Institut für Botanik und Landschaftsökologie & Botanischer Garten
Refine
Year of publication
Document Type
- Article (79)
- Doctoral Thesis (55)
Is part of the Bibliography
- no (134)
Keywords
- - (74)
- climate change (16)
- dendrochronology (9)
- paludiculture (7)
- forest ecology (6)
- rewetting (6)
- Jahresring (5)
- Moor (5)
- boreal forest (5)
- dendroecology (5)
Institute
Publisher
- MDPI (31)
- Frontiers Media S.A. (18)
- Wiley (9)
- John Wiley & Sons, Ltd (7)
- IOP Publishing (4)
- SAGE Publications (3)
- John Wiley & Sons, Inc. (2)
- Copernicus (1)
- Nature (1)
- Springer Nature (1)
Forests influence the climate of our Earth and provide habitat and food for many species and resources for human use. These valuable ecosystems are threatened by fast environmental changes caused by human-induced climte change. Negative growth responses and higher tree mortality rates were associated with increasing physiological stress induced by global warming. Especially boreal forests at high latitudes in the arctic region are threatened, a region predicted to undergo the highest increase in temperature during the next decades. Therefore, it is important to assess the adaptation potential in trees. For this purpose, I studied natural populations of white spruce (Picea glauca (Moench) Voss) in Alaska. In this thesis, I present three scientific papers in which my co-authors and I studied the phenotypic plasticity and genetic basis of tree growth, wood anatomy and drought tolerance as well as the genetic structure of white spruce populations in contrasting environments. We established three sites representing two cold-limited treelines and one drought-limited treeline with a paired plot design including one plot located at the treeline and one plot located in a closed-canopy forest, respectively. Additionally, the study design included one forest plot as reference. Within the entire project, in total 3,000 trees were measured, genotyped and dendrochronological data was obtained. I used several approaches to estimate the neutral and adaptive genetic diversity and phenotypic plasticity of white spruce as a model organism to explore the adaptation potential of trees to climate change.
In the first chapter, I combined neutral genetic markers with dendrochronological and climatic data to investigate population structure and individual growth of white spruce. Several individual-based dendrochronological approaches were applied to test the influence of genetic similarity and microenvironment on growth performance. The white spruce populations of the different sites showed high gene flow and high genetic diversity within and low genetic differentiation among populations, rather explained by geographic distance. The individual growth performances showed a high plasticity rather influenced by microenvironment than genetic similarity.
In the second chapter, I investigated the populations of the drought and cold-limited treeline sites to decipher the underlying genetic structure of drought tolerance using different genotype-phenotype association analyses. Based on tree-ring series and climatic data, growth declines caused by drought stress were identified and the individual reaction to the drought stress event was determined. A subset of 458 trees was genotyped, using SNPs in candidate genes and associated with the individual drought response. Most of the associations were revealed by an approach which took into account small-effect size SNPs and their interactions. Populations of the contrasting treelines responded differently to drought stress events. Populations further showed divergent genetic structures associated with drought responsive traits, most of them in the drought-limited site, indicating divergent selection pressure.
In the third chapter, my co-authors and I studied xylem anatomical traits at one of the cold-limited treeline sites to investigate whether genetic or spatial grouping affected the anatomy and growth of white spruce. Annual growth and xylem anatomy were compared between spatial groups and between genetic groups and individuals. Overall, wood traits were rather influenced by spatial than genetic grouping. Genetic effects were only found in earlywood hydraulic diameter and latewood density. Environmental conditions indirectly influenced traits related to water transport.
In conclusion, white spruce showed a high genetic diversity within and a low genetic differentiation among populations influenced by high gene flow rates. Genetic differences among populations are rather caused by geographical distance and therefore genetic drift. Differing selection pressure at the treeline ecotones presumably lead to divergent genetic structures underlying drought-tolerant phenotypes among the populations. Thus, adaptation to drought most likely acts on a local scale and involves small frequency shifts in several interacting genes. The identified genes with adaptive growth traits can be used to further exlore local adaptation in white spruce. Tree growth and wood anatomical traits are rather influenced by the environment than genetics and showed a high phentoypic plasticity. The high genetic diverstiy and phenotypic plasticity of white spruce may help the species to cope with rapid environmental changes. Still, additional work is needed to further explore adaptation processes to estimate how tree species reacted to rapid climate change. The presented thesis shed some light on the adaptation potential of trees by the example of white spruce using several approaches.
Late to bed, late to rise—Warmer autumn temperatures delay spring phenology by delaying dormancy
(2021)
Abstract
Spring phenology of temperate forest trees has advanced substantially over the last decades due to climate warming, but this advancement is slowing down despite continuous temperature rise. The decline in spring advancement is often attributed to winter warming, which could reduce chilling and thus delay dormancy release. However, mechanistic evidence of a phenological response to warmer winter temperatures is missing. We aimed to understand the contrasting effects of warming on plants leaf phenology and to disentangle temperature effects during different seasons. With a series of monthly experimental warming by ca. 2.4°C from late summer until spring, we quantified phenological responses of forest tree to warming for each month separately, using seedlings of four common European tree species. To reveal the underlying mechanism, we tracked the development of dormancy depth under ambient conditions as well as directly after each experimental warming. In addition, we quantified the temperature response of leaf senescence. As expected, warmer spring temperatures led to earlier leaf‐out. The advancing effect of warming started already in January and increased towards the time of flushing, reaching 2.5 days/°C. Most interestingly, however, warming in October had the opposite effect and delayed spring phenology by 2.4 days/°C on average; despite six months between the warming and the flushing. The switch between the delaying and advancing effect occurred already in December. We conclude that not warmer winters but rather the shortening of winter, i.e., warming in autumn, is a major reason for the decline in spring phenology.
Abstract
Myxomycetes are terrestrial protists with many presumably cosmopolitan species dispersing via airborne spores. A truly cosmopolitan species would suffer from outbreeding depression hampering local adaptation, while locally adapted species with limited distribution would be at a higher risk of extinction in changing environments. Here, we investigate intraspecific genetic diversity and phylogeography of Physarum albescens over the entire Northern Hemisphere. We sequenced 324 field collections of fruit bodies for 1–3 genetic markers (SSU, EF1A, COI) and analysed 98 specimens with genotyping by sequencing. The structure of the three‐gene phylogeny, SNP‐based phylogeny, phylogenetic networks, and the observed recombination pattern of three independently inherited gene markers can be best explained by the presence of at least 18 reproductively isolated groups, which can be seen as cryptic species. In all intensively sampled regions and in many localities, members of several phylogroups coexisted. Some phylogroups were found to be abundant in only one region and completely absent in other well‐studied regions, and thus may represent regional endemics. Our results demonstrate that the widely distributed myxomycete species Ph. albescens represents a complex of at least 18 cryptic species, and some of these seem to have a limited geographical distribution. In addition, the presence of groups of presumably clonal specimens suggests that sexual and asexual reproduction coexist in natural populations of myxomycetes.
Abstract
Drainage has turned 650,000 km2 of peatlands worldwide into greenhouse gas sources. To counteract climate change, large‐scale rewetting is necessary while agricultural use of rewetted areas, termed paludiculture, is still possible. However, more information is required on the performance of suitable species, such as cattail, in the range of environmental conditions after rewetting. We investigated productivity and biomass quality (morphological traits and tissue chemical composition) of Typha angustifolia and Typha latifolia along gradients of water table depth (−45 to +40 cm) and nutrient addition (3.6–400 kg N ha−1 a−1) in a six‐month mesocosm experiment with an emphasis on their high‐value utilization, e.g., as building material, paper, or biodegradable packaging. Over a wide range of investigated conditions, T. latifolia was more productive than T. angustifolia. Productivity was remarkably tolerant of low nutrient addition, suggesting that long‐term productive paludiculture is possible. Low water tables were beneficial for T. latifolia productivity and high water tables for T. angustifolia biomass quality. Rewetting will likely create a mosaic of different water table depths. Our findings that the yield of T. angustifolia and tissue chemical composition of T. latifolia were largely unaffected by water table depth are therefore promising. Depending on intended utilization, optimal cultivation conditions and preferable species differ. Considering yield or diameter, e.g., for building materials, T. latifolia is generally preferable over T. angustifolia. A low N, P, K content, high Si content and high C/N‐ratio can be beneficial for processing into disposable tableware, charcoal, or building material. For these utilizations, T. angustifolia is preferable at high water tables, and both species should be cultivated at a low nutrient supply. When cellulose and lignin contents are relevant, e.g., for paper and biodegradable packaging, T. angustifolia is preferable at high water tables and both species should be cultivated at nutrient additions of about 20 kg N ha−1 a−1.
Abstract
Climate change is increasing the frequency and intensity of drought events in many boreal forests. Trees are sessile organisms with a long generation time, which makes them vulnerable to fast climate change and hinders fast adaptations. Therefore, it is important to know how forests cope with drought stress and to explore the genetic basis of these reactions. We investigated three natural populations of white spruce (Picea glauca) in Alaska, located at one drought‐limited and two cold‐limited treelines with a paired plot design of one forest and one treeline plot. We obtained individual increment cores from 458 trees and climate data to assess dendrophenotypes, in particular the growth reaction to drought stress. To explore the genetic basis of these dendrophenotypes, we genotyped the individual trees at 3000 single nucleotide polymorphisms in candidate genes and performed genotype–phenotype association analysis using linear mixed models and Bayesian sparse linear mixed models. Growth reaction to drought stress differed in contrasting treeline populations. Therefore, the populations are likely to be unevenly affected by climate change. We identified 40 genes associated with dendrophenotypic traits that differed among the treeline populations. Most genes were identified in the drought‐limited site, indicating comparatively strong selection pressure of drought‐tolerant phenotypes. Contrasting patterns of drought‐associated genes among sampled sites and in comparison to Canadian populations in a previous study suggest that drought adaptation acts on a local scale. Our results highlight genes that are associated with wood traits which in turn are critical for the establishment and persistence of future forests under climate change.
Abstract
River estuaries are characterized by mixing processes between freshwater discharge and marine water masses. Since the first are depleted in heavier stable isotopes compared with the marine realm, estuaries often show a linear correlation between salinity and water stable isotopes (δ18O and δ2H values). In this study, we evaluated spatial and seasonal isotope dynamics along three estuarine lagoon transects, located at the northern German Baltic Sea coast. The data show strong seasonality of isotope values, even at locations located furthest from the river mouths. They further reveal a positive and linear salinity‐isotope correlation in spring, but ‐in two of the three studied transects‐ hyperbolic and partially reverse correlations in summers. We conclude that additional hydrological processes partially overprint the two‐phase mixing correlation during summers: aside from the isotope seasonality of the riverine inflows, the shallow inner lagoons in the studied estuaries are influenced by evaporation processes. In contrast the estuarine outflow regions are under impact of significant salinity and isotope fluctuations of the Baltic Sea. Deciphering those processes is crucial for the understanding of water isotope and salinity dynamics. This is also of relevance in context of ecological studies, for example, when interpreting oxygen and hydrogen isotope data in aquatic organisms that depend on ambient estuarine waters.
Abstract
Monitoring the general public's support toward wildlife species is a strategy to identify whether a specific human–wildlife conflict (HWC) is escalating or de‐escalating over time. The support can change due to multiple factors, such as mass media news of HWC or providing information about ecological traits of a species. Methods such as the rating scale (RS) and the allocation of a fixed amount of money (money allocation [MA]) have been used in the human–wildlife dimension as a proxy to measure support toward wildlife species. We compared these two methods' capacity to assess the general public's support changes toward wildlife species in an experimental design setting. Face‐to‐face interviews were applied among urban dwellers (n: 359) in Valdivia, Chile. In each interview, the support toward 12 wildlife species was elicited using an RS and MA methods, on two occasions, before and after disclosing ecological traits of the species. The results indicate that the MA grouped the wildlife species based on shared ecological traits, information disclosed to the participants, while the RS did not obtain the same results. Specifically, the MA identified an increase and decrease of support toward the wildlife species, and the RS only an increment of support. These results could be partly explained due to the conceptual foundation of each method. The MA was designed to elicit preferences in a constrained choice, while the RS measures attitudes. As a constrained choice, the MA does allow maximum support to be given to one species only if all other species are left unsupported, while in the RS, it is possible to provide maximum support for all species. The mentioned characteristics of the MA make it more suitable than the RS when the objective is to identify support changes.
Lake‐level reconstructions are a key tool in hydro‐climate reconstructions, based on the assumption that lake‐level changes primarily reflect climatic changes. Although it is known that land cover changes can affect evapotranspiration and groundwater formation, this factor commonly receives little attention in the interpretation of past lake‐level changes. To address this issue in more detail, we explore the effects of land cover change on Holocene lake‐level fluctuations in Lake Tiefer See in the lowlands of northeastern Germany. We reconstruct lake‐level changes based on the analysis of 28 sediment records from different water depths and from the shore. We compare the results with land cover changes inferred from pollen data. We also apply hydrological modelling to quantify effects of land cover change on evapotranspiration and the lake level. Our reconstruction shows an overall lake‐level amplitude of about 10 m during the Holocene, with the highest fluctuations during the Early and Late Holocene. Only smaller fluctuations during the Middle Holocene can unambiguously be attributed to climatic fluctuations because the land cover was stable during that period. Fluctuations during the Early and Late Holocene are at least partly related to changes in natural and anthropogenic land cover. For several intervals the reconstructed lake‐level changes agree well with variations in modelled groundwater recharge inferred from land cover changes. In general, the observed amplitudes of lake‐level fluctuations are larger than expected from climatic changes alone and thus underline that land cover changes in lake catchments must be considered in climatic interpretations of past lake‐level fluctuations.
Abstract
Root phenology influences the timing of plant resource acquisition and carbon fluxes into the soil. This is particularly important in fen peatlands, in which peat is primarily formed by roots and rhizomes of vascular plants. However, most fens in Central Europe are drained for agriculture, leading to large carbon losses, and further threatened by increasing frequency and intensity of droughts. Rewetting fens aims to restore the original carbon sink, but how root phenology is affected by drainage and rewetting is largely unknown.
We monitored root phenology with minirhizotrons in drained and rewetted fens (alder forest, percolation fen and coastal fen) as well as its soil temperature and water table depth during the 2018 drought. For each fen type, we studied a drained site and a site that was rewetted ~25 years ago, while all the sites studied had been drained for almost a century.
Overall, the growing season was longer with rewetting, allowing roots to grow over a longer period in the year and have a higher root production than under drainage. With increasing depth, the growing season shifted to later in time but remained a similar length, and the relative importance of soil temperature for root length changes increased with soil depth.
Synthesis and applications. Rewetting extended the growing season of roots, highlighting the importance of phenology in explaining root productivity in peatlands. A longer growing season allows a longer period of carbon sequestration in form of root biomass and promotes the peatlands' carbon sink function, especially through longer growth in deep soil layers. Thus, management practices that focus on rewetting peatland ecosystems are necessary to maintain their function as carbon sinks, particularly under drought conditions, and are a top priority to reduce carbon emissions and address climate change.
AbstractGlobal challenges related to land, biodiversity, food and climate interact in diverse ways depending on local conditions and the broader context in which they are embedded. This diversity challenges learning and integrated decision-making to sustainably transform the nexus, that is to say the interactions between these land-based challenges. Providing aggregated insights, archetype analysis has revealed recurrent patterns within the multitude of interactions, i.e. interaction archetypes that are essential to enhance the understanding of nexus relations. This paper synthesises the state of knowledge on interaction or nexus archetypes related to land, biodiversity, food and climate based on a systematic literature review. It focusses on the coverage of thematic aspects, regional distribution, social dimensions and methodologies. The results show that consideration of comprehensive land–biodiversity–food–climate interactions is rare. Furthermore, there are pronounced regional knowledge gaps, social dimensions are inadequately captured, and methodological shortcomings are evident. To enhance the investigation of interaction archetypes, we have framed a future research agenda providing directions to fully capture interactions across space and time, better use the potential of scenario archetypes and up-scale transformative actions. These advances will constructively contribute insights that help to achieve the ambitious objective to sustainably transform the nexus between land, biodiversity, food and climate.