Refine
Document Type
- Article (15)
Language
- English (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- - (8)
- emotion recognition (2)
- empathy (2)
- social cognition (2)
- vagus nerve (2)
- EEG (1)
- P300 (1)
- alexithymia (1)
- anxiety disorders (1)
- attentive immobility (freezing) (1)
Institute
Publisher
- Frontiers Media S.A. (8)
- SAGE Publications (2)
- Nature Publishing Group (1)
- Oxford University Press (1)
- S. Karger AG (1)
- Springer Nature (1)
Neurobiological theories suggest that inter-individual differences in vagally mediated heart rate variability (vmHRV) have the potential to serve as a biomarker for interindividual differences in emotion regulation that are due to inter-individual differences regarding the engagement of prefrontal and (para-)limbic brain regions during emotion processing. To test these theories, we investigated whether inter-individual differences in
vmHRV would be associated with inter-individual differences in emotion regulation. We determined resting state vmHRV in a sample of 176 individuals that had also completed a short self-report measure of reappraisal and suppression use. Resting state vmHRV was derived from short-term (300 s) and ultra-short-term (120 s, 60 s) recordings of participants’ heart rate to determine the robustness of possible findings. Irrespective of recording length, we found that an increase in resting state vmHRV was associated with an increase in self-reported reappraisal but not suppression use. However, this association was only evident among male but not female participants, indicating a sex-specific association between inter-individual differences in resting state vmHRV and inter-individual differences in self-reported emotion regulation. These findings, which are consistent with previous ones, support theoretical claims that inter-individual differences in vmHRV serve as a biomarker for inter-individual differences in emotion regulation. Combing (ultra-)short-term measures of resting state vmHRV with short selfreport measures of emotion regulation may, thus, be useful for researchers who have to investigate the neurobiological mechanisms of emotion regulation in a time- and resource-efficient manner.
Much research has been devoted to the development of emotion recognition tests that can be used to investigate how individuals identify and discriminate emotional expressions of other individuals. One of the most prominent emotion recognition tests is the Reading the Mind in the Eyes Test (RME-T). The original RME-T has been widely used to investigate how individuals recognize complex emotional expressions from the eye region of adult faces. However, the RME-T can only be used to investigate inter-individual differences in complex emotion recognition during the processing of adult faces. To extend its usefulness, we developed a modified version of the RME-T, the Reading the Mind in the Eyes of Children Test (RME-C-T). The RME-C-T can be used to investigate how individuals recognize complex emotional expressions from the eye region of child faces. However, the validity of the RME-C-T has not been evaluated yet. We, thus, administered the RME-C-T together with the RME-T to a sample of healthy adult participants (n = 119). The Interpersonal Reactivity Index (IRI) and the Toronto Alexithymia Scale (TAS) were also administered. Participants’ RME-C-T performance correlated with participants’ RME-T performance, implying that the RME-C-T measures similar emotion recognition abilities as the RME-T. Participants’ RME-C-T performance also correlated with participants’ IRI and TAS scores, indicating that these emotion recognition abilities are affected by empathetic and alexithymic traits. Moreover, participants’ RME-C-T performance differed between participants with high and low TAS scores, suggesting that the RME-C-T is sensitive enough to detect impairments in these emotion recognition abilities. The RME-C-T, thus, turned out to be a valid measure of inter-individual differences in complex emotion recognition during the processing of child faces.
In the present study, we investigated whether inter-individual differences in vagally mediated heart rate variability (vmHRV) would be associated with inter-individual differences in empathy and alexithymia. To this end, we determined resting state HF-HRV in 90 individuals that also completed questionnaires assessing inter-individual differences in empathy and alexithymia. Our categorical and dimensional analyses revealed that inter-individual differences in HF-HRV were differently associated with inter-individual differences in empathy and alexithymia. We found that individuals with high HF-HRV reported more empathy and less alexithymia than individuals with low HF-HRV. Moreover, we even found that an increase in HF-HRV was associated with an increase in empathy and a decrease in alexithymia across all participants. Taken together, these findings indicate that individuals with high HF-HRV are more empathetic and less alexithymic than individuals with low HF-HRV. These differences in empathy and alexithymia may explain why individuals with high HF-HRV are more successful in sharing and understanding the mental and emotional states of others than individuals with low HF-HRV.
Neurobiological theories suggest that inter-individual differences in vagally mediated heart rate variability (vmHRV) have the potential to serve as a biomarker for inter-individual differences in emotion regulation that are due to inter-individual differences regarding the engagement of prefrontal and (para-)limbic brain regions during emotion processing. To test these theories, we investigated whether inter-individual differences in vmHRV would be associated with inter-individual differences in emotion regulation. We determined resting state vmHRV in a sample of 176 individuals that had also completed a short self-report measure of reappraisal and suppression use. Resting state vmHRV was derived from short-term (300 s) and ultra-short-term (120 s, 60 s) recordings of participants’ heart rate to determine the robustness of possible findings. Irrespective of recording length, we found that an increase in resting state vmHRV was associated with an increase in self-reported reappraisal but not suppression use. However, this association was only evident among male but not female participants, indicating a sex-specific association between inter-individual differences in resting state vmHRV and inter-individual differences in self-reported emotion regulation. These findings, which are consistent with previous ones, support theoretical claims that inter-individual differences in vmHRV serve as a biomarker for inter-individual differences in emotion regulation. Combing (ultra-)short-term measures of resting state vmHRV with short self-report measures of emotion regulation may, thus, be useful for researchers who have to investigate the neurobiological mechanisms of emotion regulation in a time- and resource-efficient manner.
Despite the widespread use of oral contraceptives (OCs), remarkably little is known about the effects of OCs on emotion, cognition, and behavior. However, coincidental findings suggest that OCs impair the ability to recognize others’ emotional expressions, which may have serious consequences in interpersonal contexts. To further investigate the effects of OCs on emotion recognition, we tested whether women who were using OCs (n = 42) would be less accurate in the recognition of complex emotional expressions than women who were not using OCs (n = 53). In addition, we explored whether these differences in emotion recognition would depend on women’s menstrual cycle phase. We found that women with OC use were indeed less accurate in the recognition of complex expressions than women without OC use, in particular during the processing of expressions that were difficult to recognize. These differences in emotion recognition did not depend on women’s menstrual cycle phase. Our findings, thus, suggest that OCs impair women’s emotion recognition, which should be taken into account when informing women about the side-effects of OC use.
Recent research suggests that the P3b may be closely related to the activation of the locus coeruleus-norepinephrine (LC-NE) system. To further study the potential association, we applied a novel technique, the non-invasive transcutaneous vagus nerve stimulation (tVNS), which is speculated to increase noradrenaline levels. Using a within-subject cross-over design, 20 healthy participants received continuous tVNS and sham stimulation on two consecutive days (stimulation counterbalanced across participants) while performing a visual oddball task. During stimulation, oval non-targets (standard), normal-head (easy) and rotated-head (difficult) targets, as well as novel stimuli (scenes) were presented. As an indirect marker of noradrenergic activation we also collected salivary alpha-amylase (sAA) before and after stimulation. Results showed larger P3b amplitudes for target, relative to standard stimuli, irrespective of stimulation condition. Exploratory post hoc analyses, however, revealed that, in comparison to standard stimuli, easy (but not difficult) targets produced larger P3b (but not P3a) amplitudes during active tVNS, compared to sham stimulation. For sAA levels, although main analyses did not show differential effects of stimulation, direct testing revealed that tVNS (but not sham stimulation) increased sAA levels after stimulation. Additionally, larger differences between tVNS and sham stimulation in P3b magnitudes for easy targets were associated with larger increase in sAA levels after tVNS, but not after sham stimulation. Despite preliminary evidence for a modulatory influence of tVNS on the P3b, which may be partly mediated by activation of the noradrenergic system, additional research in this field is clearly warranted. Future studies need to clarify whether tVNS also facilitates other processes, such as learning and memory, and whether tVNS can be used as therapeutic tool.
Individual responses to behavioral treatment of anxiety disorders vary considerably, which requires a better understanding of underlying processes. In this study, we examined the violation and change of threat beliefs during exposure. From 8,484 standardized exposure records of 605 patients with different anxiety disorders, learning indicators were derived: expectancy violation as mismatch between threat expectancy before exposure and threat occurrence, expectancy change as difference between original and adjusted expectancy after exposure, and prediction-error learning rate as extent to which expectancy violation transferred into change. Throughout sessions, high threat expectancy but low occurrence and adjusted expectancy indicated successful violation and change of threat beliefs by exposure. Expectancy violation, change, and learning rate substantially varied between patients. Not expectancy violation itself, but higher learning rate and expectancy change predicted better treatment outcome. Successful exposure thus requires expectancy violation to induce actual expectancy change, supporting learning from prediction error as transdiagnostic mechanism underlying successful exposure therapy.
Chills are emotional peaks especially in response toward acoustic stimuli. In the present study, we examined facial expressions associated with pleasant and unpleasant chill experiences during music and harsh sounds by measuring electromyographic activity from facial corrugator and zygomatic muscles. A rubber bulb could be pressed by the participants to report chill intensities. During harsh sounds, increased activation of both corrugator and zygomatic muscle was observed. Zygomatic muscle activity was even more pronounced when a chill experience was reported during such sounds. In contrast, pleasant chill experiences during music were associated with slightly increased corrugator activity compared with absent chills. Our data suggest that harsh sounds produce a painful facial expression that is even intensified when a chill experience is reported. Increased corrugator activity during chills toward music might refer to states of being moved. The results are discussed in the light of a proposed role of the chill in regulating social behavior. Our results suggest that recording facial muscle activity can be a valuable method for the examination of pleasant and unpleasant peak emotions induced by acoustic stimuli.