Refine
Document Type
- Doctoral Thesis (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Elektrochemie (3)
- Diabetes mellitus (2)
- Aquaporins (1)
- Chemical Stability (1)
- Chemische Stabilität (1)
- Corrosion-electrochemical behaviour (1)
- Cyclovoltammetrie (1)
- Electrochemical Stability (1)
- Elektrochemische Stabilität (1)
- Gleichgewicht (1)
Institute
Polykristallines Gold wurde bereits seit dem Ende des 19. Jahrhunderts elektrochemisch charakterisiert und seit Anfang des 20. Jahrhunderts regelmäßig als Arbeitselektrode in der elektrochemischen Analytik genutzt. Fälschlicherweise und trotz erster gegenteiliger Indizien, dominierte die Annahme, dass mechanisches Polieren die einzelnen Einkristallflächen des polykristallinen Materials freilegen würde, und dass deren statistisch gewichtetes elektrochemisches Verhalten reproduzierbar abgebildet werden könne. Mit dem Aufkommen neuer und verbesserter Verfahren zur Erzeugung hochwertiger Einkristallflächen parallel zur Entwicklung und Verbreitung leistungsstarker Techniken zur Oberflächenanalyse, konzentrierte sich die Goldforschung ab der Mitte des 20. Jahrhunderts auf die Charakterisierung der Einkristallflächen, ohne jedoch die neugewonnenen Erkenntnisse für die Interpretation des polykristallinen Materials zu nutzen. Gegenstand dieser Arbeit war daher die Kombination elektrochemischer Methoden (lineare und zyklische Voltammetrie) mit modernen Oberflächenanalysetechniken (Röntgendiffraktion, elektrochemische Unterpotentialabscheidung von Blei-Ionen) und bildgebenden Verfahren (AFM, STM, REM) zur Charakterisierung verschieden vorbehandelter polykristalliner Goldelektroden. Zudem sollte das elektrochemische Verhalten dieser Elektroden basierend auf dem bisherigen Wissen über das Verhalten der Einkristallflächen interpretiert werden. Der Großteil der erzielten Ergebnisse wurden in den drei Publikationen veröffentlicht, die den Hauptteil dieser Dissertation bilden. Zunächst konnte eine temporäre Aktivierung mittels mechanischer oder elektrochemischer Bearbeitung sowie eine Inaktivierung durch chemisches Ätzen in sauerstoffgesättigter Kaliumcyanidlösung, bezüglich der Sauerstoffreduktion als Referenzreaktion nachgewiesen werden, wobei Aktivierung und Inaktivierung relativ sind und im Zusammenhang mit der Anzahl sogenannter aktiver Zentren auf der Elektrodenoberfläche stehen (Publikation 1). Darüber hinaus erwiesen sich kontinuierliche Oxidations- und Reduktionszyklen an polierten polykristallinen Goldelektroden in schwefelsaurer Lösung als eine neue, Zusatzstoff freie Methode für die Goldnanopartikelsynthese, da diese wohldefinierte und immobilisierte Goldkristallite auf den Elektrodenoberflächen erzeugt (Publikation 2). Die sequenzielle Kombination aus Argon-Ionenstrahlätzen und thermischem Ausheizen hat sich hingegen als effiziente Methode zur Erzeugung sauberer und glatter Elektrodenoberflächen mit hoher atomarer Ordnung erwiesen (Publikation 3). Zugleich konnte gezeigt werden, dass polykristallines Gold ein eigenständiges Material ist, dessen Eigenschaften und Verhaltensweisen nicht ausschließlich auf das statistisch gewichtete elektrochemische Verhalten der einzelnen Einkristallflächen zurückzuführen sind, sondern auch von anderen energetischen Aspekten, wie beispielsweise der Koordination der Oberflächenatome im Kristallgitter, bedingt werden (Publikation 2 und 3).
The term diabetes mellitus comprises a group of metabolic diseases all distinguished by their main characteristic hyperglycaemia. With a steadily increasing prevalence diabetes displays an enormous burden for patients and health systems and is therefore of special interest for research. The development of the two main types of diabetes, type 1 and type 2, is closely linked to the formation of reactive species, especially hydrogen peroxide, inside different compartments of pancreatic beta cells. However, these cells are especially vulnerable towards oxidative stress mediated by hydrogen peroxide due to a low expression of antioxidative enzymes.
The main aims of the present thesis were to analyse the intracellular generation and to enable the site-specific detection of hydrogen peroxide to evaluate its role in the delicate equilibrium between redox signalling and oxidative stress under certain pathophysiological conditions, and moreover to monitor its movement through compartments and subcellular membranes of insulin-producing cells. Additionally, a new methodology for an artificial site-specific generation of hydrogen peroxide inside living cells was developed.
The present work is a cumulative dissertation that covers the research work of the author at the Department of Analytical and Physical Chemistry of Chelyabinsk State University. It contains a short description of the study and a set of attached publications in peer-reviewed journals and conference proceedings.
The phase and chemical equilibria in binary systems Me – Si
(where Me is the 4th-period transition metal) as well as Mo – Si, Mn – Ge and Fe – Ge at low temperatures were considered. The solid solubility of silicon in vanadium, chromium, manganese, iron, nickel, cobalt and copper and that of germanium in manganese and iron was estimated.
The phase equilibria in Me – Si – O, Mo – Si – O, Mn – Ge – O and Fe – Ge – O ternary systems at standard conditions were considered from a thermodynamic viewpoint. The atmospheric corrosion of transition metals silicides and manganese and iron germanides was discussed.
The chemical and electrochemical equilibria in Me – Si – H2O, Mo – Si – H2O, Mn – Ge – H2O and Fe – Ge – H2O systems were considered from a thermodynamic viewpoint. Pourbaix diagrams for some 4th-period transition metals and molybdenum, as well as for silicon, were revised. The potential – pH diagrams for Me – Si – H2O, Mo – Si – H2O, Mn – Ge – H2O and Fe – Ge – H2O systems were plotted in the first time. The corrosion-electrochemical behaviour of transition metals silicides and manganese and iron germanides in aqueous media was discussed.
The potential – pH diagrams for some siliceous brasses and bronzes (which are multicomponent alloys containing both transition metals and silicon) were plotted, and the corrosion of these alloys in aqueous media was discussed.
Method of estimation of corrosion-electrochemical behaviour of multicomponent alloys, which takes into account both thermodynamic and kinetic data and is based on mutual construction of equilibrium and polarisation potential – pH diagrams, was described. Its usage was illustrated in the example of the structural steel 20KT.
The development of the two main types of diabetes mellitus, type 1 and type 2 (T1D, T2D), is closely associated with the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in insulin-secreting pancreatic β-cells. In T1D, β-cell death
is triggered by proinflammatory cytokines, which mainly lead to the formation of ROS
in mitochondria and RNS in the cytosol. Pancreatic β-cells are extraordinarily sensitive
to oxidative stress due to their low glutathione peroxidase and catalase expression.
Thus, hydrogen peroxide (H2O2) cannot be detoxified, neither sufficiently, nor rapidly.
H2O2 itself is a rather weakly reactive ROS but can react in the Fenton reaction to form
highly reactive hydroxyl radicals (●OH), that can damage cells in a variety of ways and
induce cell death. The cell and its organelles are bounded by biological membranes
that differ in their permeability to H2O2. Aquaporins (AQPs) are water-transporting
transmembrane proteins, and some isoforms have been shown to facilitate a bidirectional transport of H2O2 across cellular membranes in addition to water. The role of
AQP8 was investigated in an insulin-producing cell model by stably overexpressing
AQP8 (AQP8↑) and by a CRISPR/Cas9-mediated AQP8 knockout. However, AQP8
proved to be an essential protein for the viability of the insulin-producing RINm5F cells, and so we established a tet-on-regulated AQP8 knockdown (AQP8 KD). Our results highlight that AQP8 is involved in H2O2 transport across the plasma and mitochondrial membranes, and that AQP8 expression gets upregulated by proinflammatory cytokines (in vitro) and in an acutely diabetic rat model (in vivo). Furthermore, it was shown that the increased proinflammatory cytokine toxicity is due to enhanced mitochondrial oxidative stress, because H2O2 cannot be efficiently transported in AQP8 KD cells and ●OH
are increasingly generated. Caspase activity then raises, and apoptosis is increasingly
induced coupled with a proportion of ferroptosis-mediated cell death because of a concomitant decrease in nitric oxide (NO●) concentration. In conclusion, AQP8 is localized in the plasma and mitochondrial membrane of insulin-producing RINm5F cells, where it is involved in H2O2 transport. In T1D, AQP8 plays an important role in the transport of H2O2 from the mitochondrial matrix to the cytosol so that the concentration is lowered in the mitochondria. This wider distribution of H2O2 may ease the inactivation of H2O2.
Electrochemical characterisation of the redox behaviour of quinoide components in membrane models
(2020)
The leading idea of this thesis is to study the effects of (i) membrane composition and (ii) membrane environment (aqueous phases) on the redox properties of membrane-confined redox active compounds. For solutions, it is known since long, how strong solvents affect the redox properties of dissolved redox active species. However, for membranes this question has not yet been addressed, although it can be supposed that such effects may be important to understand the role of membrane-confined redox active compounds in biological systems. To interrogate this problem, a monolayer model was chosen. It consists of a lipid monolayer with embedded menaquinones on mercury electrodes. Since ion transfer across membranes is also a crucial question, in the first part of this project, 2,2-diphenyl-1-picrylhydrazyl (DPPH) was studied as a new redox probe for transferring anions and cation between an organic and an aqueous phase. The important findings of this thesis are: (i) accessing the ion pair equilibrium constant of anions and cations with DPPH redox probe as a model study using the three-phase electrochemistry, (ii) the redox potentials of menaquinone-4, -7, and -9 in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayers and the acidity constants of menaquinones (MK’s) in membranes monolayer model, and (iii) the effects of membrane composition and the aqueous environment on the thermodynamics and kinetics of MK’s in membrane models.