to NaOCl and H2O2 stress by S-mycothiolation, which is described in chapter 1. Moreover, we studied the involvement of the mycoredoxin-1 (Mrx1) and thioredoxin (Trx) pathways in reactivation of S-mycothiolated GapDH in vitro. Using shotgun proteomics, 26 S-mycothiolated proteins were identified under NaOCl stress in C. diphtheriae. These are involved in energy metabolism (Ndh, GlpD) and in the biosynthesis of amino acids (ThrA, LeuB), purines (PurA) and cell wall metabolites (GlmS). The glycolytic GapDH was identified as conserved target for S-thiolation across Gram-positive bacteria. GapDH was the most abundant protein, contributing with 0.75 % to the total cystein proteome. Moreover, GapDH is a conserved target for redox regulation and S-glutathionylation in response to oxidative stress in several prokaryotic and eukaryotic organisms. Treatment of GapDH with NaOCl and H2O2 in the absence of MSH resulted in irreversible enzyme inactivation due to overoxidation. Pretreatment of GapDH with MSH prior to H2O2 or NaOCl exposure resulted in reversible inactivation due to S-mycothiolation of the active site Cys153. Since S-mycothiolation is faster compared to overoxidation, S-mycothiolation efficiently protects the GapDH active site against overoxidation. The activity of S-mycothiolated GapDH could be restored by both, the Mrx1 and Trx pathway in vitro. Interestingly, the recovery of Smycothiolated GapDH by Mrx1 was faster compared to its reduction by the Trx pathway. In previous studies, the reactivation of S-mycothiolated Mpx and MrsA by the mycoredoxin pathway occurred also faster compared to the Trx pathway, which is consistent with our results. We were further interested to analyze the redox regulation of the glyceraldehyde-3phosphate dehydrogenase Gap of S. aureus under NaOCl and H2O2 stress, which is described in chapter 2. Using the quantitative redox proteomic approach OxICAT, 58 NaOCl-sensitive cystein residues with >10% thiol oxidation under NaOCl stress were identified. Gap and AldA showed the highest oxidation increase of 29% under NaOCl stress at their active site cystein residues. Using shotgun proteomics, five S-bacillithiolated proteins were identified, including Gap, AldA, GuaB, RpmJ and PpaC. Gap contributed with 4 % as most abundant cystein protein to the total cystein proteome. Our activity assays demonstrated that Gap of S. aureus is highly sensitive to overoxidation by H2O2 and NaOCl in vitro in the absence of BSH. The active site Cys151 of Gap was oxidized to the BSH mixed disulfide under H2O2 and NaOCl stress in the presence of BSH in vitro, which resulted in the reversible Gap inactivation. Moreover, inactivation of Gap by NaOCl and H2O2 due to S-bacillithiolation was faster compared to overoxidation, indicating that S-bacillithiolation protects the Gap active site against overoxidation in vitro. We further showed that the bacilliredoxin Brx catalyzes the reduction of S-bacillithiolated Gap in vitro. Molecular docking of BSH into the Gap active site revealed that S-bacillithiolation does not require major structural changes. Apart from Gap, the aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus previously. Thus, the expression, function, redox regulation and structural changes of AldA were analysed under NaOCl and aldehyde stress in S. aureus as summarized in chapter 3. AldA was S-bacillithiolated in the presence of H2O2 and BSH as demonstrated in BSH-specific Western blots in vitro. The expression of aldA was previously shown to be regulated by the alternative sigma factor SigmaB in S. aureus. Transcription of aldA was strongly increased in a SigmaB-independent manner under formaldehyde, NaOCl and diamide stress in S. aureus. Using an aldA deletion mutant, we demonstrated that aldA is required for growth and survival under NaOCl stress in S. aureus. The purified AldA enzyme was shown to catalyze the oxidation of various aldehyde substrates, including formaldehyde, methylglyoxal, glycolaldehyde and acetaldehyde in vitro. In addition, the function of the conserved Cys279 for AldA activity was investigated in vivo and in vitro. The purified AldAC279S mutant was shown to be inactive for aldehyde oxidation in vitro. Moreover, the aldAC279S mutant was very sensitive under NaOCl stress in vivo, and this phenotype could be reversed using the aldA complemented strain. These experiments demonstrate the function of Cys279 for AldA activity both in vitro and in vivo. AldA activity assays showed that AldA is sensitive to overoxidation and irreversible inactivation by H2O2 alone in vitro. In the presence of BSH, AldA is protected against overoxidation by reversible Sbacillithiolation in vitro. Molecular docking and molecular dynamics simulations revealed that BSH occupies two different positions in the Cys279 active site, which depend on the NAD+ cofactor. In the apoenzyme, BSH forms the disulfide with Cys279 in the ārestingā state position, while Cys279 is S-bacillithiolated in the āattackingā state position in the holoenzyme in the presence of the NAD+ cofactor.
The Effect of the Patients Nutritional Status on Immune Alterations Induced by Ischemic Stroke
(2018)
Ischemic stroke is one of the leading causes of death and disability throughout the world.
One important aspect of stroke pathophysiology are immunological changes after stroke, especially a combination of post stroke immunodepression, leading to
infectious complications after stroke and an activation of the immune system, leading to cerebral injury. Adipose tissue has several immunological functions and obesity
leads to immunological complications and is accompanied by a chronic immune activation.
To study the effects of body weight and obesity on the immune system and measure weight and fat tissue changes after ischemic stroke we conducted the LIPS Trial and enrolled 50 stroke patients and 16 control subjects between July 2015 and July 2016. On the day of admission and on the days 1, 2, 3, 4, 5, 7, 30, 90 and 180 after admission stroke patients were weighed with an in-bed scale, body composition was measured with BIA, the triceps-skin fold thickness was measured, the NIHSS scale was obtained and blood was drawn. FACS-analysis was performed and triglycerides,cholesterol, CRP and PCT were measured at the central laboratory facility of the UniversitƤtsmedizin Greifswald. Luminex-multiplex analysis for multiple cyto- and chemokines was performed at the Multiplex Facility at the University Leiden. A cerebral MRI and an abdominal MRI were performed shortly after admission and on days 5-7 for most patients and the infarct volume, abdominal fat and hepatic fat percentage were measured. On days 30, 90 and 180 after stroke Bartel Index and mRS were obtained.
After stroke our patients showed the typical immunological changes described previously as stroke induced immune alterations, namely a post stroke immunodepression as well as signs of an activated immune system and an acute
phase response. Our patients lost weight, but only 1.7 ± 0.5 kg. Skinfold thickness did not change during the course of our trial and abdominal fat measurement did not change in stroke patients. Immunological parameters (leukocytes, neutrophils,CRP, PCT, IL-6) did not differ between BMI subgroups (normal weight: BMI < 25,overweight: BMI ℠25, < 30, obese: BMI ℠30) and in this trial we could not detect a
difference in patients with normal weight, overweight or obesity in the post stroke periode. In an additional analysis we could show that rapid clinical improvement
did result in a rapid improvement of post stroke immune alterations, especially for leukocytes, neutrophils, IL-6 and CRP.
Functional characterization of a novel protease isolated from a mouse-adapted S. aureus strain
(2018)
Background: The high incidence of methicillin-resistant Staphylococcus aureus
(MRSA) strengthens the need for new effective antibiotics and a protective vaccine. Up till now, mainly human-adapted Staphylococcus aureus strains were used to study S. aureus pathogenicity in mouse models. However, it is known that S. aureus is highly host-specific. Recently, a mouse-adapted S. aureus strain, JSNZ, was identified. This strain could be a promising tool in developing more appropriate infection models. JSNZ produces high amounts of a putative extracellular protease, named JSNZ extracellular protease (Jep). Since the jep gene was only detected in S. aureus isolates from laboratory mice and wild small rodents and shrews, we hypothesize that Jep is important for colonization and infection in mice. The jep deletion mutant previously created by our collaborators from the University of Auckland, New Zealand, intriguingly showed a reduced survival and growth fitness in murine serum and whole blood as compared to the JSNZ wild type (WT) strain.
Objective: To elucidate the role of Jep in the interaction between S. aureus and its
host by comparing the impact of JSNZ WT with a mutant and a complement strain on the murine immune system. In addition, the elucidation of possible genetic factors behind host-adaptation of S. aureus strains isolated from wild rodents and shrews.
Methods: A jep complemented strain was generated by chromosomal replacement.
JSNZ WT, the jep mutant and the complement strain were subjected to functional
assays (whole blood survival assay, coagulation assay). In addition, the genetic
background that might confer host specificity was tested by staph array genotyping.
Results: The mutant strain JSNZDjep was successfully complemented with the jep
gene using a chromosomal integration approach. The WT strain and the
complemented strain produced the Jep protein in comparable amounts.
Unexpectedly, the complemented strains did not behave like the WT strain but rather like the mutant in a series of in vitro assays. Firstly, the growth of both the deletion mutant and the complemented strains was slightly reduced in TSB as compared to the WT strain. Secondly, the jep knockout strain showed a strongly reduced survival in murine whole blood compared to its wild type counterpart, but so did the complemented strain. Finally, the coagulation of murine plasma was less pronounced for the jep deletion mutant and the complemented strain as compared to the JSNZ WT. To exclude a defect in jep gene expression, we compared the amount of Jep expressed during growth in TSB medium for the three strains. The complemented strain produced Jep in a manner similar to the WT strain in a growth-phase dependent manner, suggesting that Jep expression was not affected during the creation of the complemented strain.
The array data showed some differences in the genetic makeup between animal
isolated strains and matched human strains. For example, while all animal isolates of the CC88 lacked the resistance mecA gene it was found in some human isolates of the same strain.
Conclusion: In conclusion, our unidentified mutation created during the generation
of the jep knock-out strain rather than the jep gene itself manipulated the murine
immune response. The responsible gene and the underlying mechanisms remain to
be clarified. Genetic profiling of S. aureus strains allowed us to obtain some valuable information including data about CC49, the most frequently isolated lineage in wild rodents and shrews where compared to the human isolates the murine strains showed clear signs of host adaptation. However, the analysis had several limitations including the small sample size.
Amine transaminases are versatile biocatalysts for the production of pharmaceutically and agrochemically relevant chiral amines. They represent an environmentally benign alternative to waste intensive transition metal catalysed synthesis strategies, especially because of their high stereoselectivity and robustness. Therefore, they have been frequently used in the (chemo)enzymatic synthesis of amines and/or became attractive targets for enzyme engineering especially in the last decade, mainly in order to enlarge their substrate scope. Certainly, one of the most notable examples of amine transaminase engineering is the
manufacturing of the anti-diabetic drug Sitagliptin in large scale after several rounds of protein engineering. Thereby, the target amine was produced in asymmetric synthesis mode which is the most convenient and favored route to a target chiral amine, starting from the corresponding ketone. The choice of the amine donor is highly relevant for reaction design in terms of economical and thermodynamic considerations. For instance, the use of alanine as the natural amine donor is one of the most common strategies for the amination of target ketones but needs the involvement of auxiliary enzymes to shift the reaction equilibrium towards product formation. In fact, isopropylamine is probably one of the most favored donor molecules since it is cheap and achiral but it is supposed to be accepted only by a limited number of amine transaminases.
This thesis focusses on the optimization and application of amine transaminases for asymmetric synthesis reactions en route to novel target chiral amines using isopropylamine as the preferred amine donor.
Sexual selection favours traits that confer a competitive advantage in access to mates and to their gametes. This results in males evolving a wide array of adaptations that may be conflictual with femaleās interests and even to collateral negative effects on femaleās lifespan or reproductive success. Harmful male adaptations are diverse and can be extreme. For example, males of various species evolved adaptations that incur physical damage to the female during copulation, referred to as traumatic mating. Most of these adaptations provide males with a competitive fertilization advantage due to the injection of sperm or non-sperm compounds through the wound. In the spider taxonomical literature, alterations of external genital structures have been reported in females and may result from male inflicted damage during copulation. Contrarily to other cases of traumatic mating, the transfer of sperm or non-sperm compounds does not seem to be the target of selection for external female genital mutilation (EFGM) to evolve. Therefore, investigating EFGM may provide valuable information to extend our understanding of the evolution of harmful male adaptations. In this thesis, I explore this newly discovered phenomenon and combine empirical and theoretical approaches to investigate the causes and consequences of EFGM evolution from male and female perspectives. My findings suggest that EFGM is a natural phenomenon and is potentially widespread throughout spider taxa. I demonstrate the proximal mechanism by which the male copulatory organ mutilates the external female genitalia during genital coupling and show that the mutilation results in full monopolization of the female as mutilated females are unable to remate. Using a theoretical approach, I investigated the conditions for the evolution of EFGM. The model developed suggests that EFGM evolution is favoured for last male sperm precedence and for costs to females that can be relatively high as the male-male competition increases. I present the results of physiological measurements that suggest there is no physiological cost of genital mutilation resulting from healing and immune responses for the female. Finally, I report the results of a behavioural experiment that suggest that females have control over the mutilation and selectively allow or avoid mutilation. These findings suggest that EFGM benefits males by securing paternity, that males and females may have evolved to reduce the costs incurred by the female and that female choice may also play a role in EFGM evolution.
Herpesviruses are a fascinating group of enveloped DNA viruses, which rely on membrane fusion for infectious entry and direct cell-to-cell spread. Compared with many other enveloped viruses, they utilize a remarkably complex fusion machinery. Three conserved virion proteins, the bona fide fusion protein gB, and the presumably gB activating gH/gL heterodimer constitute the conserved core fusion machinery and are believed to drive membrane fusion in a cascade-like fashion. Activation of this cascade in most alphaherpesviruses is proposed to be triggered by binding of gD to specific host cell receptors. The molecular details of this fusion process, however, remain largely elusive. Yet, a detailed mechanistic knowledge of this process would be greatly beneficial for the development of efficient countermeasures against a variety of diseases. In this thesis, the functional relevance of individual components of the essential gH/gL complex of the alphaherpesvirus PrV has been assessed by two different approaches: by reversion analysis (paper II) and site-directed mutagenesis (papers III-V). In contrast to other herpesviruses, gL-deleted PrV is able to perform limited cell-to-cell spread, providing the unique opportunity to passage the entry-deficient virus in cell culture to select for PrV revertants capable of infecting cells gL-independently. This approach already resulted in an infectious gL-negative PrV mutant (PrV-ĪgLPass), in which the function of gL was compensated by formation of a gDgH hybrid protein. Here, the requirements for gL-independent infectivity of a second independent revertant (PrV-ĪgLPassB4.1), were analyzed. Sequencing of the genes encoding for gB, gH and gD, revealed mutations in each of them. By means of a robust infection-free, transfection-based cell-cell fusion assay (paper I), we identified two amino acid substitutions in the gL-binding domain I of gHB4.1 (L70P, W103R) as sufficient to compensate for lack of gL. Two mutations in gB (G672R, ĪK883) were found to enhance fusogenicity, probably by lowering the energy, required for gB refolding from pre- to postfusion conformation. Coexpression of gHB4.1 and gBB4.1 led to an excess fusion, which was completely suppressed by gDB4.1 in the fusion assays. This was surprising since PrV gD is normally not required for in vitro fusion or direct viral cell-to-cell spread, clearly separating this process from fusion during entry, for which PrV gD is essential. The fusion inhibiting effect of gDB4.1 could be attributed to a single point mutation resulting in an amino acid substitution within the ectodomain (A106V). In conclusion, these results indicated that gL is not central to the fusion process, as its function can be compensated for. As found so far, gL-independent infectivity can be realized by compensatory mutations in gH (as in PrV-ĪgLPass) or in gH plus gB (as in PrV-ĪgLPassB4.1). Excessive fusion induced by gHB4.1 and gBB4.1 was counter-regulated by gDB4.1, indicating that the interplay between these proteins is precisely regulated and further implies that gL and gD, despite being not absolutely essential for the fusion process, have important regulatory functions on gH and/or gB.
Both PrV-ĪgLPass mutants had acquired compensatory mutations in gH affecting the predicted gL-binding domain I in gH. By construction of an artificial gH32/98, which lacked the predicted gL-binding domain and was similar to the recently crystallized gH-core fragment present in the gDgH hybrid protein, we identified the N-terminal part of PrV gH as essential for gH function during fusion (paper III). gH32/98 was unable to promote fusion of wild-type gB in fusion assays and led to a total loss of function in the viral context. These results indicated that the gD moiety, present in gDgH, is critical for proper function of the gH-core fragment. We hypothesize that the gD moiety may adopt a stabilizing or modulating influence on the gH structure, which is normally executed by gL and important for interaction of gH with wild-type gB. Remarkably, substitution of wild-type gB by gBB4.1 rescued function of gH32/98 in the cellular and viral contexts. These findings suggest that gBB4.1 has been selected for interaction with āgL-lessā gH. In conclusion, these results demonstrated that gL and the gL-binding domain are not strictly required for membrane fusion during virus entry and spread but that compensatory mutations must be present in gB to restore a fully functional fusion machinery. These results strongly support the notion of a functional gH-gB interaction as a prerequisite for membrane fusion.
In addition to the N-terminal domain, we identified the transmembrane domain of PrV gH as an essential component of the fusion machinery, while the cytoplasmic domain was demonstrated to play a modulatory but nonessential role (paper IV). Whereas truncation or substitution of the PrV gH TMD by a gpi-anchor or the analogous sequence from PrV gD rendered gH non-functional, the HSV-1 gH TMD was found to functionally substitute for the PrV gH TMD in cell-cell fusion and complementation assays. Since residues in the TMD which are conserved between HSV and PrV gH but absent in PrV gD, are placed on one face of an α-helical wheel plot, we hypothesize that the gH TMD has an intrinsic property to interact with membrane components such as lipids or other molecules as a requirement for promoting membrane fusion.
In a final study focusing on the function of gH, we identified the N-glycosylation sites utilized by PrV gH, and determined their individual role in viral infection (paper V). PrV gH was found to be modified by N-glycans at five potential glycosylation sites. N-glycans at PrV specific N77 and the highly conserved site N627 were found to be critical for efficient membrane fusion in the fusion assays, and during viral entry and cell-to-cell spread. N627 was further shown to be crucial for proper gH transport and maturation. In contrast, inactivation of N604, conserved in the Varicellovirus genus, enhanced in vitro fusion activity and viral cell-to-cell spread. These findings demonstrated a role of the N-glycans in proper localization and function of PrV gH.
Glacitectonic deformation in the Quaternary caused the tectonic framework of large-scale folds and displaced thrust sheets of Maastrichtian (Upper Cretaceous) chalk and Pleistocene glacial deposits in the southwestern Baltic Sea area.
A wide spectrum of methods has been compiled to unravel the structural evolution of the Jasmund Glacitectonic Complex. The analyses of digital elevation models (DEM) suggest a division into two structural sub-complexes ā a northern part with morphological ridges striking NWāSE and a southern part with SWāNE trending ridges. Geological cross sections from the eastern coast (southern sub-complex) were constructed and restored using the software Move⢠and the complementary module 2D Kinematic Modellingā¢.
The final geometric model of the southern sub-complex shows a small-scale fold-and-thrust belt. It includes three different orders of architectural surfaces (see PEDERSEN, 2014): erosional surfaces and the dƩcollement (1st order), thrust faults (2nd order), and beds outlining hanging-wall anticlines as well as footwall synclines (3rd order). Thrust faults of the southern structural sub-complex are mainly inclined towards south, which indicates a local glacier push from the S/SE.
The glacitectonic structures have a surface expression in form of sub-parallel ridges and elongated valleys in between. Geomorphological mapping and detailed landform analyses together with the structural investigations provide an insight into the chronology of sub-complexes formation. The northern part of the glacitectonic complex is suggested to have been formed before the southern one, considering the partly truncated northerly ridges and their superimposition by the southern sub-complex.
Although there is a high number of scientific publications on the glacitectonic evolution of Jasmund, these presented models often lack a consistent theory for the development integrating all parts of the 100 km2 large complex. Therefore, the combination of all results leads to a more self-consistent genetic model for the entire Jasmund Glacitectonic Complex.
Background/Aim: Laparoscopic single-port surgery has emerged as a growing trend in minimally invasive surgery. Single-port access is preferred among women undergoing gynecologic surgery who have cosmetic concerns about scarring. Furthermore, this approach results in comparable clinical outcomes to standard laparoscopic surgery and perioperative morbidity rates have been reported to be low. The hypothesis is that a single-port technique might offer such advantages over the standard multi-port laparoscopy as less postoperative pain and better cosmetic results by decreasing abdominal wall tissue trauma. The potential disadvantages of single-port approaches are the larger umbilical incision and the technical difficulties. There are only a few randomized studies in the literature that investigate the value and safety of single-incision laparoscopic surgery in gynecological surgery. The aim of this study was to compare the safety and quality of life in patients who undergo single-incision laparoscopic assisted vaginal hysterectomy and those who undergo conventional laparoscopic assisted vaginal hysterectomy.
Methods: In a prospective randomized trial, 64 patients from three different centers in Germany were randomized (1:1) to conventional laparoscopic assisted vaginal hysterectomy (n=32) or single-incision laparoscopic assisted vaginal hysterectomy (n=30). Data was collected on 60 patients who fulfilled the criteria.
Results: The baseline characteristics of patients were similar in both groups. The mean operative time was comparable in both groups (68.2 vs 73.6 min., p = 0.409). Within the two groups, no differences were seen regarding estimated blood loss (p = 0.915), intra- and postoperative complications (p = 0.944), and wound infection rates (p = 0.944). Patients within the single-incision laparoscopic surgery group experienced significantly less pain in the first 24 hours postoperatively (p = 0.006), while pain scores at days 3, 5, 7 and 2 months postoperatively were comparable.
Conclusion: This study demonstrates that single-incision laparoscopic assisted vaginal hysterectomy is a reliable and safe setup in gynecologic surgery. Compared to conventional laparoscopic assisted vaginal hysterectomy, Notably, patients undergoing single-incision laparoscopic assisted vaginal hysterectomy experienced less pain postoperatively.
Chemosymbiosis in marine bivalves ā unravelling host-symbiont interactions and symbiotic adaptions
(2018)
Symbiosis essentially forms the cornerstone of complex life on earth. Spearheading
symbiosis research in the last few decades include the exploration of diverse mutualistic
animal-bacterial associations from marine habitats. Yet, many facets of symbiotic
associations remain under-examined. Here we investigated marine bivalves of the genera
Bathymodiolus and Codakia, inhabiting hydrothermal vents and shallow water
ecosystems, respectively, and their bacterial symbionts. The symbionts reside
intracellularly within gill epithelia and supply their host with chemoautotrophically fixed
carbon. They oxidize reduced substrates like sulfide (thiotrophic symbionts) and methane
(methanotrophic symbionts) from surrounding fluids for energy generation. The nature of
interactions between host and symbiont at the metabolic and physical level, as well as
between the holobiont and its environment remain poorly understood. In vitro cultivations
of both symbiont and host are difficult till date, hampering the feasibility of targeted
molecular investigations.
We bypassed culture-based experiments by proteogenomically investigating physically
separated fractions of host and symbiont cell components for the bivalves Bathymodiolus
azoricus, Bathymodiolus thermophilus and Codakia orbicularis. Using these
enrichments, we sequenced the symbiontsā genomes and established semi-quantitative
host-symbiont (meta-) proteomic profiles. This combined approach enabled us to resolve
symbiosis-relevant metabolic pathways and adaptations, detect molecular factors
mediating physical interactions amongst partners and to understand the association of
symbiotic traits with the environmental factors prevailing within habitats of the respective
bivalve.
Our results revealed intricate metabolic interdependence between the symbiotic partners.
In Bathymodiolus, these metabolic interactions included (1) the concentration of essential
substrates like CO2 and thiosulfate by the host for the thiotrophic symbiont, and (2) the
hostās replenishment of essential TCA cycle intermediates for the thiotroph that lacks
biosynthetic enzymes for these metabolites. In exchange (3), the thiotroph compensates
the hostās putative deficiency in amino acid and cofactor biosynthesis by cycling aminoacids
derived from imported precursors back to the host. In case of Codakia orbicularis,
the symbionts may metabolically supplement their host with N-compounds derived from
fixation of molecular nitrogen, a trait that was hitherto unknown in chemosynthetic
thiotrophic symbionts.
Individual proteogenomic investigations of the bivalves Bathymodiolus azoricus and
Bathymodiolus thermophilus showed that their symbionts are able to exploit a multitude
of energy sources like sulfide, thiosulfate, methane and hydrogen to fuel chemosynthesis.
The bivalves and their thiotrophic symbionts, however, are particularly adapted to
thiosulfate-utilization, as indicated by mitochondrial production and concentration of
thiosulfate by host and dominant expression of thiosulfate oxidation enzymes in the
symbiont. This may be advantageous, because thiosulfate is less toxic to the host than
sulfide. The central metabolic pathways for energy generation, carbon and nitrogen
assimilation and amino acid biosynthesis in thiotrophic symbionts of both Bathymodiolus
host species are highly conserved. Expression levels of these pathways do, however, vary
between symbionts of both species, indicating differential regulation of enzyme synthesis,
possibly to accommodate differences in host morphology and environmental factors.
Systematic comparison of symbiont-containing and symbiont-free sample types within
and between B. azoricus and B. thermophilus revealed the presence of āsymbiosisspecificā
features allowing direct host-symbiont physical interactions. Host proteins
engaged in symbiosis-specific functions include 1) a large repertoire of host digestive
enzymes predominant in the gill, possibly facilitating symbiont population control and
carbon acquisition via direct enzymatic digestion of symbiont cells and 2) a set of host
pattern-recognition receptors, which may enable the host to selectively recognize
pathogens or even symbionts āripeā for consumption. Symbiont proteins engaged in
symbiosis-specific interactions included 3) an enormous set of adhesins and toxins,
putatively involved in symbiont colonization, persistence and host-feeding.
Bathymodiolus symbionts also possess repertoires of CRISPR-Cas and restrictionmodification
genes for phage defense that are unusually large for intracellular symbionts.
Genomic and proteomic comparisons of thiotrophic symbionts of distinct Bathymodiolus
host species from different vent sites revealed a conserved core genome but divergent
accessory genomes. The B. thermophilus thiotrophās accessory genome was notably more
enriched in genes encoding adhesins, toxins and phage defense proteins than that of other
Bathymodiolus symbionts. Phylogenetic analyses suggest that this enrichment possibly
resulted from horizontal gene acquisition followed by multiple internal gene duplication
events. In others symbionts, these gene functions may be substituted by alternate
mechanisms or may not be required at all: The methanotrophic symbionts of B. azoricus,
for example, has the genetic potential to supplement phage defense functions. Thus, the
accessory genomes of Bathymodiolus symbionts are species- or habitat-associated,
possibly facilitating adaptation of the bivalves to their respective micro- and macroenvironments.
In support of this, we show that symbiont biomass in B. thermophilus,
which hosts only one thiotrophic symbiont phylotype, is considerably higher than in B.
azoricus that hosts thiotrophic and methanotrophic symbionts. This suggests that different
symbiont compositions in each species produce distinct microenvironments within the
holobiont.
Our study presents an exhaustive assessment of the genes and proteins involved in this
bivalve-microbe interaction, hinting at intimate host-symbiont interdependencies and
symbiotic crosstalk between partners. The findings open novel prospects for
microbiologists with regard to mechanisms of host-symbiont interplay within highly
specialized niches, origin and distribution of prokaryote-eukaryote interaction factors
across both mutualistic and pathogenic associations.
Currently, plastic materials are an integral part of our lives, but their production mostly bases on fossil fuels or derivatives, which resources are decreasing. Extraction and processing of non-renewable resources have also negative impact on environment. One of the most promising and environmentally friendly approaches is use of microorganism. This PhD dissertation presents the non-conventional yeast Arxula adeninivorans as a host for production of bio-based and biodegradable poly(hydroxyalkanoates) plastics poly(hydroxybutyrate) and co-polymer poly(hydroxybutyrate-co-hydroxyvalerate). Additionally, the constructed yeast strain was able to secrete enantiomerically pure (R)-3-hydroxybutyric acid.
The production of PHAs requires three enzymes: β-ketothiolase, acetoacetyl-CoA reductase and PHA synthase. The strategy followed in this project was divided into two parts. While all three enzymes are responsible for intracellular production of PHA polymer, first two only lead to secretion of (R)-3-HB into culture media, which was used in a first stage of work to establish and optimize polymer production. Both, different bacterial strains and yeast A. adeninivorans were taken into account in screening of the genes encoding aforementioned enzymes. Bacterial genes were chemically synthesized using codon optimization pattern and endogenous genes were obtained using PCR and genomic DNA template from A. adeninivorans LS3 wild-type strain. Each gene was cloned into Xplor2 vector between TEF1 constitutive promoter and PHO5 terminator. Vector containing both thiolase and reductase genes was used for A. adeninivorans transformation.
The best combination of heterologous genes was overexpression of β-ketothiolase gene from Clostridium acetobutylicum and acetoacetyl-CoA reductase gene from Cupriavidus necator which led to secretion of 4.84 g Lā1 (R)-3-HB, at a rate of 0.023 g Lā1 hā1 over 214 h in shaking flask cultivation. Further optimization by fed-batch culturing with glucose as a carbon source did not improve (R)-3-HB secretion, but the rate of production was doubled to 0.043 g Lā1 hā1 [3.78 g Lā1 of (R)-3-HB at 89 h].
The product of acetoacetyl-CoA reductase is (R)-3-HB-CoA and further removing of CoA moiety is needed for acid secretion into culture media. A. adeninivorans is able to conduct this process without any additional modification but the conversion rate is unknown. Two thioesterases, cytosolic TesBp encoded by TesB gene from E. coli and mitochondrial ATes1p encoded by ATES1 gene from A. adeninivorans, were analysed to enhance secretion process. Additionally, a cytosolic version of ATES1 gene (ATES1cyt) was tested. All three genes were expressed in A. adeninivorans cells under TEF1 constitutive promoter together with thiolase and reductase genes. Despite detected enzymatic activity the yield of (R)-3-HB synthesis and secretion was not increased. Moreover, overexpressed thioesterases negatively influenced cell growth, indicating that they act on other metabolic components. The results provided two sets of information, first, the endogenous secretion system is sufficient for (R)-3-HB production; second, further screening of suitable genes needs to be performed.
Based on optimization of (R)-3-HB synthesis, thiolase gene (thl) from C. acetobutylicum and reductase gene (phaB) from C. necator were chosen to combine with PHA synthase gene (phaC) for creating the PHB-V producing strain. The PHA synthase expression module, containing TEF1 promoter and PHO5 terminator, was cloned into Xplor2 vector together with thiolase and reductase expression modules and used for A. adeninivorans transformation. The engineered strain accumulated up to 7.47% PHB of dcw. During the set of cells passaging A. adeninivorans lost the ability to accumulate polymer with maximal 23.1 % of primary accumulation level. Additionally, use of a vector including hygromycin B antibiotic resistance marker (instead of auxotrophic marker in Xplor2) did not improve polymer accumulation and stability.
To counteract the effect of loss of accumulation stability, phasin gene (phaP1), originated from C. necator, was introduce together with PHA pathway genes. First screening cultivations resulted in stabilizing of polymer production reaching 9.58 % PHB of dcw and only 12.0 % loss of production ability. Further experiments increased PHB content with 19.9% PHB of dcw (3.85 g L-1) after 180 h of cultivation using rich medium. Use of another thiolase gene, the second thiolase from C. necator (bktB), which theoretically should induce production of PHBV copolymer, led to accumulation only 11.4% PHB of dcw after 139 h and no PHV fraction was detected.
Variation of the ratio between flask volume and amount of media influences the level of aeration. Importantly, decrease of aeration level significantly increased polymer synthesis. Additionally, PHB-V copolymer accumulation has been induced by use of different carbon source co-substrates. Use of rich media supplemented with ethanol allow the strain with thl thiolase to accumulate up to 42.9 % PHB of dcw without PHV fraction and with bktB thiolase to 30.5 % PHB of dcw. Nevertheless, despite of lower total amount of polymer, supplementation with 1-propanol allow both strains to accumulate PHB-V copolymer with 7.30 %mol and 22.5 %mol of PHV for thl and bktB strains, respectively.
Optimization based on genetic engineering further enhanced polymer production yield led to exceeding of 50 % PHB-V of dcw. For doubling the gene dosage, PHA synthesizing strains of A. adeninivorans were again transformed with Xplor2 vector containing PHA pathway genes. Resulting strains exhibited twice the level of enzymatic activities of thiolase and reductase compared with strains transformed once with expression vector. In a shaking flask experiment the strain transformed twice with vector containing bktB thiolase reached after 240 h 52.1% PHB-V of dcw (10.8 g L-1) with 12.3 %mol of PHV fraction which is the highest level found in yeast. As another genetic approach, a fusion strain has been created. Two different strains have been established and merged using protoplast fusion technique. Doubling of genetic material resulted in similar level of copolymer produced by Arxula as in former experiments (50.2% of dcw, 10.7 g L-1).
Culture conditions were optimized in controllable cultivation using fed-batch mode. Although optimal oxygen and pH level and continuous carbon source and nitrogen feeding were maintained, final polymer level in % of dry mass was around three times lower than for shaking flask experiment. Nevertheless, efficient growth of Arxula in fed-batch mode led to increase of total copolymer level in g L-1 (16.5 g L-1 compare to 10.8 g L-1 for shaking flasks) showing the feasibility of using Arxula strain for up-scaling production of copolymer.
Acetyl-CoA is a main precursor in synthesis of PHB-V copolymer and change of its pool was investigated. ATP citrate lyase is a cytosolic enzyme converting citrate into oxaloacetate and acetyl-CoA, supporting the biosynthesis of fatty acids. Two genes encoding Acl subunits from Aspergillus nidulans (AnAcl1 and AnAcl2) were again cloned into Xplor2 vector and transformed into A. adeninivorans PHA producing strain. Despite of higher enzymatic activity of AnAclp, accumulation of polymer was around three times higher for control without expression of lyase genes. Expectedly, the strain expressing AnAcl1/2 genes accumulated larger amount of each stearic, palmitic and oleic acid in both standard and fatty acid inducing conditions (lower nitrogen level). Thus, overexpression of AnAcl1/2 genes in A. adeninevorans cells may improve biosynthesis of fatty acids but is ineffective for PHB polymer accumulation.
The aim of the project was use of starch-based media, manufactured as by-products, for polymer production. Genetically engineered Arxula strains were cultivated using these media instead of glucose-based media. Although yeast cells were both able to secrete (R)-3-HB and to accumulate PHB, the yield was lower than for previous media. Additionally, only trace of PHV was found at the end of cultivation time when 1-propanol was supplemented. Obtained results showed that use of cheaper media is a promising approach to decrease production costs but further optimization needs to be performed especially for extended scale of production.
Determination of produced copolymer has been done based on microscopic analysis and studies of physical and chemical properties. Results revealed that Arxula accumulated PHA polymer in cytosolic granules with a similar size range compared to the ones produced by bacteria. The physicochemical study showed that produced polymer exhibited slightly different properties in comparison to bacterial polymer with similar content of PHV, i.e. very-low molecular mass, higher melting and glass transition temperature.
All above results showed that A. adeninivorans is a promising host for PHB-V production. Expression of phasin greatly increased production and stability of polymer, which led to an accumulation level never found before in yeast. Further optimization in higher production scale using cheap starch-based media may establish Arxula strain as a valuable tool for industrial production of PHB-V copolymer.
The rapid anthropogenic climate change that is projected for the 21st century is predicted to have severe impacts on ecosystems and on the provision of ecosystem services. With respect to the longevity of trees, forestry in particular has to adapt now to future climate change. This requires profound multidisciplinary knowledge on the direct and indirect climate sensitivity of forest ecosystems on various spatial scales. Predictions on growth declines due to increasing drought exposition during climate change are widely recognized for European beech (Fagus sylvatica L.), which is the major forest tree in European temperate deciduous forests. However, research from other continents or other biomes has shown that winter climate change may also affect forest growth dynamics due to declining snow cover and increased soil cooling. So far, this winter cold sensitivity is largely unexplored in Europe. Thus, particularly focussing on forest growth dynamics and winter cold sensitivity, the goal of this PhD-project was to explore how climate sensitivity of forest ecosystems differs regionally. By doing so, the project aimed to deliver insights about possibilities and limits of upscaling regional knowledge to a global understanding of climate sensitivity. To achieve these goals, this PhD-project integrated five studies (Manuscripts 1ā5) that investigated the climate sensitivity of biogeochemical cycles, plant species composition in forests, and forest growth dynamics across spatial scales. In particular, a large-scale gradient-design field experiment simulated the influence of winter climate change on forest ecosystems by snow cover and soil temperature manipulations (Manuscript 1). This study indicated that soil cooling and decreased root nutrient uptake may indirectly reduce growth of adult forest trees. Moreover, this study indicated uniform ecological sensitivity to soil temperature changes across sites along a large winter temperature gradient (ĪT = 4 K across 500 km), irrespective of the site-specific history of snow cover conditions, which motivates upscaling from local winter climate change studies to the regional scale. Although regional climate drives growth of adult forest trees, local factors, such as site-specific edaphic conditions, might control plants in the forest understory. This assumption was tested by mapping the forest understory composition along the same winter temperature gradient as introduced above (Manuscript 2). Across sites, this study found that edaphic conditions explained the spatial turnover in the forest understory composition more than climate, which might moderate direct climate change impacts on the forest understory composition. However, edaphic conditions, forest structure, and climate are linked by triangular interactions. Thus, climate change might still indirectly affect the forest vegetation dynamics. Moreover, a dendroecological study focussed on the same winter temperature gradient from central to cold-marginal beech populations as above in order to identify gradual changes in summer drought and winter cold sensitivity in tree growth (Manuscript 3). Towards the cold distribution margin, the influence of drought on tree growth gradually decreased, while growth reductions were increasingly related to winter cold due to harsher winter climate. By a large-scale dendroecological network study assessed the relationship of growth dynamics to climate and reproductive effort in beech forests across Europe (Manuscript 4). Indeed, this study found the general pattern across the distribution range of beech that high temperature controlled growth indirectly via resource allocation to reproduction. However, the strong, direct drought signal that could be generally detected from dry-marginal to central populations vanished towards the cold-marginal populations, where the more focussed study of Manuscript 3 identified a stronger relationship of tree growth to winter cold. Further extending the scope of this PhD-thesis to global scales, litter decomposition rates were assessed across biomes (Manuscript 5). This study found a robust relationship between climate and decomposition rates, but it also demonstrated large within-biome variability on a local scale. These local scale differences might depend on habitat conditions that, in turn, could be modulated by climate change, which calls for a better exploration of indirect climate sensitivity. In conclusion, this PhD-thesis highlighted that multidisciplinary research can advance the understanding of ecological interactions in forest ecosystems under changing climate scenarios. In this PhD-project, a winter climate change experiment, where site-representative target trees were selected by means of dendroecology, contributed to a mechanistic understanding of winter cold sensitivity in forest growth dynamics. Dendroecological investigations then put the findings in a broader temporal and spatial context by describing local climate sensitivity of tree growth on different spatial scales. This thesis further shows that global generalizations about the relationship of climate and ecological processes in ecosystem models have to be critically reviewed for the need of local and regional adjustment because these processes might experience considerable regional- or local-scale variation. However, this thesis reports uniform sensitivity of ecological processes to altered winter soil temperature regimes across a large winter temperature gradient. Thus, upscaling from insights of previous winter climate change experiments to regional scales is encouraged.
Dendrochronology, the science of tree-rings is a tool which has been widely used for many years for understanding changes in the environment, as trees react to environmental changes over time. In the contemporary situation, where climate warming in the Arctic is unequivocal and its effects on the Alpine and tundra ecosystems are seen pronouncedly in the past decade, the role of dendro-studies and the use of trees and shrubs alike as proxies of change has become critical. Studies clearly indicate that warming in the Arctic and Alpine tundra has resulted in increased vegetation in recent years. Shrubs, in these sensitive ecosystems, have proven to be highly instrumental as they likely benefit from this warming and hence are good indicators and auditees of this change. Therefore, in this study, we investigate the potential of shrubs in the evolving field of dendro-ecology/climatology.
Studies from classical dendrochronology used annual rings from trees. Further, because of shrub sensitivity to contemporary change, shrub-based dendrochronological research has increased at a notable scale in the last decade and will likely continue. This is because shrubs grow even beyond the tree line and promise environmental records from areas where tree growth is very limited or absent. However, a common limitation noted by most shrub studies is the very hard cross-dating due to asynchronous growth patterns. This limitation poses a major hurdle in shrub-based dendrochronological studies, as it renders weak detection of common signals in growth patterns in population stands. This common signal is traced by using a āsite-chronologyā.
In this dissertation, I studied shrub growth through various resolutions, starting from understanding radial growth within individuals along the length of the stem, to comparison of radial growth responses among male and female shrubs, to comparing growth responses among trees and shrubs to investigation of biome-wide functional trait responses to current warming. Apart from Chapter 4 and Chapter 6, I largely used Juniperus communis sp. for investigations as it is the most widely distributed woody dioecious species often used in dendro-ecological investigations in the Northern Hemisphere.
Primarily, we investigated radial growth patterns within shrubs to better understand growth within individuals by comparing different stem-disks from different stem heights within individuals. We found significant differences in radial growth from different stem-disks with respect to stem heights from same individuals. Furthermore, we found that these differences depending on the choice of the stem-disk affect the resulting site-chronology and hence climate-sensitivity to a substantial extent and that the choice of a stem-disk is a crucial precursor which affects climate-growth relationships.
Secondly, we investigated if gender difference ā often reported causing differential radial growth in dioecious trees ā is an influential factor for heterogeneous growth. We found that at least in case of Juniperus communis. L and Juniperus communis ssp nana. WILLD there is no substantial gender biased difference in radial growth which might affect the site-chronology. We did find moderate differences between sexes in an overall analysis and attribute this to reproductive effort in females.
In our study to test the potential of shrubs for reconstruction, we used a test case of Alnus viridis ssp crispa. We found a strong correlation between ring-width indices and summer temperature. Initially, the model failed the stability tests when we tested the stability of this relation using a response function model. However, using wood-anatomical analysis we discovered that this was because of abnormal cell-wall formation resulting in very thin rings in the year 2004. Pointer year analysis revealed that the thin rings were caused because of a moth larval outbreak and when corrected for these rings the model passed all stability tests.
Furthermore, to see if trees and shrubs growing in same biomes react to environmental changes similarly, a network analysis with sites ranging from the Mediterranean biome to the Ural Mountains in Russia was carried out. We found that shrubs react better to the current climate warming and have a decoupled divergent temperature response as compared to coexisting trees. This outcome reiterated the importance of shrub studies in relation to contemporary climate change. Even though trees and shrubs are woody forms producing annual rings, they have very different growth patterns and need different methods for analysis and data treatment.
Finally, in a domain-wide network analysis from plant-community vegetation survey, we investigated functional relationships between plant traits (leaf area, plant height, leaf nitrogen content, specific leaf area (SLA), and leaf dry matter content (LDMC)) and abiotic factors viz. temperature and soil moisture. We found a strong relation between summer temperature and community height, SLA and LDMC on a spatial scale. Contrarily, the temporal-analysis revealed SLA and LDMC lagged and did not respond to temperature over the last decade. We realized that there are complex interactions between intra-specific and inter-specific plant traits which differ spatially and temporally impacting Arctic ecosystems in terms of carbon turn over, surface albedo, water balance and heat-energy fluxes. We found that ecosystem functions in the Arctic are closely linked with plant height and will be indicative of warming in the short term future becoming key factors in modelling ecosystem projections.
Most animals live solitarily, but for some species the benefits of group living outweigh the costs and social communities have evolved. Truly social societies are characterized by cooperation in tasks like foraging, predator defense and brood care. In the most extreme cases, non-reproducing individuals act as helpers and provision offspring of reproducing individuals at the cost of their own reproductive success. This alloparental care is attributed to kin selection that provides the helpers with inclusive fitness benefits. However, how reproductive role is determined and in which ways virgin helpers in a group benefit the community is not always well understood.
Spiders are known to be generalist hunters, which in many cases do not shy away from cannibalism. Thus, most spiders live solitarily. However, in a few species a permanently social lifestyle has evolved in which individuals live together throughout their life, providing an intriguing case of social evolution. These spider communities are characterized by lack of premating dispersal leading to extreme inbreeding, by reproductive skew, in which only a proportion of females reproduce and by cooperative breeding of the reproducing females. It has been assumed that the large proportion of virgin females act as helpers not only in foraging and web maintenance but also during brood care. In the social spider Stegodyphus dumicola brood care involves the intensive task of regurgitation feeding, at which mothers regurgitate their own liquefied body tissue. At the end of brood care, the offspring sucks the mothers dry during matriphagy, leading to the death of brood caring females and a semelparous lifestyle. In the closely related solitarily breeding Stegodyphus lineatus virgin females do not provide brood care. The ability of virgin females in S. dumicola to care for offspring would thus depict an adaptation to sociality and cooperative breeding. I therefore aimed to clarify the role and significance of virgin females in colonies of social spiders and furthermore investigated a possible mechanism of how reproductive role within a colony is determined.
I investigated whether there is differential task participation in a non-reproductive task and the task of brood care among reproducing mothers and virgin females (helpers) in Stegodyphus dumicola. The study provides explicit evidence that brood care ā including egg sac care, regurgitation feeding and matriphagy ā is performed by mothers as well as by virgin helpers. Virgin females in a colony can thus rightfully be termed allomothers. However, the task participation differed between the reproductive states. While mothers engaged more often in brood care, virgin females were more active in foraging. However, the active provisioning of offspring by the virgin females decreases the motherly workload as is suggested by the extended brood care period in comparison to solitary breeders. The observations on virgin allomaternal care are supported by histological studies on the midgut tissue of brood caring females, which revealed that mothers and virgin helpers undergo comparable morphological changes in preparation of regurgitation feeding. The changes in virgin females correlate to ovarian development that might depict an internal maturation process which sets virgin females in the right state to provide care. The morphological changes in mothers and virgin helpers of S. dumicola are less comprehensive than in the solitarily breeding S. lineatus mothers. This indicates that cooperatively caring females are able to save on their resources, provision offspring for longer and thus are probably able to increase survival of the brood by an extended care period. A surprising consequence of cooperative brood care is the ability of mothers to produce a second viable egg sac, even when the first brood is successful. Mothers of the cooperative breeding S. dumicola can thus depart from the strictly semelparous lifestyle and instead invest part of their resources in a second clutch. This finding identified a new way of how cooperative breeding enhances breeding success of reproducers and thus inclusive fitness for helpers as well, thus adding to the benefits of allomaternal care.
Virgin females did not store significantly lower amounts of lipids in their midgut tissue than mothers, raising the question of how much reproductive role of females is determined by competition for resources during growth, as often assumed. Another possible determinant of female reproductive skew is the characteristic male scarcity in spider colonies, with only about 12 percent of spiders being male. Males are assumed to mature early within a few days and die early, thus leaving late maturing females unmated due to lack of mating partners. However, my studies provided evidence that male maturation is more skewed than expected and males might survive several months. Subadult females did not accelerate molting when an adult male was present, which could further indicate, that male presence is not a limiting factor on reproduction in males. Furthermore, males are able copulate with up to 16 females and did not show e preference for large females during mating trials. Males are thus able to fertilize all females, provided all females mature in time. I therefore suggest, that male scarcity is not major determinant of reproductive skew in females, especially in small and middle-sized colonies in which female maturation might only be moderately skewed.
My studies were able to demonstrate the meaning of the large proportion of unmated females in a colony of the social spider S. dumicola. Virgin helpers support mothers during brood care and thus do not only enhance the brood care period but facilitate mothers to produce multiple clutches. Virgin females are able to care as they undergo similar morphological changes as mothersā do. This seems to be facilitated by an internal maturation process, indicated by ovarian development and oviposition by virgin females, both of which has never been observed in virgins of the subsocial species. How reproductive role is determined remains unclear, but I was able to exclude male scarcity as a major factor influencing reproductive skew.
The Flavivirus genus (Flaviviridae family) comprises the most important arboviruses in the world such as dengue virus, West Nile virus (WNV), Zika virus (ZIKV), Japanese encephalitis virus and yellow fever virus (YFV). Every year, several outbreaks caused by flaviviruses are reported worldwide (i.e.: ZIKV and YFV outbreaks in South America) with a huge impact on economy and public health. In the last few decades, many aspects of the flavivirus biology and the interaction of flaviviruses with host cells have been elucidated. However, many underlying mechanisms concerning receptor usage, entry process and viral interaction with host cell factors are still not completely understood. Integrins, the major class of cell adhesion molecules have been implicated in the infectious cycle of different viruses including flaviviruses. A previous report proposed that a particular integrin, the αVβ3 integrin, might act as a cellular receptor for WNV. However, this hypothesis was not confirmed by other groups. In the present study, murine cell lines lacking the expression of one or more integrin subunits were used to evaluate the involvement of different integrins in the flavivirus infection cycle. Mouse fibroblasts lacking the expression of β1 integrin (MKF-β1-/-) or β3 integrin (MEF-β3-/-) subunits or αVβ3 integrin (MEF-αVβ3-/-) as well as their corresponding wild-type cells were utilized. A second model using Chinese hamster ovary cells (CHO-K1), a cell line that has been described to be refractory to some flaviviruses, were modified to express either αV (CHO-αV+/+) or β3 (CHO-β3+/+) integrin subunits. All cell lines were first characterized by confocal laser microscopy, flow cytometry and functional assays prior to infection to assess their integrin expression. The cell lines were then inoculated with different flaviviruses of public health relevance: WNV, YFV-17D, Usutu virus (USUV), Langat virus (LGTV) and ZIKV. Infection assays were designed in order to evaluate whether integrins influence i) cell susceptibility; ii) binding; iii) internalization and iv) replication of the investigated flaviviruses. Our findings clearly demonstrate that β1, β3 and αVβ3 integrins do not act as flavivirus cellular receptor or attachment factor since their ablation does not completely abrogate flavivirus infection in the investigated cell lines. Flavivirus binding to the cell surface of MEFs, MKFs and CHO cells was not disturbed by the genomic deletion of the above-mentioned integrins. The deletion of β1 and β3 integrin subunit did not affect internalization of any of the flaviviruses tested. In contrast to that, loss of αVβ3 integrin in the MEF-αVβ3-/- cells showed a statistically significant decrease in WNV and USUV internalization while ZIKV, YFV-17D and LGTV internalization remained unaffected suggesting that αVβ3 integrin might be involved in the internalization process of at least some flaviviruses. On the other hand, flavivirus replication was substantially impaired in the integrin-deficient cell lines in comparison to their corresponding wild-type cells. Both, MEF-β3-/- and MKF-β1-/- cells showed a statistically significant reduction on viral load for all flaviviruses tested in comparison to their respective wild-type cells. The MEF-αVβ3-/- cells in particular, showed a strong inhibition of flavivirus replication with a reduction of up to 99% on viral loads for all flaviviruses tested. Levels of flavivirus negative-strand RNA were substantially decreased in MEF-αVβ3-/- cells indicating that integrins might influence flavivirus RNA replication. The ectopic expression of either αV or β3 integrin subunits in CHO cells slightly increased the replication of all flaviviruses tested. Taken together, this is the first report highlighting the involvement of integrins in ZIKV, USUV, LGTV and YFV infection. The results strongly indicate that the investigated integrins play an important role in flavivirus infection and might represent a novel host cell factor that enhances flavivirus replication. Although the exact mechanism of interaction between integrins and flaviviruses is currently unknown, the results provided in this study deepen our insight into flavivirus - host cell interactions and open doors for further investigations.
Self-affine tiles and fractals are known as examples in analysis and topology, as models of quasicrystals and biological growth, as unit intervals of generalized number systems, and as attractors of dynamical systems. The author has implemented a software which can find new examples and handle big databases of self-affine fractals. This thesis establishes the algebraic foundation of the algorithms of the IFStile package. Lifting and projection of algebraic and rational iterated function systems and many properties of the resulting attractors are discussed.