Refine
Year of publication
- 2018 (48) (remove)
Document Type
- Doctoral Thesis (47)
- Article (1)
Language
- English (48) (remove)
Keywords
- BĂŒrgerkrieg (2)
- Flavivirus (2)
- Klimawandel (2)
- Plasmaphysik (2)
- Simulation (2)
- Staphylococcus aureus (2)
- Streptococcus pneumoniae (2)
- climate change (2)
- dendrochronology (2)
- dendroecology (2)
- phenotypic plasticity (2)
- ACT-209905 (1)
- AFLP, microsatellite SSR, ITS, DNA isolation (1)
- Adaptation (1)
- African swine fever virus (1)
- Afrikanische Schweinepest Virus (1)
- Alaska (1)
- Alfvén Waves (1)
- Animal behavior (1)
- Annual rings (1)
- Antioxidans (1)
- Anxiety sensitivity (1)
- Arbovirus (1)
- Asymmetric synthesis (1)
- Bathymodiolus (1)
- Bathymodiolus symbiosis (1)
- Baumgrenze (1)
- Beringung (1)
- Biochemie (1)
- Biomathematik , Bioinformatik (1)
- Bodentemperatur (1)
- Buche (1)
- Cerebral Palsy Kinder (1)
- Chemo-enzymatic synthesis (1)
- Chiral amines (1)
- Civil conflicts (1)
- Clade Annotation (1)
- Climate Change (1)
- Collisions (1)
- Comparative Gene Finding (1)
- Comparative Genomics (1)
- Cytochrome P-450 (1)
- DNA-microarray (1)
- Deep-sea hydrothermal vents (1)
- Democracy (1)
- Demokratie (1)
- Dendrochronologie (1)
- Dispersal (1)
- Doxorubicin (1)
- Dual Decomposition (1)
- Ecosystem Dynamics (1)
- Elektrochemischer Sensor (1)
- Entwicklungszusammenarbeit (1)
- Environmental conditions (1)
- Evolution (1)
- Evolutionsbiologie , Tierökologie , Sexuelle Selektion , Sexualverhalten (1)
- Fast Particles (1)
- Feldversuch (1)
- Fettsucht (1)
- Flight ability (1)
- Flug (1)
- Foreign aid (1)
- Friedensvertrag (1)
- GAPDH, ALDH (1)
- Gene Structure Prediction (1)
- Genetic diversity (1)
- Genome Annotation (1)
- Genotyping (1)
- Glazitektonik (1)
- Global change (1)
- Glutaredoxin (1)
- Glutaredoxine (1)
- Glutathion (1)
- Glutathione (1)
- Glycoprotein B (1)
- Graphen (1)
- Greifvögel (1)
- Gyro-kinetic Theory (1)
- HEV (1)
- Heat-flux (1)
- Hepatitis-E-Virus , Polymerase-Kettenreaktion , Microarray , West-Nil-Virus , Flaviviren , RNS-Viren , Genotypisierung (1)
- Herpesviren (1)
- Heterostrukturen (1)
- Hirninfarkt (1)
- Hyperventilation (1)
- IDD in pregnant women (1)
- Impfstoff (1)
- Individual phenotype (1)
- Integrins (1)
- Interoception (1)
- Interozeption (1)
- Intrastate conflicts (1)
- Iodine deficiency disorders (1)
- Ionthruster (1)
- Isopropylamine (1)
- JSNZ (1)
- Jahresring (1)
- Juniperus communis (1)
- Kinetic simulation (1)
- Komplexes Plasma (1)
- Konfliktregelung (1)
- Korrespondenzprinzip (1)
- LAVH (1)
- Lagrangian Relaxation (1)
- Landformanalyse (1)
- Local adaptation (1)
- Lord's Resistance Army (1)
- Low temperature plasma (1)
- Lycaena tityrus (1)
- Lymphozyt (1)
- Machtteilungsregierungen (1)
- Magnetismus (1)
- Master-Gleichung (1)
- Mathematik (1)
- Mediation (1)
- Membranfusion (1)
- Mikrobiologie (1)
- Mitochondrium (1)
- Mixed methods (1)
- Molecular biology (1)
- Molekularbiologie (1)
- Molekularbiologie, Genotypisierung, Genetische DiversitÀt (1)
- Molybdenum (1)
- Molybdopterin (1)
- Monitoring IDD (1)
- Movement (1)
- Neuroimmunologie (1)
- Nichtlineare Dynamik (1)
- Optomechanik (1)
- Oral health, Cerebral palsy, Children, Prevention (1)
- Orale Gesundheit (1)
- Osmoregulation (1)
- Oxidativer Stress (1)
- Oxidoreduktase (1)
- PEI,PDADMA,PSS,surface forces,atomic force microscopy, colloidal probe (1)
- Partial migration (1)
- Pediatric (1)
- Picea glauca (1)
- Plasma (1)
- Plasma , Plasmaphysik , Tokamak , Stellarator , Magnetohydrodynamik , Kinetische Theorie , Simulation , Alfvén-Welle , Energiereiches Teilchen (1)
- Plasma Physics (1)
- PlastizitÀt (1)
- Political Economy (1)
- Politische Ăkonomie (1)
- Polyphenole (1)
- Potamopyrgus antipodarum (1)
- Power-Sharing (1)
- Profilbilanzierung (1)
- Protein engineering (1)
- Proteine (1)
- Proteomanalyse (1)
- Pterin (1)
- Quantenoptik (1)
- Quantenpunkt (1)
- RT-qPCR (1)
- Rabies (1)
- Rabies virus (1)
- RadikalfÀnger (1)
- Range shift (1)
- Reaktive Sauerstoffspezies (1)
- Relativistische Quantenmechanik (1)
- Rotbuche (1)
- S. aureus (1)
- Salztoleranz (1)
- Schlaganfall induzierte ImmunschwÀche (1)
- Schmetterling (1)
- Schnecke (1)
- Schweinekrankheit (1)
- Shrubs (1)
- Sinlge port (1)
- SozialitÀt (1)
- Sphingosine-1-Phosphate (1)
- Spinnen (1)
- Spintronik (1)
- Starch (1)
- Stark gekoppelte Systeme (1)
- Stellarator (1)
- Streutheorie (1)
- StÀrke (1)
- Teilzug (1)
- Theodoxus fluviatilis (1)
- Thiole (1)
- Thioredoxine (1)
- Third-party intervention (1)
- Thrombospondin (1)
- Tierphysiologie (1)
- Tierseuche (1)
- Tokamak (1)
- Tollwut (1)
- Tollwutvirus (1)
- Transaminases (1)
- Two component systems (1)
- Uganda (1)
- Uncoupling (1)
- VEEV (1)
- Vegetation Ecology (1)
- Verbreitung (1)
- Virologie (1)
- Virus (1)
- Virus evolution (1)
- Vogelzug (1)
- WNV (1)
- Waldgrenze (1)
- Waldökologie (1)
- Waldökosystem (1)
- Weichselvereisung (1)
- WeiĂfichte (1)
- Winter (1)
- Yeast (1)
- Zitterbewegung (1)
- Zoonose (1)
- [Fe-S] Cluster (1)
- adaptation (1)
- alanine scanning (1)
- beech (1)
- catalytic activity (1)
- climate sensitivity (1)
- climate signal age effects (1)
- climate-growth relationships (1)
- computational fluid dynamics (1)
- ecology (1)
- ecosystem dynamics (1)
- entry (1)
- experimental plant ecology (1)
- fagus sylvatica (1)
- flow tank (1)
- forest ecology (1)
- forest understory vegetation (1)
- free amino acids (1)
- fusion loops (1)
- gH/gL complex (1)
- genetic adaptation (1)
- genotyping (1)
- geometric morphometrics (1)
- glioblastoma multiforme (1)
- glutaredoxins (1)
- gradient-design field experiment (1)
- herpesvirus (1)
- host-symbiont (1)
- interactions (1)
- invasive (1)
- iodine deficiency disorders (1)
- jep Gene (1)
- katalytische AktivitÀt (1)
- membrane fusion (1)
- metabolic interactions (1)
- mixed model (1)
- myxomycetes (1)
- osmoregulation (1)
- osmotolerance (1)
- oxidoreductase (1)
- physiological responses (1)
- platelets (1)
- poly(hydroxyalkanoates) (1)
- polycrystalline gold (1)
- proteins (1)
- proteomics (1)
- radical polishing (1)
- salinity (1)
- secondary plantmetabolites (1)
- self assembled monolayer (1)
- snail (1)
- snow cover manipulation (1)
- stream ecology (1)
- surface forces (1)
- symbiosis (1)
- tiling, self-similarity, fractal, aperiodic, iterated function system (1)
- tree size (1)
- tree-growth patterns (1)
- vent (1)
- viral diagnosis (1)
- virulence (1)
- white spruce (1)
- winter ecology (1)
- wood anatomy (1)
Institute
- Institut fĂŒr Physik (7)
- Zoologisches Institut und Museum (6)
- Institut fĂŒr Botanik und Landschaftsökologie & Botanischer Garten (5)
- Institut fĂŒr Chemie und Biochemie (5)
- Institut fĂŒr Mikrobiologie - Abteilung fĂŒr Genetik & Biochemie (4)
- Abteilung fĂŒr Mikrobiologie und Molekularbiologie (3)
- Institut fĂŒr Mathematik und Informatik (2)
- Institut fĂŒr Politik- und Kommunikationswissenschaft (2)
- InterfakultĂ€res Institut fĂŒr Genetik und Funktionelle Genomforschung (2)
- Poliklinik fĂŒr KieferorthopĂ€die, PrĂ€ventive Zahnmedizin und Kinderzahnheilkunde (2)
Herpesviruses are a fascinating group of enveloped DNA viruses, which rely on membrane fusion for infectious entry and direct cell-to-cell spread. Compared with many other enveloped viruses, they utilize a remarkably complex fusion machinery. Three conserved virion proteins, the bona fide fusion protein gB, and the presumably gB activating gH/gL heterodimer constitute the conserved core fusion machinery and are believed to drive membrane fusion in a cascade-like fashion. Activation of this cascade in most alphaherpesviruses is proposed to be triggered by binding of gD to specific host cell receptors. The molecular details of this fusion process, however, remain largely elusive. Yet, a detailed mechanistic knowledge of this process would be greatly beneficial for the development of efficient countermeasures against a variety of diseases. In this thesis, the functional relevance of individual components of the essential gH/gL complex of the alphaherpesvirus PrV has been assessed by two different approaches: by reversion analysis (paper II) and site-directed mutagenesis (papers III-V). In contrast to other herpesviruses, gL-deleted PrV is able to perform limited cell-to-cell spread, providing the unique opportunity to passage the entry-deficient virus in cell culture to select for PrV revertants capable of infecting cells gL-independently. This approach already resulted in an infectious gL-negative PrV mutant (PrV-ÎgLPass), in which the function of gL was compensated by formation of a gDgH hybrid protein. Here, the requirements for gL-independent infectivity of a second independent revertant (PrV-ÎgLPassB4.1), were analyzed. Sequencing of the genes encoding for gB, gH and gD, revealed mutations in each of them. By means of a robust infection-free, transfection-based cell-cell fusion assay (paper I), we identified two amino acid substitutions in the gL-binding domain I of gHB4.1 (L70P, W103R) as sufficient to compensate for lack of gL. Two mutations in gB (G672R, ÎK883) were found to enhance fusogenicity, probably by lowering the energy, required for gB refolding from pre- to postfusion conformation. Coexpression of gHB4.1 and gBB4.1 led to an excess fusion, which was completely suppressed by gDB4.1 in the fusion assays. This was surprising since PrV gD is normally not required for in vitro fusion or direct viral cell-to-cell spread, clearly separating this process from fusion during entry, for which PrV gD is essential. The fusion inhibiting effect of gDB4.1 could be attributed to a single point mutation resulting in an amino acid substitution within the ectodomain (A106V). In conclusion, these results indicated that gL is not central to the fusion process, as its function can be compensated for. As found so far, gL-independent infectivity can be realized by compensatory mutations in gH (as in PrV-ÎgLPass) or in gH plus gB (as in PrV-ÎgLPassB4.1). Excessive fusion induced by gHB4.1 and gBB4.1 was counter-regulated by gDB4.1, indicating that the interplay between these proteins is precisely regulated and further implies that gL and gD, despite being not absolutely essential for the fusion process, have important regulatory functions on gH and/or gB.
Both PrV-ÎgLPass mutants had acquired compensatory mutations in gH affecting the predicted gL-binding domain I in gH. By construction of an artificial gH32/98, which lacked the predicted gL-binding domain and was similar to the recently crystallized gH-core fragment present in the gDgH hybrid protein, we identified the N-terminal part of PrV gH as essential for gH function during fusion (paper III). gH32/98 was unable to promote fusion of wild-type gB in fusion assays and led to a total loss of function in the viral context. These results indicated that the gD moiety, present in gDgH, is critical for proper function of the gH-core fragment. We hypothesize that the gD moiety may adopt a stabilizing or modulating influence on the gH structure, which is normally executed by gL and important for interaction of gH with wild-type gB. Remarkably, substitution of wild-type gB by gBB4.1 rescued function of gH32/98 in the cellular and viral contexts. These findings suggest that gBB4.1 has been selected for interaction with âgL-lessâ gH. In conclusion, these results demonstrated that gL and the gL-binding domain are not strictly required for membrane fusion during virus entry and spread but that compensatory mutations must be present in gB to restore a fully functional fusion machinery. These results strongly support the notion of a functional gH-gB interaction as a prerequisite for membrane fusion.
In addition to the N-terminal domain, we identified the transmembrane domain of PrV gH as an essential component of the fusion machinery, while the cytoplasmic domain was demonstrated to play a modulatory but nonessential role (paper IV). Whereas truncation or substitution of the PrV gH TMD by a gpi-anchor or the analogous sequence from PrV gD rendered gH non-functional, the HSV-1 gH TMD was found to functionally substitute for the PrV gH TMD in cell-cell fusion and complementation assays. Since residues in the TMD which are conserved between HSV and PrV gH but absent in PrV gD, are placed on one face of an α-helical wheel plot, we hypothesize that the gH TMD has an intrinsic property to interact with membrane components such as lipids or other molecules as a requirement for promoting membrane fusion.
In a final study focusing on the function of gH, we identified the N-glycosylation sites utilized by PrV gH, and determined their individual role in viral infection (paper V). PrV gH was found to be modified by N-glycans at five potential glycosylation sites. N-glycans at PrV specific N77 and the highly conserved site N627 were found to be critical for efficient membrane fusion in the fusion assays, and during viral entry and cell-to-cell spread. N627 was further shown to be crucial for proper gH transport and maturation. In contrast, inactivation of N604, conserved in the Varicellovirus genus, enhanced in vitro fusion activity and viral cell-to-cell spread. These findings demonstrated a role of the N-glycans in proper localization and function of PrV gH.
Background/Aim: Laparoscopic single-port surgery has emerged as a growing trend in minimally invasive surgery. Single-port access is preferred among women undergoing gynecologic surgery who have cosmetic concerns about scarring. Furthermore, this approach results in comparable clinical outcomes to standard laparoscopic surgery and perioperative morbidity rates have been reported to be low. The hypothesis is that a single-port technique might offer such advantages over the standard multi-port laparoscopy as less postoperative pain and better cosmetic results by decreasing abdominal wall tissue trauma. The potential disadvantages of single-port approaches are the larger umbilical incision and the technical difficulties. There are only a few randomized studies in the literature that investigate the value and safety of single-incision laparoscopic surgery in gynecological surgery. The aim of this study was to compare the safety and quality of life in patients who undergo single-incision laparoscopic assisted vaginal hysterectomy and those who undergo conventional laparoscopic assisted vaginal hysterectomy.
Methods: In a prospective randomized trial, 64 patients from three different centers in Germany were randomized (1:1) to conventional laparoscopic assisted vaginal hysterectomy (n=32) or single-incision laparoscopic assisted vaginal hysterectomy (n=30). Data was collected on 60 patients who fulfilled the criteria.
Results: The baseline characteristics of patients were similar in both groups. The mean operative time was comparable in both groups (68.2 vs 73.6 min., p = 0.409). Within the two groups, no differences were seen regarding estimated blood loss (p = 0.915), intra- and postoperative complications (p = 0.944), and wound infection rates (p = 0.944). Patients within the single-incision laparoscopic surgery group experienced significantly less pain in the first 24 hours postoperatively (p = 0.006), while pain scores at days 3, 5, 7 and 2 months postoperatively were comparable.
Conclusion: This study demonstrates that single-incision laparoscopic assisted vaginal hysterectomy is a reliable and safe setup in gynecologic surgery. Compared to conventional laparoscopic assisted vaginal hysterectomy, Notably, patients undergoing single-incision laparoscopic assisted vaginal hysterectomy experienced less pain postoperatively.
Most animals live solitarily, but for some species the benefits of group living outweigh the costs and social communities have evolved. Truly social societies are characterized by cooperation in tasks like foraging, predator defense and brood care. In the most extreme cases, non-reproducing individuals act as helpers and provision offspring of reproducing individuals at the cost of their own reproductive success. This alloparental care is attributed to kin selection that provides the helpers with inclusive fitness benefits. However, how reproductive role is determined and in which ways virgin helpers in a group benefit the community is not always well understood.
Spiders are known to be generalist hunters, which in many cases do not shy away from cannibalism. Thus, most spiders live solitarily. However, in a few species a permanently social lifestyle has evolved in which individuals live together throughout their life, providing an intriguing case of social evolution. These spider communities are characterized by lack of premating dispersal leading to extreme inbreeding, by reproductive skew, in which only a proportion of females reproduce and by cooperative breeding of the reproducing females. It has been assumed that the large proportion of virgin females act as helpers not only in foraging and web maintenance but also during brood care. In the social spider Stegodyphus dumicola brood care involves the intensive task of regurgitation feeding, at which mothers regurgitate their own liquefied body tissue. At the end of brood care, the offspring sucks the mothers dry during matriphagy, leading to the death of brood caring females and a semelparous lifestyle. In the closely related solitarily breeding Stegodyphus lineatus virgin females do not provide brood care. The ability of virgin females in S. dumicola to care for offspring would thus depict an adaptation to sociality and cooperative breeding. I therefore aimed to clarify the role and significance of virgin females in colonies of social spiders and furthermore investigated a possible mechanism of how reproductive role within a colony is determined.
I investigated whether there is differential task participation in a non-reproductive task and the task of brood care among reproducing mothers and virgin females (helpers) in Stegodyphus dumicola. The study provides explicit evidence that brood care â including egg sac care, regurgitation feeding and matriphagy â is performed by mothers as well as by virgin helpers. Virgin females in a colony can thus rightfully be termed allomothers. However, the task participation differed between the reproductive states. While mothers engaged more often in brood care, virgin females were more active in foraging. However, the active provisioning of offspring by the virgin females decreases the motherly workload as is suggested by the extended brood care period in comparison to solitary breeders. The observations on virgin allomaternal care are supported by histological studies on the midgut tissue of brood caring females, which revealed that mothers and virgin helpers undergo comparable morphological changes in preparation of regurgitation feeding. The changes in virgin females correlate to ovarian development that might depict an internal maturation process which sets virgin females in the right state to provide care. The morphological changes in mothers and virgin helpers of S. dumicola are less comprehensive than in the solitarily breeding S. lineatus mothers. This indicates that cooperatively caring females are able to save on their resources, provision offspring for longer and thus are probably able to increase survival of the brood by an extended care period. A surprising consequence of cooperative brood care is the ability of mothers to produce a second viable egg sac, even when the first brood is successful. Mothers of the cooperative breeding S. dumicola can thus depart from the strictly semelparous lifestyle and instead invest part of their resources in a second clutch. This finding identified a new way of how cooperative breeding enhances breeding success of reproducers and thus inclusive fitness for helpers as well, thus adding to the benefits of allomaternal care.
Virgin females did not store significantly lower amounts of lipids in their midgut tissue than mothers, raising the question of how much reproductive role of females is determined by competition for resources during growth, as often assumed. Another possible determinant of female reproductive skew is the characteristic male scarcity in spider colonies, with only about 12 percent of spiders being male. Males are assumed to mature early within a few days and die early, thus leaving late maturing females unmated due to lack of mating partners. However, my studies provided evidence that male maturation is more skewed than expected and males might survive several months. Subadult females did not accelerate molting when an adult male was present, which could further indicate, that male presence is not a limiting factor on reproduction in males. Furthermore, males are able copulate with up to 16 females and did not show e preference for large females during mating trials. Males are thus able to fertilize all females, provided all females mature in time. I therefore suggest, that male scarcity is not major determinant of reproductive skew in females, especially in small and middle-sized colonies in which female maturation might only be moderately skewed.
My studies were able to demonstrate the meaning of the large proportion of unmated females in a colony of the social spider S. dumicola. Virgin helpers support mothers during brood care and thus do not only enhance the brood care period but facilitate mothers to produce multiple clutches. Virgin females are able to care as they undergo similar morphological changes as mothersâ do. This seems to be facilitated by an internal maturation process, indicated by ovarian development and oviposition by virgin females, both of which has never been observed in virgins of the subsocial species. How reproductive role is determined remains unclear, but I was able to exclude male scarcity as a major factor influencing reproductive skew.
Individual white spruce (Picea glauca (Moench) Voss) growth limitations at treelines in Alaska
(2018)
White spruce (Picea glauca (Moench) Voss) is one of the most common conifers in Alaska and various treelines mark the species distribution range. Because treelines positions are driven by climate and because climate change is estimated to be strongest in northern latitudes, treeline shifts appear likely. However, species range shifts depend on various species parameters, probably most importantly on phenotypic plasticity, genetic adaptation
and dispersal. Due to their long generation cycles and their immobility, trees evolved to endure a wide variety of climatic conditions. In most locations, interannual climate variability is larger than the expected climate change until 2100. Thus treeline position is typically thought of as the integrated effect of multiple years and to lag behind gradual climate change by several decades. Past dendrochronological studies revealed that growth of white spruce in Alaska can be limited by several climatic variables, in particular water stress and low temperatures. Depending on how the intensity of climate warming, this could result in a leading range edge at treelines limited by low temperatures and trailing treelines where soil moisture is or becomes most limiting. Climate-growth correlations are the dendrochronological version of reaction norms and describe the relationship between an environmental variable and traits like tree-ring parameters (e.g. ring width, wood density, wood anatomy). These correlations can be used to explore potential effects of climate change on a target species. However, it is known that individuals differ with respect to multiple variables like size, age, microsite conditions, competition status or their genome. Such individual differences could be important because they can modulate climate-growth relationships and consequently also range shifts and growth trends. Removing individual differences by averaging tree-ring parameters of many individuals into site chronologies could be an oversimplification that might bias estimates of future white spruce performance. Population dynamics that emerge from the interactions of individuals (e.g. competition) and the range of reactions to the same environmental drivers can only be studied via individual tree analyses. Consequently, this thesis focuses on factors that might alter individual white spruceâ climate sensitivity and methods to assess such effects. In particular, the research articles included explore three topics:
1. First, clones were identified via microsatellites and high-frequency climate signals of clones were compared to that of non-clonal individuals. Clonal and non-clonal individuals showed similar high-frequency climate signals which allows to use clonal and non-clonal individuals to construct mean site chronologies. However, clones were more frequently found under the harsher environmental conditions at the treelines which could be of interest for the species survival strategy at alpine treelines and is further explored in the associated RESPONSE project A5 by David WĂŒrth.
2. In the second article, methods for the exploration and visualization of individual-tree differences in climate sensitivity are described. These methods represent a toolbox to explore causes for the variety of different climate sensitivities found in individual
trees at the same site. Though, overlaying gradients of multiple factors like temperature, tree density and/or tree height can make it difficult to attribute a single cause to the range of reaction norms (climate growth correlations).
3. Lastly, the third article attempts to disentangle the effect of age and size on climate-growth correlations. Multiple past studies found that trees of different Ages responded differently to climatic drivers. In contrast, other studies found that trees do not age like many other organisms. Age and size of a trees are roughly correlated, though there are large differences in the growth rate of trees, which can lead to smaller trees that are older than taller trees. Consequently, age is an imperfect Proxy for size and in contrast to age, size has been shown to affect wood anatomy and thus tree physiology. The article compares two tree-age methods and one tree-size method based on cumulative ring width. In line with previous research on aging and Wood anatomy, tree size appeared to be the best predictor to explain ontogenetic changes in white spruceâ climate sensitivity. In particular, tallest trees exhibited strongest correlations with water stress in previous year July. In conclusion, this thesis is about factors that can alter climate-growth relationships (reaction norms) of white spruce. The results emphasize that interactions between climate variables and other factors like tree size or competition status are important for estimates of future tree growth and potential treeline shifts. In line with previous studies on white spruce in Alaska, the results of this thesis underline the importance of water stress for white spruce.
Individuals that are taller and that have more competitors for water appear to be most susceptible to the potentially drier future climate in Alaska. While tree ring based growth trends estimates of white spruce are difficult to derive due to multiple overlaying low frequency (>10 years) signals, all investigated treeline sites showed highest growth at the treeline edge. This could indicate expanding range edges. However, a potential bottleneck for treeline advances and retreats could be seedling establishment, which should be explored in more detail in the future.
Dendrochronology, the science of tree-rings is a tool which has been widely used for many years for understanding changes in the environment, as trees react to environmental changes over time. In the contemporary situation, where climate warming in the Arctic is unequivocal and its effects on the Alpine and tundra ecosystems are seen pronouncedly in the past decade, the role of dendro-studies and the use of trees and shrubs alike as proxies of change has become critical. Studies clearly indicate that warming in the Arctic and Alpine tundra has resulted in increased vegetation in recent years. Shrubs, in these sensitive ecosystems, have proven to be highly instrumental as they likely benefit from this warming and hence are good indicators and auditees of this change. Therefore, in this study, we investigate the potential of shrubs in the evolving field of dendro-ecology/climatology.
Studies from classical dendrochronology used annual rings from trees. Further, because of shrub sensitivity to contemporary change, shrub-based dendrochronological research has increased at a notable scale in the last decade and will likely continue. This is because shrubs grow even beyond the tree line and promise environmental records from areas where tree growth is very limited or absent. However, a common limitation noted by most shrub studies is the very hard cross-dating due to asynchronous growth patterns. This limitation poses a major hurdle in shrub-based dendrochronological studies, as it renders weak detection of common signals in growth patterns in population stands. This common signal is traced by using a âsite-chronologyâ.
In this dissertation, I studied shrub growth through various resolutions, starting from understanding radial growth within individuals along the length of the stem, to comparison of radial growth responses among male and female shrubs, to comparing growth responses among trees and shrubs to investigation of biome-wide functional trait responses to current warming. Apart from Chapter 4 and Chapter 6, I largely used Juniperus communis sp. for investigations as it is the most widely distributed woody dioecious species often used in dendro-ecological investigations in the Northern Hemisphere.
Primarily, we investigated radial growth patterns within shrubs to better understand growth within individuals by comparing different stem-disks from different stem heights within individuals. We found significant differences in radial growth from different stem-disks with respect to stem heights from same individuals. Furthermore, we found that these differences depending on the choice of the stem-disk affect the resulting site-chronology and hence climate-sensitivity to a substantial extent and that the choice of a stem-disk is a crucial precursor which affects climate-growth relationships.
Secondly, we investigated if gender difference â often reported causing differential radial growth in dioecious trees â is an influential factor for heterogeneous growth. We found that at least in case of Juniperus communis. L and Juniperus communis ssp nana. WILLD there is no substantial gender biased difference in radial growth which might affect the site-chronology. We did find moderate differences between sexes in an overall analysis and attribute this to reproductive effort in females.
In our study to test the potential of shrubs for reconstruction, we used a test case of Alnus viridis ssp crispa. We found a strong correlation between ring-width indices and summer temperature. Initially, the model failed the stability tests when we tested the stability of this relation using a response function model. However, using wood-anatomical analysis we discovered that this was because of abnormal cell-wall formation resulting in very thin rings in the year 2004. Pointer year analysis revealed that the thin rings were caused because of a moth larval outbreak and when corrected for these rings the model passed all stability tests.
Furthermore, to see if trees and shrubs growing in same biomes react to environmental changes similarly, a network analysis with sites ranging from the Mediterranean biome to the Ural Mountains in Russia was carried out. We found that shrubs react better to the current climate warming and have a decoupled divergent temperature response as compared to coexisting trees. This outcome reiterated the importance of shrub studies in relation to contemporary climate change. Even though trees and shrubs are woody forms producing annual rings, they have very different growth patterns and need different methods for analysis and data treatment.
Finally, in a domain-wide network analysis from plant-community vegetation survey, we investigated functional relationships between plant traits (leaf area, plant height, leaf nitrogen content, specific leaf area (SLA), and leaf dry matter content (LDMC)) and abiotic factors viz. temperature and soil moisture. We found a strong relation between summer temperature and community height, SLA and LDMC on a spatial scale. Contrarily, the temporal-analysis revealed SLA and LDMC lagged and did not respond to temperature over the last decade. We realized that there are complex interactions between intra-specific and inter-specific plant traits which differ spatially and temporally impacting Arctic ecosystems in terms of carbon turn over, surface albedo, water balance and heat-energy fluxes. We found that ecosystem functions in the Arctic are closely linked with plant height and will be indicative of warming in the short term future becoming key factors in modelling ecosystem projections.
Myxomycetes are protists belonging to the super-group Amoebozoa. The traditional taxonomic system, which is now largely outdated by molecular studies, recognizes five orders: Liceales, Trichiales, Physarales, Stemonitales and Echinosteliales. Molecular phylogenies revealed two basal clades: Physarales and Stemonitales (the so-called dark-spored myxomycetes) are the first; the other above-mentioned orders form the second (the bright-spored myxomycetes). However, except for Echinosteliales none of the traditional orders appears to be monophyletic in the traditionally used delimitation. The dark-spored myxomycetes encompass the majority of the described morphospecies. Due to the high genetic divergence in DNA sequences between the bright- and dark-spored myxomycetes, only the latter are considered in this dissertation. Historically myxomycetes have been described as fungi, due to their macroscopically visible fructifications which, though considerably smaller, resemble those of fungi. These fruit bodies provide enough morphological traits to support a morphological species concept with currently ca. 1000 species described. Therefore diversity studies of myxomycetes have been conducted for over 200 years and a substantial body of data on ecology and distribution of these fructifications exist. From these studies myxomycetes are known to form often distinct communities across terrestrial ecosystems with highly specific habitat requirements, such as snowbanks (nivicolous), herbivore dung (coprophilous) or decaying wood (xylophilous). However knowledge on the myxamoebae â the trophic life stage of the myxomycetes â is very scarce. Only recent advances in molecular techniques such as direct species identification based on DNA sequences from environmental samples (ePCR), have made studies of myxamoebae (and other microbes) possible. From these first molecular based studies myxomycetes are currently estimated to account for between 5 to almost 50% of all soil amoebae, and have been shown to be present in a wide variety of soils. To fully take advantage of these new methods, a molecular DNA marker needs to be established as well as a reference sequence database. The usability of a DNA marker gene depends on its ability to separate species by a distinction between intra- and interspecific divergence between sequences of the same and related species, the so-called âbarcoding gapâ.
The first part of this thesis (article I and II) deals with the subject of establishing such a DNA marker and database, and in doing so touches upon the subject of âwhat is a myxomycetes species?â
A total of 1 200 specimens were compiled into a reference database (the largest database to date of dark-spored myxomycetes). The genetic distance from sequence-to-sequence was used to assess genetic clade structures within morphospecies and putative biospecies (sexually isolated linages) were identified. The result was an estimate of hidden diversity, exceeding that of described morphospecies by 99%. The optimum sequence similarity threshold for OTU-picking (genetic species differentiation, denoted Operational Taxonomic Unit) with the used SSU marker was identified as 99.1% similarity.
The second part of this thesis (article III and IV) presents ecological studies conducted with NGS (ePCR) in which the established threshold and database are applied and are demonstrated to provide reliable and novel insights into the soil myxamoebae community. It is investigated whether the occurrence of fruit bodies reflects the distribution of soil myxamoebae, and the research questions âdo myxomycetes show broader realized niches as soil amoebae than as fructifications?â and âare myxamoebae distributions correlated to potential prey organisms (fungi and bacteria)?â are investigated.
In the ecological study presented in article III parallel metabarcoding of bacteria, fungi and dark-spored myxomycete was used for the first time in a joint approach to analyze the communities from an elevational transect in the northern limestone German Alps (48 soil samples). Illumina sequencing of the soil samples revealed 1.68 Mio sequences of a section of the rRNA gene, which were assigned to 578 operational taxonomic units (OTU) from myxomycetes. These show a high similarity (>98%) to 42 different morphospecies (the respective figures for bacteria and fungi were 2.16/5710/215 and 3.68/6133/260, respectively). Multivariate analyses were carried out to disentangle microbial interplay and to identify the main environmental parameters determining the distribution of myxamoebae and thus setting the boundaries for their ecological niches. Potential interactions between the three target organisms were analysed by integrating community composition and phylogenetic diversity with environmental parameters. We identified niche differentiation for all three communities (bacteria, fungi and myxamoebae) which was strongly driven by the vegetation. Bacteria and fungi displayed similar community responses, driven by symbiont species and plant substrate quality. Myxamoebae showed a more patchy distribution, though still clearly stratified among genera, which seemed to be a response to both structural properties of the habitat and specific bacterial taxa. In addition we find an altitudinal species turn-over for all three communities, most likely explained by adaptation to harsh environmental conditions. Finally a high number of myxomycetes OTUs (associated with the genus Lamproderma) not currently represented in our reference database were found, representing potentially novel species. This study is the first to report niche differentiation between the guild of nivicolous (âsnowbankâ) myxomycetes and thus fine-scale niche differentiation among a predatory soil protist; identifying both potential food preferences and antagonistic interactions with specific bacterial taxa.
Finally, the second ecological study (article IV) focuses on comparing the distribution of myxamoebae revealed by ePCR of soil samples with fructifications collected from the same area (714 specimens determined to 30 morphospecies, which form 70 unique ribotypes that can be assigned to 45 ribotype clusters using a 99.1% similarity threshold). The study found a strong coherency between the two inventories, though with species specific relative differences in abundance, which can in part be attributed to the visibility of the fructifications. In addition, a year to year comparison of fructification records gives support to the hypothesis that the abundance of fructifications depends strongly on the onset of snowfall in the previous autumn and the soil temperature regime throughout the winter.
In an aerobic environment the occurrence of reactive oxygen species (ROS) is a common phenomenon. The diverse roles of ROS in cellular function and in diseases make them a target of interest in many research areas. Substances capable of directly or indirectly reducing the (harmful) effects of ROS are referred to as âantioxidantsâ. However, the term is applied miscellaneously in the chemical and the biological context to describe different attributes of a substance. In this work the potential of an electrochemical assay to detect different ROS in-vitro was explored. The method was optimized to investigate the radical scavenging activities (antioxidant potential) of trolox and different plant compounds (ascorbic acid, caffeic acid, epigallocatechin gallate, ferulic acid, kaempferol, quercetin, rutin, and Gynostemma pentaphyllum extract) in-vitro. The obtained data was compared to established antioxidant in-vitro assays. Further, the impact of the plant substances on cellular parameters was evaluated with the electrochemical assay and established cell assays.
The optimization of the electrochemical assay allowed the reproducible detection of ROS. The sensor electrode proved differently sensitive towards individual ROS species. The highest sensitivity was recorded for hydroxyl radicals while superoxide and hydrogen peroxide had little impact on the sensor. Extracellular ROS concentrations could be detected from cell lines releasing elevated ROS into the extracellular space. The antioxidant activity of the investigated plant substances could be demonstrated with all in-vitro assays applied. However, the absolute as well as the relative activity of the individual substances varied depending on the experimental parameters of the assays (pH, radical species, phase, detection method).
The plant compounds modified redox related intracellular parameters in different cell lines. However, a direct correlation between intracellular and extracellular effects of the plant compounds could not be established.
The work demonstrates the feasibility to use the electrochemical assay to sense ROS as well as to evaluate the radical scavenging activity of molecules. The in-vitro antioxidant activities demonstrated for the individual plant substances are not reliable to predict the cellular effects of the molecules.
Because Moringa is rich in secondary metabolites and phenolics, we faced a challenge in extracting a pure DNA required for AFLP (the first proposed genotyping method). Later, different DNA isolation methods were tested to overcome the obstacles caused by phenolics and sugars, an AFLP protocol that worked well with the cultivated seedlings at the botanical garden in Greifswald. The markers for the Internal Transcribed Spacer (ITS) were as well tested that showed a monomorphic structure between all samples. Finally, SSR (microsatellite) markers were established. To optimize DNA extraction, the method of Doyle and Doyle was modified and optimized. This is an ideal method for obtaining a non-fragmented DNA that could be used for AFLP. In addition, two other DNA extraction methods; (KingFisher Flex robot using Omega M1130 extraction Kits, and spin columns and 96-plates using Stratec kits). Although we achieved similar results for both Robot kits (Omega) and Stratec kits, the amplification for most of the samples extracted with Robot did not work, therefore the Stratec kit was the method of choice as it has also a lower cost, combined with a high quality of DNA. For ITS, no polymorphism was found for 28 samples of M. peregrina from Sinai (sequences submitted to GenBank). However, since microsatellite markers of M. peregrina were not known, it was a challenge to try a cross amplification from other species with well-known microsatellite primers. Cross-amplification of 16 primers known from the related species M. oleifera was tested, and three multiplex PCR reactions were established after testing different annealing temperatures and different primers concentrations. This included 13 primers out of the 16 investigated markers which gave a reliable band. All methods used for genetic assessments for the different Moringa species are compiled in a comparative review to look for connections between the different Moringa species. For Moringaceae, M. oleifera and M. peregrina are closely related to each other. Both species have slender trunks, with thick, tough bark and tough roots and bilaterally symmetrical flowers with a short hypanthium. All but one SSR markers used in this study are highly informative However, the degree of polymorphy varied considerably within the 13 markers used. The Probability of Identity (PI) for all loci was 2.6 x 10-9 with high resolution. The percentage of polymorphic loci for all populations was 88.5±2.2; figures for single populations were 92.3%, 84.6%, 84.6%, and 92.3% for the wadis WM, WA, WF, and WZ, respectively. The genotype accumulation curve as well demonstrated that 7â8 markers were necessary to discriminate between 100% of the multilocus genotypes. SigniïŹcant departures from HWE were detected for eight loci (P < 0.001), probably due a high degree of inbreeding within population. The observed (HO) and expected (HE) heterozygosities ranged from 0 to 0.86 and from 0 to 0.81, respectively. However, for the pooled population, excluding the monomorphic locus MO41, HO and HE ranged from 0.069 to 0.742 and from 0.126 to 0.73 with averages of 0.423 and 0.469, respectively. The mean of FST was 0.133, indicating that, due to the long generation time of M. peregrina, there is still relatively little differentiation between the four remaining populations. An analysis of molecular variance (AMOVA) revealed that the old populations of M. peregrina are still genetically diverse where 75% of variance was recorded within individuals and 83% within populations. An analysis with STRUCTURE, varying the parameter K between 1 and 7, revealed the most pronounced genetic structure for K=3, thus uniting the populations from two neighboured wadis (W. Agala and W. Feiran). The three groups seem to be now genetically isolated. (They may be remainders of a formerly contiguous population, especially when considering the change towards a drier climate in Northern Africa within the last 6000 years). Six clones of each two individuals collected from the same wadi were found, pointing to vegetative dispersal via broken twigs, which may have rooted after flash floods. It may be an alternative mode of reproduction under harsh conditions. Our data reveal a low gene flow between three of the four wadis, suggesting that the trees are relictual populations. In general, conservation of populations from the three genetically most diverse wadis and cross-breeding of trees within a reforestation program is recommended as an effective strategy to ensure the survival of M. peregrina at Sinai, Egypt.
In the 1940s cytochrome P450 monooxygenases have been discovered and have been the focus of many studies ever since. Although they catalyze very interesting reactions that might find applications in the production of fine chemicals or pharmaceuticals, their low activity and stability often reduces their economic value. Both properties, the activity and the stability, are influenced by the uncoupling of the catalytic cycle.
In this PhD thesis, an assay for the screening of activity and uncoupling of cytochrome P450 enzymes was successfully developed. After finding optimal conditions for the assay, concerning pH and enzyme concentration, the uncoupling of cytochrome P450 BM3 and five mutants (F87Y, R47L, Y51F, A82L and T268A) was investigated. With the results obtained, a comparison of data from literature was possible and revealed similarities. Additionally, through negative controls, the reliability of the assay could be further demonstrated. Although other methods have been described for the detection of hydrogen peroxide formation, the combination of NADPH consumption measurement and hydrogen peroxide formation in parallel was new and represents a very good basis for a pre-screening of large mutant libraries, followed by closer investigation of selected variants.
For the investigation of the activity of the CYP11A1 system, consisting of CYP11A1 and Adx and AdR as redox partner system, the expression and purification for all three proteins was investigated first. For the protein CYP11A1 and Adx, good expression levels were achieved, whereas for AdR the protein concentration obtained was very low. The purification of all three proteins was partially accomplished but left room for improvement. Therefore, in the Master thesis of Christopher Grimm, the pH and temperature stability of all three proteins was further investigated in order to improve conditions used for ion exchange chromatography and to investigate possible conditions for in vitro biocatalysis. As unfortunately even with further investigation of the expression of AdR, no improvement was achieved, a whole-cell system was further investigated. Here, the product formation could be increased 8-fold in comparison to the published data, from 0.27% conversion to 2.2% conversion over 24 h by using a different detergent for substrate solubilization, which might have led to a better substrate supply to the enzyme.
Due to the low activity and stability, a different P450 system, the CYP17A1 enzyme, was subsequently investigated, first by in vitro biocatalysis with the human CYP17A1 expressed in E. coli. Therefore, a suitable redox partner system needed to be found for efficient electron supply of the enzyme. In in vitro biocatalysis, in combination with the Pdx/PdR system of P. putida the CYP17A1 enzyme showed the highest conversion with 91% after 24 h. To investigate the activity of the enzyme further, all active site residues in 4 Ă
proximity to the bound substrate were exchanged with alanine. After expression of the variants, almost no correctly folded protein was obtained for the variants. Also, after investigating different buffers to possibly enhance the stability, no improvements were achieved. Therefore, a whole-cell approach with the bovine enzyme was chosen in order to investigate the activity of the alanine variants. Here the importance of positions N202, R239, G297, E305, and T306A, described in literature to be important for catalytic activity, was confirmed. Most importantly, three positions that alter the regioselectivity of the enzyme were identified. The reaction of the V483A mutant was therefore also further investigated by preparative biocatalysis. Afterwards the new product was separated by preparative HPLC and identified as 16α- hydroxyprogesterone as confirmed by NMR spectroscopy analysis.
In the last part of the thesis, another screening approach for possible high-throughput screening was investigated. In contrast to the other screening approach, here the investigation of the substrate conversion and the hydrogen peroxide formation were optimized for application in droplets. After finding that DCFH-DA was not sensitive enough towards hydrogen peroxide, the AmplifluTM Red probe was used. As both fluorescent products were found to stay in the aqueous phase above pH 7.4, the conditions investigated for the AmplifluTM Red assay were applied and only NADPH to substrate ratio was investigated by using an uncoupling variant, an active variant from literature and the cytochrome P450 BM3 wild-type enzyme. After finding a good ratio, the five variants used for the investigation of the AmplifluTM Red assay were investigated in the same concentration later on found in the droplets (1 cell per 4 pL), and one variant showed improved product formation compared to wild-type. This finding clearly shows the applicability of the assay for high-throughput screening in droplets.
In the current era of anthropogenic climate change is the long-term survival of all organisms dependent on their ability to respond to changing environmental conditions either by (1) phenotypic plasticity, which allows species to tolerate novel conditions, (2) genetic adaptation, or (3) dispersal to more suitable habitats. The third option, dispersal, allows individuals to escape unfavorable conditions, the colonization of new areas (resulting in range shifts), and affects patterns of local adaptation. It is a complex process serving different functions and involving a variety of underlying mechanisms, but its multi-causality though has been fully appreciated in recent years only. Thus, the aim of this doctoral thesis was to disentangle the relative importance of the multiple factors relevant to dispersal in the copper butterfly Lycaena tityrus, including the individual condition (e.g. morphology, physiology, behavior) and the environmental context (e.g. habitat quality, weather). L. tityrus is a currently northward expanding species, which makes it particularly interesting to investigate traits underlying dispersal. In the first experiment, the influence of weather and sex on movement patterns under natural conditions was investigated. Using the Metatron, a unique experimental platform consisting of interconnected habitat patches, the second experiment aimed to examine the influence of environmental factors (resources, sun) on emigration propensity in experimental metapopulations. Human-induced global change (e.g. climate change, agricultural intensification) poses a substantial challenge to many herbivores due to a reduced availability or quality of feeding resources. Therefore, in the third experiment, the impact of larval and adult food stress on traits related to dispersal ability was investigated. Additionally, the effect of different ambient temperatures was tested. In the fourth experiment, core (Germany) and recently established edge (Estonia) populations were compared in order to explore variation in dispersal ability and life history traits indicative of local adaptation. Dispersal is often related to flight performance, and morphological and physiological traits, which was investigated in experiments 2-4. Butterflies were additionally subjected to behavioral experiments testing for the individualâs exploratory behavior (experiments 3 and 4).
Males and females differed substantially in morphology, with males showing traits typically associated with a better flight performance, which most likely result from selection on males for an increased flight ability to succeed in aerial combats with rivalling males and competition for females. This pattern could be verified by mobility measures under natural conditions and flight performance tests. Interestingly, although females showed traits associated with diminished flight performance, they had a higher emigration propensity than males (though in a context dependent manner). Reasons might be the capability of single mated females to found new populations, to spread their eggs over a wide range or to escape male harassment. Conditions indicative of poor habitat quality such as shade and a lack of resources promoted emigration propensity. The environmental context also affected condition and flight performance. The presence of resources increased the butterfliesâ condition and flight performance. Larval and adult food stress in turn diminished flight performance, despite some reallocation of somatic resources in favor of dispersal-related traits. These detrimental effects seem to be mainly caused by reductions in body mass and storage reserves. A similar pattern was found for exploratory behavior. Furthermore, higher temperatures increased flight performance and mobility in the field, demonstrating the strong dependence of flight, and thus likely dispersal, on environmental conditions. Flight performance and exploratory behavior were positively correlated, probably indicating the existence of a dispersal syndrome. The population comparison revealed several differences between edge and core populations indicative of local adaptation and an enhanced dispersal ability in edge populations. For instance, edge populations were characterized by shorter development times, smaller size, and a higher sensitivity to high temperatures, which seem to reflect adaptations to the cooler Estonian climate and a shorter vegetation period. Moreover, Estonian individuals had an enhanced exploratory behavior, which can be advantageous in all steps of the dispersal process and may have facilitated the current range expansion.
In summary, these findings may have important implications for dispersal in natural environments, which should be considered when trying to forecast future species distributions. First, dispersal in this butterfly seems to be a highly plastic, context-dependent trait triggered largely by habitat quality rather than by individual condition. This suggests that dispersal in L. tityrus is not random, but an active process. Second, fast development and an enhanced exploratory behavior seem to facilitate the current range expansion. But third, while deteriorating habitat conditions are expected to promote dispersal, they may at the same time impair flight ability (as well as exploratory
behavior) and thereby likely dispersal rates. For a complete understanding of a complex process such as dispersal, further research is required.
Ion thrusters are Electric Propulsion systems used for satellites and space missions. Within
this work, the High Efficient Multistage Plasma Thruster (HEMP-T), patented by the
THALES group, is investigated. It relies on plasma production by magnetised electrons.
Since the confined plasma in the thruster channel is non-Maxwellian, the near-field plume
plasma is as well. Therefore, the Particle-In-Cell method combined with a Monte-Carlo
Collision model (PIC-MCC) is used to model both regions. In order to increase the sim-
ulated near-field plume region, a non-equidistant grid is utilised, motivated by the lower
plasma density in the plume. To minimise artificial self-forces at grid points bordered by
cells of different size a modified method for the electric field calculation was developed in
this thesis. In order to investigate the outer plume region, where electric field and collisions
are negligible, a ray-tracing Monte-Carlo model is used. With these simulation methods,
two main questions are addressed in this work.
What are the basic mechanisms for plasma confinement, plasma-wall-interaction
and thrust generation?
For the HEMP-T the plasma is confined by magnetic fields in the thruster channel, generated
by cylindrical permanent magnets with opposite polarity. Due to different Hall parameters,
electrons are magnetised, while ions are not. Therefore, the dominating electron transport
is parallel to the magnetic field lines. In the narrow cusp regions, the magnetic mirror effect
reduces the electron flux towards the wall and confines the electrons like in a magnetic
bottle. At the anode, propellant gas streams into the thruster channel, which gets ionised
by the electrons creating the plasma. As a result of the electron oscillation between the two
cusp regions, ionisation of the propellant gas is efficient.
The magnetic field configuration of the HEMP-T also influences the plasma potential inside
the thruster channel. Close to the symmetry axis, the mainly axial magnetic field results in
a flat potential. At the inner wall, the field configuration reduces the plasma wall interaction
to only the narrow cusp regions. Here, the floating potential of the dielectric channel wall
and its plasma sheath result in a rather low radial potential drop compared to the applied
anode potential. As a result, the electric potential is rather flat and impinging ions at the
thruster channel wall have energies below the sputter threshold energy of the wall material.
Therefore, no sputtering appears at the dielectric wall. At the thruster exit the confinement
by the magnetic field is weakened and the potential drops with nearly the full anode voltage.
The resulting electric field accelerates the generated ions into the plume and generate the
thrust, but they are also able to sputter surfaces. During terrestrial testing, sputteringat vacuum vessel walls leads to the production of impurities. The amount of back-flux
towards the channel exit is determined by the sputter yield of the vacuum chamber wall. A
large distance between thruster exit and vessel wall reduces the back-flux and smooths the
pattern of deposition inside the thruster channel. Dependent on their material, the evolving
deposited layers can get conductive, modify by this the potential distribution and reduce
the thrust.
For the HEMP-T, ions are mainly generated at high potential close to the applied anode
potential. Therefore, the accelerated ions producing the thrust gain the maximum energy
as observed in experiment. Ions emitted from the thruster into different angles in the
plume contribute mainly to the ion current at angles between 30 ⊠and 90 ⊠. They mainly
originate from ionisation at the thruster exit. The resulting angular distribution of the
ejected ion current is close to the one of the experiment, slightly shifted by about ten
degrees to higher emission angles. In front of the thruster exit, electrons are trapped by
electrostatics forces. This enhanced density allows ionisation and an additional electron
density structure establishes.
What are possible physics based ideas for optimisation of an ion thruster?
An optimised thruster should have a high ionisation rate inside the thruster channel, low
erosion and an ion angular distribution with small contributions at high angles for min-
imised thruster satellite interactions. In experiments, the HEMP-T satisfies already quite
nicely these requests. In the simulations, low erosion inside the thruster channel and angular
ion distributions close to the experimental data are demonstrated. However, the ionisation
efficiency is lower and radial ion losses are larger than in experiment. A possible explanation
of these differences is an underestimated transport perpendicular to the magnetic field lines,
well known for magnetised plasmas.
A successful example for an optimisation using numerical simulations is the reduction of
back-flux of sputtered impurities during terrestrial experiments by an improved set-up of
the vacuum vessel. The implementation of baffles reduces the back-flux towards the thruster
exit and therefore deposition inside the channel. These improvements were successfully im-
plemented in the experiment and showed a reduction of artefacts during long time measure-
ments. This leads to a stable performance, as it is expected in space.
Manipulating and utilizing plasmas becomes a more and more important task in various research fields of physics and in industrial developments. Especially in nowadays spacerelevant applications there are different ideas to modify plasmas concerning particular tasks.
One major point of interest is the ability to influence plasmas using magnetic fields. To study the underlying physical effects that were achieved by these magnetic fields for both scenarios Particle-in-Cell simulations were done. Two examples are discussed in this thesis.
The first example originates from an experiment performed by the European Space Agency ESA in collaboration with the German Space Agency DLR. To verify the possibility of heat-flux reduction by magnetic fields onto the thermal protection system of a space vehicle a simplified experiment on earth was developed. Most of the heat that is created during re-entry comes from compression of the air ahead of the hypersonic vehicle, as a result of the basic thermodynamic relation between temperature and pressure. The shock front, which builds up in front of the vehicle deflects most of the heat and prohibits the surface of the space vehicle from direct contact with the maximum flux. State of the art spacecrafts use highly developed materials like ceramics to handle the enormous heat. An attractive approach to reduce costs is to use magnetic fields for heat-flux reduction. This would allow the use of cheaper materials and thus reduce costs for the whole space mission. A partially-ionized Argon beam was used to create a certain heat-flux onto a target. The main finding of the experimental campaign was a large mitigation of heat-flux by applying a dipole-like magnetic field. The Particle-in-Cell method was able to reproduce experimental observations like the heat-flux reduction. An additionally implemented optical diagnostics module allowed to confirm the results of the spectroscopy done during the experiment. The underlying effect that is responsible for the heat-flux reduction was identified as a coupling between the modified plasma and the dominating neutral flux component. The plasma, that is guided towards the target, act as a shield in front of the target surface for arriving neutrals. These neutrals are slowed down by charge-exchange collisions. Furthermore the magnetic field induces an increased turbulent transport that is also needed to reach a reduction in heat-ux. The turbulent transport was also obtained by three-dimensional Direct Simulation Monte Carlo simulations. Unfortunately, such source driven turbulence can not be expected in space, so that a heat flux reduction in real space applications is questionable. Nevertheless, other effects like the induced turbulence by the rotating vehicle can compensate the missing source driven effect.
The second scenario in which a magnetic field is used to modify the heat flux of a plasma is the operation of the pulsed cathodic arc thruster. The same Particle-in-Cell code was used to simulate a typical pulse of this newly developed thruster of Neumann Space Pty Ltd. The typical behavior of the thruster could be reproduced numerically. The thrust is mainly produced by fast electrons. These electrons are accelerated by electric fields as a result of a plasma-beam instability. This plasma-beam instability was verified by a phase space diagnostics for the electrons. To demonstrate the influence of the magnetic field a simulation of the cathodic arc thruster without magnetic field and one with magnetic field were compared. It was shown that the use of a magnetic field leads to a ten times larger thrust by directing the heat ux. The resulting narrow plume is an additional Advantage of the particle guiding magnetic field. This narrowness of the plume reduces the danger of interaction with other components of the space vehicle.
Both scenarios demonstrate the different capabilities for electromagnetic fields to manipulate plasmas and especially the corresponding heat-flux with respect to certain tasks. The possibilities range from reducing the heat-flux onto a target to maximizing the thrust by directing the heat-ux. This thesis demonstrates that simulations are a great tool to support experiments and to deliver an improved physics understanding. They help to identify the basic physics principles in the different systems, because they can deliver information not accessible to experiments.
In particular, a better understanding of the influence of electromagnetic fields on the heat-flux distribution in space-relevant applications was obtained. This can be the basis for further simulation-guided optimization, e.g. for the design of more effective cathodic arc thrusters. Here, the goal is to minimize costs for prototypes by replacing the hardware by virtual prototypes in the simulations. This allows to test basic design ideas in advance and get more highly-optimized designs at a fraction of time and costs.
This work study a monolayer of branched poly(ethyleneimine (PEI) adsorbed onto oppositely charged surfaces with iron chelates or iron ions in the absorption solution. The conformation of adsorbed PEI is explored in the dependence of the composition of the adsorption solution by measuring the surface forces using atomic force microscopy (AFM) with the colloidal probe (CP) at different ionic strengths (INaCl) in surrounding aqueous solution. The surface coverage of these layers is investigated using X-ray reflectivity.
PEI solutions show different pH values with iron chelates (pH = 3), iron ions (pH = 4.67) or pure water (pH = 9.3) at room temperature. Low surface coverage of PEI at pH = 3 adjusted by monovalent ions was also observed. However, adsorbing PEI with iron ions or iron chelates and washing with pure water shifts the pH, leading to an adsorbed PEI layer with high coverage. In our observation, the influence of iron ions and iron chelates on the surface coverage of PEI film is stronger than the pH effect. PEI adsorbed from a pure water solution shows flat conformation. Surface force measurements with CP show that PEI adsorbed from solutions containing iron chelates or iron ions cause almost identical steric forces. The thickness of the brush L is determined as a function of the ionic INaCl in the measuring solution. It scales as a polyelectrolyte brush.
The maximum number density of gold nanoparticles (AuNPs) adsorbed onto the PEI brushes was identical and larger than on flatly adsorbed PEI. On the PEI layer with the larger surface coverage, the AuNPs aggregate; on the PEI layer with the lower surface coverage they do not aggregate. Taken together, these results contribute to understanding the mechanisms determining surface coverage and conformation of PEI and demonstrate the possibility of controlling surface properties, which is highly desirable for potential future applications.
In this thesis, we also investigate the top layer (PSS and PDADMA) of polyelectrolyte multilayer (PEM) films. PEM films were prepared by sequential adsorption of oppositely charged PEs on solid substrates. PEM films consist of polydiallyldimethylammonium (PDADMA) as polycation and the polystyrene sulfonate (PSS) as polyanion. PDADMA has a smaller linear charge density than PSS. For this system, two different growth regimes are known: parabolic and linear. I studied the top layer (PSS and PDADMA) conformation of PEM films and how the structure of this top layer is affected by increasing the number of PDADMA/PSS layer pairs N and the addition of salt to the surrounding solution.
The INaCl was changed during the force-distance measurements. PSS terminated films always show electrostatic forces at INaCl < 0.1 M and flat conformation. The surface charge density is always negative at INaCl < 0.1 M. The surface charge of the PSS top layer starts to turn from negative to positive at N â„ 14. At N between 13 and 15, adsorbed PSS cannot compensate all the excess PDADMA charge. This leads to an accumulation of the positive extrinsic sites within the PSS terminated film beyond a specific N. At INaCl â 0.1 M, an exponential decaying force was measured. This is an indication of unusual long-ranged hydration force (decay length λ-1 â 0.2-0.5 nm), and PSS terminated film shows zwitterionic or neutral surface. At INaCl > 0.1 M, a non-electrostatic action occurs and the PSS terminated film reswells in solution.
PDADMA terminated surface consisting of few layers show a flat conformation and the electrostatic forces were measured. For N â„ 9 and INaCl †0.1 M, steric forces were measured. The force-distance profiles are well-explained by Alexander and de Gennes theory. PDADMA chains show a maximum L that is around 40-45 % of the contour length. For INaCl â 0.1 M, and N > 9, a flat, neutral or zwitterionic surface is found (λ-1 â 0.3-0.9 nm). For N = 9 and INaCl > 0.1 M, a strong screening of electrostatic interaction and attractive forces are observed. For N > 9 and INaCl > 0.1 M, the ion adsorption into the PE chains leads to an increase in the monomer size and as a result, the L increases and PDADMA brushes reswell again into the solution.
These data show that by varying N and INaCl, different surface forces can be obtained: Electrostatic forces (flat chains) both positive and negative, steric forces (brush), hydration force (flat, neutral or zwitterionic surface), and effects not yet explained (reswelling brush).
The highly oncogenic alphaherpesvirus Marekâs disease virus (MDV) causes immense economic losses in the poultry industry. The main targets of in vivo MDV infection are primary B and T lymphocytes. The cytolytic infection of B cells leads to depletion of lymphoid cells results in severe immunosuppression. Infected B cells recruit and activate T cells. The close interaction between B cells and T cells enables efficient intercellular transfer of MDV. During infection of T cells, the virus enters a latent state. Infection of T cells can lead to transformation of these cells and formation of lymphoma, which manifest in various visceral organs. This study aimed at the characterization of the proteomes of MDV-infected lymphocytes during the lytic and latent phases of infection.
Previous in vitro studies concerning the MDV pathogenesis and host-virus interactions have been mainly conducted with primary fibroblasts or kidney cells, due to the short lifespan of primary lymphocytes in cell culture. Recently, a cultivation system has been established that extents the lifespan of primary lymphocytes through the addition of cytokines to the growth medium. This allowed the infection of B cells in vitro and to conduct quantitative proteomic analysis of primary lymphocytes. Infection with GFP labelled virus recombinants allowed the isolation of infected cells by FACS for the proteome analysis of MDV infected B lymphocytes. An efficient quantitative proteomic workflow was developed, which consisted of a filter-aided (FASP) digest of the extracted proteins, followed by differential dimethyl chemical labeling of the peptides for quantitative evaluation prior to LC-MALDI TOF/TOF mass spectrometry. Only few alterations of the protein and transcript expression profiles were observed after infection of primary B cells with the very virulent RB-1B and the live-attenuated vaccine strain CVI988/Rispens. Relevant changes in relative protein levels were found for only twelve and six interesting host proteins after RB1B and CVI988 infection, respectively. However, the regulations were confirmed by inspection of the spectra from all experiments. The identified candidates play a role in immune response, translation and inflammatory response.
To confirm the potential infection markers, RNA-seq analysis of three biological replicates of each RB-1B -, CVI988- and mock-infected B cells was performed. Eighty expressed MDV transcripts could be identified, which were associated with lytic infection. The same MDV proteins were identified after infection with RB-1B or CVI988. However, transcriptome and proteome analysis of MDV-infected primary B cells showed only poor correlation. This indicates that the changes in protein expression profiles are mostly due to posttranscriptional events. Infection marker candidates were identified by the RNA-seq analysis, for which the gene expression was altered by MDV infection. Although almost 12,000 transcripts were identified, only few transcript levels changed markedly after MDV infection. The biological processes immune response, apoptotic process, signal transduction, cell migration and response to virus were enriched after MDV infection. The RNA-seq results confirm the observation that alterations of protein levels early after MDV infection are rare.
Most notably, MDV induces transformation of lymphocytes leading to malignant T-cell lymphomas in visceral organs with mortalities of up to 100 %. While several factors involved in MDV tumorigenesis have been identified, the transformation process is not fully understood. Therefore, we set out to fill this knowledge gap using proteome analysis of transformed T-cells ex vivo. In addition, the role of the viral telomerase RNA during transformation was assessed by comparison of tumors that had formed after infection with WT-virus or a telomerase RNA negative mutant. A major obstacle for tumor proteome analyses is the preparation of sufficient amounts of homogenous tumor tissue, as tumors appear with a dispersed morphology in the affected organs. The quantitation of cell types within the tumors indicated varying portions of hepatocytes, connective tissue, and CD3+ lymphocytes even with the same virus strain in different animals. However, the âvTR-induced tumors contained lower levels of hepatocytes and higher levels of CD3+ lymphocytes compared to WT tumors in all tested tumor samples. Thus, âvTR tumors were chosen for determination of differences in protein expression profiles of tumors and naĂŻve T cells for their lower content of liver cells. We developed a workflow for the proteome analysis of T cell tumors from livers of MDV-infected chickens. Samples included laser capture micro-dissected tissue cuts from tumors and surrounding healthy liver tissue as well as naĂŻve T-cells prepared from thymus. To enable quantitative proteome analysis, samples were digested using the FASP protocol and peptides were isotope-coded by differential dimethyl labeling. To improve proteome analysis peptides were fractionated by preparative isoelectric focusing prior to nano-HPLC MALDI/TOF-TOF mass- spectrometric analysis.
Proteomic analyses of LCM dissected ÎvTR tumor compared to naĂŻve T cells, the main targets of transformation, identified nineteen potential transformation markers but again only minor changes in relative levels were observed. Several of the identified markers could also be verified by RT-qPCR on transcript level. The identified transformation candidates were associated with nucleosome assembly, regulation of transcription, inflammatory response, immune response and oxidation-reduction process.
However, further functional analyses are necessary to fully elucidate the role of the identified markers during MDV infection and transformation.
Streptococcus pneumoniae is a commensal of the human upper respiratory tract and
the etiological agent of several life-threatening diseases. This pathogen is the model bacterium
for natural competence. Furthermore, the pneumococci played an important role in the
identification of DNA as the main molecule involved in bacterial transformation. As a result,
studies on the pneumococcal genome provided an initial overview of the genetic potential of
this pathogen. The pneumococcus is a highly versatile bacterium possessing a high rate of
uptake and recombination of exogenous DNA from neighboring bacteria. As such, a significant
diversity in the genome content among the different pneumococcal strains has been reported.
The capsular polysaccharide, an important pneumococcal virulence factor, is the best example
on the pneumococcal diversity. There are over 98 serotypes characterized to date presenting
differences in their capsule (cps) locus. Additional to the cps locus, the pneumococcus also
presents 13 genomic islets annotated as regions of diversity (RD) encoded in the auxiliary
genome. Remarkably, 8 of the pneumococcal RD studied so far have been associated with
virulence. Furthermore, the ongoing sequencing of over 4000 pneumococcal genomes have
shed light on the conservation level of well-known pneumococcal virulence factors.
Interestingly, important pneumococcal virulence determinants show variations in the gene and
protein sequence among the different strains. Prototypes are for example the pneumococcal
surface protein C (PspC) and pneumococcal adherence and virulence factor B (PavB).
Conversely, gene regulation in S. pneumoniae is carried out by highly conserved and genome-
wide distributed transcriptional factors. Overall, the pneumococci interplays with its
environment with 4 major regulatory systems: quorum sensing (QS), stand-alone
transcriptional regulators, small RNAs (sRNAs) and two-component regulatory systems (TCS).
Some of these systems are multifaceted and share more than one feature. Furthermore, there
is crosstalk among the different systems, requiring the activation of a signaling cascade to
function properly.
A comprehensive analysis of the distribution and conservation of pneumococcal
virulence factors and TCS was obtained in this study. The results are summarized as a
simplified variome in which 25 pneumococcal strains with a complete sequenced genome were
analyzed. Interestingly, the genes encoding the glycolytic protein enolase and the toxin
pneumolysin were the most conserved virulence determinants. Additionally, the high level of
conservation was confirmed for the pneumococcal TCS regulators, especially for WalKR,
CiaRH and TCS08.
The main focus of this study was on the regulatory functions of pneumococcal TCS.
With this in mind, an extensive and detailed systematic review of the 13 pneumococcal TCS
and its orphan RR was undertaken. For this purpose, every pneumococcal TCS was analyzed
for its reported functional and structural information along with its contribution to the main
pathophysiology of the pneumococci. In brief, S. pneumoniae can utilize its TCS for the
regulation of important cellular processes and the sensing of detectable signals in the
environment. Additionally, the role of TCS in pneumococcal processes and signal sensing can
be divided further. In the first place, pneumococcal TCS regulate competence and fratricide,
the production of bacteriocins and host-pathogen interaction processes, while the detectable
signals include cell-wall perturbations, environmental stress, and nutrients. As a conclusion
from this section, it is possible to analyze the pneumococcal TCS in a comprehensive manner.
There is a complex network among the different pneumococcal regulators and the TCS play
an important role. Moreover, these systems are highly conserved and essential for the proper
functioning of the pneumococcus as a pathogen.
Following up on pneumococcal TCS, this study focused especially on the TCS08.
Interestingly, the pneumococcal TCS08 has been previously associated with the regulation of the cellobiose metabolism. Furthermore, this system has also been reported to regulate the
expression of genes encoded in the RD4 (Pilus-1). Remarkably, the pneumococcal TCS08
was shown to be highly homologous to the SaeRS system of Staphylococcus aureus. Initially,
mutant strains lacking a single (Îrr08 or Îhk08) or both components (Îtcs08) of the TCS08
were generated in pneumococcal D39 and TIGR4 strains. Transcriptomics and functional
assays showed a downregulation of the PI-1 in the absence of the complete tcs08, while PavB
presented an upregulation in the Îhk08 knockout. Moreover, an important number of genes
coding for intermediary metabolism proteins were also found to be differentially expressed by
microarray analysis. As such, the TIGR4Îhk08 strain presented a downregulation for the
cellobiose operon (cel). In contrast, an upregulation was reported for the fatty acid biosynthesis
(fab) and arginine catabolism (arc) operons. Conversely, a decrease in gene expression was
seen in the TIGR4Îrr08 strain for the arc operon. Finally, in vivo murine pneumonia and sepsis
models highlighted an involvement of TCS08 in pneumococcal virulence. Remarkably, the
different TCS08 mutants presented a strain dependent effect on their virulence severity. The
TIGR4Îrr08, and all TCS08 mutants in D39 showed a decrease in virulence in the pneumonia
model, with no changes in sepsis. Conversely, the absence of HK08 in TIGR4 presented a
highly virulent phenotype in both pneumonia and sepsis models. To sum up, the pneumococcal
TCS08 influenced the expression of genes involved in fitness and colonization. Specifically,
those coding for the adhesins PavB and PI-1 and fitness proteins from the cel, arc and fab
operons. Remarkably, the highest changes in expression were observed in the strains lacking
the HK08. Additionally, TCS08 has a strain dependent impact on pneumococcal virulence as
showed by murine pneumonia and sepsis models when comparing the effects in D39 and
TIGR4.
Unstable environments and habitats changing due to climate change force individuals to either respond by genetic adaptation, phenotypic plasticity or by dispersal to suitable environments. Theodoxus fluviatilis (Linneaus, 1758) is a good study organisms when researching phenotypic plasticity and genetic adaptation as it naturally appears in freshwater (FW) as well as brackish water (BW) and thus inhabits a wide range of environmental salinities (0-18â°). It is a euryhaline snail that can be found in shallow waters with stony ground or on Fucus spp. and has formed regional subgroups. The brackish water and the freshwater subgroups are spatially separated and the species cannot be found in areas inbetween, e.g. estuaries.
The species shows great variability in shell patterning and shell size and there is still debate whether the subgroups are distinguishable by these traits or not. The mitochdrial RNA marker cytochrome c subunit I did not show differences between the subgroups indicating that they must be closely related, but salinity tolerance has been observed to be higher in BW snails. This might be caused by the different protein expression patterns and osmolyte accumulation (measured as ninhydrin-positive substances) observed in this species in previous studies. The exact mechanisms regulating protein expression and osmolyte accumulation, however, are not fully understood yet.
Data collected for this thesis shows differences in shell size and suggests a less strict grouping of FW and BW individuals as shell sizes of one FW site are more similar to BW individuals than the other FW ones. A better salinity tolerance towards high salinities and a higher physiological salinity limit of BW snails was confirmed and extended by demonstrating an expanded tolerance range through slow acclimation to challenging salinities in snails from both subgroups. This was achieved by a shift in the slope of their reaction norms that was much more pronounced in BW snails than FW ones. S3 individuals showed a shift similar to that of BW individuals. The data for the salinity tolerance indicates that the underlying mechanism for these tolerances are a combination of phenotypic plasticity and genetic adaptation. Despite an acclimation and shift in the slope of the reaction norms and therefore an increased tolerance towards high salinities (plasticity) FW individuals from two collection sites were not able to cope with salinities as high as BW individuals (local adaptation). The general ability to mobilise free amino acids (FAA) as organic osmolytes was not the reason for this tolerance difference. Individuals from BW and FW sites were capable of accumulating quantities of FAAs equally well. Proline, alanine and urea were the most important components of the accumulated cocktail of organic osmolytes. Even though the total amount of FAAs accumulated under hyperosmotic conditions was the same in both subgroups, there were differences in the metabolic pathways involved in osmolyte accumulation in the foot muscle. The data indicates that the hydrolysis of storage proteins and the synthesis of proline and alanine are the main processes to avoid detrimental body volume shrinkage in T. fluviatilis. While FW individuals seemed to rely on the degradation of proteins and synthesis of alanine, BW individuals depended on newly synthesising proline and alanine and accumulating urea as a side product of transamination. The accumulation of urea is a new finding in aquatic living snails and has not been reported as a mechanism to avoid cell volume shrinkage in these animals.
Differing protein expression patterns were observed under control conditions across all collection sites. 9 spots showed volume changes in BW snails opposite to those of FW snails from collection sites S1 and S2. For 6 of those spots, S3 individuals showed patterns similar to those of BW individuals and for the remaining 3 they showed patterns similar to those of FW animals. The patterns observed when exposing snails to hypo- or hyperosmotic stress were not conclusive in relation to pinpointing individual spots that show the same pattern in all collection sites, but revealed the heterogeneity of protein expression in snails from the different collection sites and in the process of osmoregulation. It also showed the general tendency of protein reduction when snails where under osmotic stress of either kind (hypo- or hyperosmotic), which supports the hypothesis of storage protein degradation.
The investigation of an ANP-receptor showed two variations of the encoding sequence expressed in T. fluviatilis. S3 individuals as well as BW individuals were found to express one type, while FW individuals, with the exception of one sample expressed the other type. This showed that the FW subgroup of T. fluviatilis seems to be more heterogeneous than the BW subgroup, but also raises the question of the dispersal history of this species. The collected data indicates that T. fluviatilis individuals are firstly capable of surviving the acidity of a duck's gizzard and secondly can tolerate acute salinity changes to 16â° when introduced into a new environment. Hence, if snails from the FW were to be transported to waters with a salinity of up to 16â° by man, bird, drifting plants or some other means of transport, they would most likely survive and possibly be able to thrive and spread.
There is an increasingly urgent need to understand and predict how organisms will cope with the environmental consequences of global climate change. Adaptation in any form can be mediated by genetic adaptation and/or by phenotypic plasticity. Disentangling these two adaptive processes is critical in understanding and predicting adaptive responses to environmental change. Usually, disentangling genetic adaptation from phenotypic plasticity requires common garden experiments conducted under controlled laboratory conditions. While these experiments are powerful, it is often difficult to translate the results into natural populations and extrapolate to naturally occurring phenotypic variation. One solution to this problem is provided by the many examples of invasive species that exhibit wide phenotypic variation and that reproduce asexually. Besides selecting the appropriate in situ model, one must carefully choose a relevant trait to investigate. Ecomorphology has been a central theme in evolutionary biology because it reflects how organisms can adapt to their environment through their morphology. Intraspecific ecomorphological studies are especially well suited to identify adaptive pressures and provide insights into the microevolutionary mechanisms leading to the phenotypic differentiation.
One excellent candidate for an intraspecific ecomorphological study aiming to understand adaptation through genetic adaptation and phenotypic plasticity is the invasive New Zealand mudsnail Potamopyrgus antipodarum Gray (1853). This ovoviviparous snail features high variability in shell morphology and has successfully invaded a wide range of fresh- and brackish water habitats around the world. The evolutionary and ecological situations in this speciesâ native and invasive ranges is drastically different. In New Zealand, P. antipodarumâs native range, sexual and asexual individuals coexist and experience selective pressure by sterilizing endoparasites. By contrast, only a few asexual lineages have been established in invaded regions around the globe, where parasite infection is extremely rare. Here, we took advantage of the low genetic diversity among asexually reproducing European individuals in an attempt to characterize the relative contribution of genetic variation and phenotypic plasticity to the wide variation in shell morphology of this snail.
Analysing the ecomorphology of 425 European P. antipodarum in a geometric-morphometric framework, using brood size as proxy for fecundity, and mtDNA and nuclear SNPs to account for relatedness and identify reproductive mode, we hypothesized that 1) shell variation in the invasive range should be adaptive with respect to colonization of novel habitats, and 2) at least some of the variation might be caused by phenotypic plasticity. We then expanded our ecomorphological scope by analysing 996 native specimens, expecting 1) genetic and morphological diversity to be higher in the native range compared to invaded regions; 2) morphological diversity to be higher in sexual compared to asexual individuals according to the frozen niche hypothesis; and 3) shell morphology to be habitat specific, hence adaptative. In a last part, we used computational fluid dynamics simulations to calculate relative drag and lift forces of three shell morphologies (globular, intermediate, and slender). Here, we tested the overall hypothesis that shell morphology in gastropods is an adaptation against dislodgement through lift rather than drag forces, which would explain the counterintuitive presence of wider shells with shorter spires in lotic environments. With a final flow tank experiment, we tested the specific hypothesis that the dislocation velocity of living snails is positively linked to foot size, and that the latter can be predicted by shell morphology, in particular the aperture area as assumed by several authors.
As expected, we found genetic and morphological diversity to be higher in native than in invasive snails, but surprisingly no higher morphological diversity in sexual versus asexual individuals. The relationships between shell morphology, habitat, and fecundity were complex. Shape variation was primarily linked to genetic relatedness, but specific environmental factors including flow rate induced similar shell shapes. By contrast, shell size was largely explained by environmental factors. Fecundity was correlated with size, but showed trade-offs with shape in increasingly extreme conditions. With increasing flow and in smaller habitats such as springs, the trend of shell shape becoming wider was reversed, i.e. snails with slender shells were brooding more embryos. This increase in fitness was explained by our CFD simulations: in lotic habitats, slender shells experience less drag and lift forces compared to globular shells. We found no correlation between foot size and shell shape or aperture area showing that the assumed aperture/foot area correlation should be used with caution and cannot be generalized for all aquatic gastropod species. Finally, shell morphology and foot size were not related to dislodgement speed in our flow tank experiment. We concluded that the relationship of shell morphology and flow velocity is more complex than assumed. Hence, other traits must play a major role in decreasing dislodgement risk in stream gastropods, e.g. specific behaviours or pedal mucus stickiness. Although we did not find that globular shells are adaptations decreasing dislodgement risk, we cannot rule out that they are still flow related adaptations. For instance, globular shells are more crush-resistant and might therefore represent a flow adaptation in terms of diminishing damage caused by tumbling after dislodgement or against lotic specific crush-type predators.
At this point, we can conclude that shell morphology in P. antipodarum varies at least in part as an adaptation to specific environmental factors. This study shows how essential it is to reveal how plastic, genetically as well as phenotypically, adaptive traits in species can be and to identify the causal factors and how these adaptations affect the fitness in order to better predict how organisms will cope with changing environmental conditions.
Cerebral palsy (CP) remains one of the most common debilitating diseases in the world.
Factors such as neuromuscular incoordination, use of soft diet and delayed oral
clearance of food make maintenance of optimum oral hygiene a challenging task in
these children. The compromised oral hygiene in turn make these children highly
vulnerable to dental disease. Maintaining optimal oral/dental health in CP children is of
utmost importance as these children usually suffer from several associated general
health problems in addition to their primary condition. Poor dental health further
compromises their general health. Nevertheless, CP children often suffer from dental
diseases including dental caries more than healthy children. This underscores the need
for improvement in oral health of the CP children. The CP children are dependent on
those around them for their oral hygiene maintenance and dietary intake. CP children
spend most of their time with health care workers in special centers for them or with
their parents/care takers at home. Therefore, the attitude of special health care workers
and parents towards their dental health is of prime importance. The purpose of this
project included to determine the attitude of special health care workers towards their
dental health and oral health comprehension by parents of CP children. In addition, a
study on caries experience of CP children and associated risk factors was also completed.
The final objective was to identify various potential areas of improvement with ultimate
goal of improving dental health of the CP children.
The study involving special health care workers in a Disabled Childrenâs Center revealed
that oral health knowledge and practices among the workers could generally be labeled
as satisfactory, however some weak areas (such as trend towards symptom-oriented
utilization of oral health care and lack of knowledge about fluoridated water) were
identified. There is a need to enhance the workersâ knowledge in these areas.
The study involving parents of the CP children showed mixed results. Some areas of
strong oral health comprehension (such as importance of good dental health, harmful
effects of sweetened foods), others satisfactory (such as need for routine dental visits,
use of fluoride) and some weak areas (use of flavored fizzy drinks, bottled/canned juices
and sweetened/flavored milks, seeking early treatment) were identified among parents
of CP children. The results strongly indicated a need for enhanced efforts towards
improvement of oral health comprehension in the parents of the CP children.
The study about caries experience and risk factors in CP children has provided useful
information in an area where literature has been scarce. Almost all the studied children
had clinical dental caries, and most of the caries were untreated. Very few children in
the present study had optimal oral hygiene. This study confirmed the strong correlation
between high dental caries experience and poor oral hygiene. Routine dental check-up
visits and topical fluoride application clearly resulted in lower caries experience. Bottled
juices and crispy potato chips were the two predictors for high caries experience.
As stated before, the goal of the project was to identify various potential areas of
improvement in oral health attitude of special health care workers, oral health
comprehension of the parents of CP children and risk factors for dental caries in CP
children. It is contemplated that by addressing the identified weak areas, an
improvement in dental health and care of the CP children is expected. It is also expected
that the collected information will help in improvement of clinical preventive as well as
restorative services for the CP children. CP children and their parents lead a challenging
life. This project was an effort to assist these children and their parents/care takers with
ultimate goal of improving their oral health and in turn their overall quality of life.
In this thesis, size-sensitive phenomena of three-dimensional dust crystals emerged in a low temperature plasma are presented. Depending on the number of particles in the system phase transitions, collective vortex motions and large-scaled expansions can be observed. To investigate these fascinating effects an advanced experimental setup as well as new evaluation methods have been developed. This thesis will present these new techniques and the gained insights.
Iodine deficiency disorders (IDD) result from insufficient iodine intake, and may lead to many adverse effects on growth, development and thyroid diseases in humans.
Pakistan is a country with history of iodine deficiency.
Before reunification both parts of Germany were iodine deficient. In the Eastern part, however, due to mandatory iodine prophylaxis adaptation in 1983, the iodine status of the population improved from moderate to mild iodine deficiency. After the reunification of Germany in 1989 âvoluntary principleâ was adopted leading again to a decrease in iodine intake. Germany and Pakistan present different socioeconomics, cultural values and adaptations to the IDD eradication but have resemblance in history of iodine deficiency. In the recent years Germany has improved in IDD eradication more than Pakistan. The purpose of this research was to study the regional influence on iodine nutritional status of pregnant women in Pakistan and to monitor the effectiveness of the iodine fortification programme in the North-East German population.
Pregnant women data was obtained from randomly selected (public and private) prenatal clinics in five districts of the KPK province of Pakistan. Women visited there for their routine checkup between March and September 2012. Data were obtained from almost 250 pregnant women from each district reaching to a total of 1260 in all five districts.
The SHIP project consists of two population-based cohorts, for which only individuals with German citizenship and main residency in the study area were recruited. In the first SHIP cohort; SHIP-0, individuals aged 20-79 years were selected from population registries by a two-stage cluster sampling method. The net sample (without migrated or deceased persons) comprised 6265 eligible subjects, of which 4308 (response 68.8%) participated between 1997 and 2001. A separate stratified random sample of 8826 adults aged 20-79 years was drawn for SHIP-Trend, of which 4420 subjects participated between 2008 and 2012 (response 50.1%) in SHIP-Trend-0.
All the pregnant women were asked to complete a short interview questionnaire containing the information related to sources and reasons for intake and non-intake of iodized salt. The questionnaire also comprised questions related to knowledge of iodized salt nutrition. Information on the number of previous pregnancies and/or abortions (fetal loss due to various reasons, not including voluntary termination of pregnancy) was also obtained. The gestational age of the pregnant women was determined from the first day of the last regular menstrual period with gestational ages of â€14.9, 28.9, and â„29 weeks comprising the first, second, and third trimesters of pregnancy, respectively. For goiter assessment in pregnant women the WHO/UNICEF/IGN recommended palpation method was used. UIC was measured using a modification of the Sandell-Kolthoff reaction with spectrophotometric detection. Evaluation of group iodine status was based on median UIC categories defined by the WHO/IGN. These are: recommended â median 150-249 ÎŒg/L; mild iodine deficiency â median <150 ÎŒg/L.
For the analysis of monitoring trends of thyroid diseases in SHIP, diagnosed thyroid disorders were assessed by computer-assisted personal interviews. Medication data were obtained online using the IDOM program (online drug-database leaded medication assessment) and classified according to the Anatomical-Therapeutic-Chemical (ATC) classification system.In SHIP population goiter assessment was based on thyroid volume determined with ultrasonography. Goiter was defined as a thyroid volume exceeding 18 mL in women and 25 mL in men. Urinary iodine concentrations were measured from spot urine samples by a photometric procedure. Urinary creatinine concentrations were determined with the Jaffé method. Evaluation of group iodine status was based on median UIC categories defined by the WHO/IGN. The iodine/creatinine ratio was calculated by dividing urinary iodine by urinary creatinine concentrations. Serum TSH, fT3, fT4 levels in SHIP study were measured by an immunochemiluminescent procedure. A method comparison between the two TSH laboratory methods showed only negligible differences. High and low serum TSH levels were based on the reference range established from data for SHIP-0 (0.25 mIU/L - 2.12 mIU/L) and SHIP-TREND-0 (0.49 mIU/L - 3.29 mIU/L) respectively (21,22). Anti-TPO Abs were measured by an enzyme immunoassay in the whole SHIP study. The anti-TPO Abs status was defined as follows: normal < 60 IU/ml in men and < 100 IU/ml in women; increased > 60 IU/ml in men and > 100 IU/ml in women; positive: > 200 IU/ml in both sexes.
Thyroid ultrasonography was performed in SHIP-0 using an ultrasound VST-Gateway with a 5 MHz linear array transducer. In SHIP-Trend-0 ultrasonography was performed with a portable device using a 13-MHz linear array transducer. In both studies intra- and inter-observer reliabilities were assessed before the start of the study and semi-annually during the study. For thyroid volume all inter-observer and inter-device variabilities showed mean differences (±2 SD)of < 5% (<25%). Thyroid volume was calculated as length x width x depth x 0.479 (ml) for each lobe (26). The normal thyroid echo pattern was classified as homogeneous. A homogeneous echo pattern with reduced echogenicity was defined as hypoechogenic. Nodular changes exceeding 10 mm in diameter were defined as thyroid nodules.
Multivariable logistic regression analysis adjusting for age was used to regress the outcome measures (knowledge about IDD, iodized salt intake, UIC <150mIU/L and goiter prevalence) on regional influences (as exposure) in each specific district. These results are presented as odd ratios and their 95% confidence interval.
For the analysis in SHIP, all analyses were standardized by base-weights to account for different sampling probabilities. In SHIP-Trend-0, additionally, inverse probability weights for study participation were calculated, which were multiplied with the base-weights. Differences in median levels between SHIP-0 and SHIP-Trend-0 were tested by median regression models; prevalence differences between SHIP-0 and SHIP-Trend-0 were tested by Poisson regression models.
The majority of pregnant women (88.0%) had no knowledge about IDD. A very high (79%) percentage of pregnant women were not taking iodized salt, out of which 36.6% reported that iodized salt would negatively affect reproduction and for 17.0%, it was too expensive. Iodized salt intake in pregnant women was high in the big cities (Peshawar, Nowshehra) and in the urban areas (27.0%)
In 41.3% of the pregnant women, we observed a UIC of >150mIU/L. The median UIC level for the pregnant women was 131”g/L. The total goiter prevalence in pregnant women was 25.5%. The prevalence of UIC <150mIU/L in pregnant women did not differ between rural and urban areas. The results based on logistic regression analysis shows that the prevalence on knowledge about IDD, iodized salt intake, UIC <150mIU/L, and goiter did not differ in pregnant women between urban and rural areas. In district Lakki Marwat except, the pregnant women from urban residence had higher odds of having knowledge on IDD and iodized salt intake than their rural counterparts.
The prevalence of diagnosed thyroid disorders increased from 7.6% [CI 6.9-8.5] in SHIP-0 to 18.9% [CI 17.6-20.1] in SHIP-Trend-0. Likewise, the prevalence of thyroid medication intake increased from 6.2% [CI 5.5-7.0] to 11.1% [CI 10.1-12.2]. The median urinary iodine excretion levels decreased significantly, which was more pronounced in females than in males. The median iodine-to-creatinine ratio declined in all sex- and age-groups with stronger decrease in females than in males. The prevalence of median urinary iodine excretion levels <100”g/L increased between SHIP-0 and SHIP-Trend-0. Median serum TSH levels increased significantly between SHIP-0 and SHIP-Trend-0, resulting in a right shift of the serum TSH level distribution. The prevalence of high serum TSH levels remained almost stable between SHIP-0 and SHIP-Trend-0. Likewise, the prevalence of low TSH remained almost stable between SHIP-0 and SHIP-Trend-0. The prevalence of increased anti-TPO Abs and positive anti-TPO Abs decreased from SHIP-0 to SHIP-Trend-0 in the whole study population. The prevalence of hypoechogenic thyroid pattern decreased from SHIP-0 to SHIP-Trend-0. The median thyroid volume remained similar between SHIP-0 and SHIP-Trend-0 in the whole study population. Goiter prevalence decreased significantly; more pronounced in males than in females, while the prevalence of thyroid nodules increased between SHIP-0 and SHIP-Trend-0.
In pregnant women in Pakistan due to insufficient awareness campaigns and low literacy ratio in rural areas urinary iodine excretion levels indicate a stable iodine supply, which is still not sufficient. Our results show that rural/urban disparity is affecting the IDD prevention program in rural districts, but not in general. The SHIP data indicate that the improved iodine supply over the past two decades in Germany is paralleled by a reduction in prevalence of IDDs, while no increase was observed in markers of autoimmune thyroid disorders arguing for an optimal iodine supply of the general adult population in Northeast Germany. The increase in prevalence of diagnosed thyroid disorders and the intake of thyroid medication might be because of inappropriate therapeutical decisions which should be made with caution, based on regional TSH reference ranges, its prognostic value, and compliance with treatment.