530 Physik
Refine
Year of publication
Document Type
- Doctoral Thesis (151)
Has Fulltext
- yes (151)
Is part of the Bibliography
- no (151)
Keywords
- Plasma (24)
- Plasmaphysik (24)
- Plasmadiagnostik (14)
- Stellarator (12)
- Atmosphärendruckplasma (7)
- Komplexes Plasma (7)
- Polyelektrolyt (7)
- Kernfusion (6)
- Massenspektrometrie (6)
- Cluster (5)
Institute
Ion traps such as Paul traps and MR-ToF (multi-reflection time-of-flight) devices are indispensable tools at radioactive ion beam facilities for the preparation of high-quality radioactive ion beams for subsequent experiments or for precise measurements of the properties of radioactive ions, such as nuclear binding energies or nuclear charge radii.
Within the work of this thesis, Doppler- and sympathetic cooling is implemented in a linear Paul-trap cooler-buncher enabling a reduction of the longitudinal emittance of radioactive ion beams resulting in a significant improvement of the ion beam quality. Moreover, a next-generation MR-ToF device is conceptualized in order to achieve isobaric pure beams with a higher ion intensity than state-of-the-art MR-ToF devices can provide. Once fully constructed and commissioned, it will operate at an unprecedented ion beam energy of 30 keV. Both of these advances are expected to become important for a wide range of experimental programs pursued at low-energy branches of RIB facilities ranging from fundamental symmetry studies, nuclear structure, rare isotope studies with antimatter, searches of physics beyond the standard model to material science and the production of medical isotopes.
The next-generation MR-ToF mass separator is based on MIRACLS’ 30-keV MR-ToF device for highly sensitive and high-resolution collinear laser spectroscopy. By storing the ions in the Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy (MIRACLS), the same ion bunch is probed by a spectroscopic laser for thousands of times compared to a single passage in traditional collinear laser spectroscopy (CLS). Dedicated simulation studies show that the accuracy and resolution will be close to traditional single-passage CLS while the sensitivity is significantly enhanced. Hence, measurements of nuclear properties via fluorescence-based CLS of very rare radionuclides as well as highly sensitive and high-precision measurements of electron affinities via laser-photodetachment-threshold spectroscopy of negatively-charged (radioactive) ions will become possible.
First measurement campaigns employing MIRACLS’ 1.5-keV MR-ToF device confirm the outstanding boost in signal sensitivity and provide confidence in the application of the MIRACLS technique for the measurement of scarcely produced radioactive ions that have been so far beyond the reach of conventional techniques. Furthermore, the electron affinity of 35Cl was measured, which is in perfect agreement with the literature value. These measurements will serve as important benchmarks for modern atomic and nuclear theory, especially in its description of nuclear charge radii.
In summary, the implementation of Doppler and sympathetic cooling at RIB facilities, the conceptualization of a 30-keV MR-ToF apparatus for highly selective and high-flux mass separation as well as for highly sensitive and high-resolution fluorescence-based laser spectroscopy and the expansion of the MIRACLS technique for the study of negatively-charged ions will enable unprecedented new measurement opportunities at RIB facilities.
Polyelektrolyt-Multischichtfilme (PEMs) werden durch schichtweise (eng. Layer by Layer, LbL)
sequentielle Ablagerung von entgegengesetzt geladenen Polyelektrolyten auf einer
geladenen Oberfläche hergestellt. Die LbL Methode kann auf verschiedene Weise zur
Herstellung von PEM eingesetzt werden, z.B. durch Tauchen, Rotation, Sprühen oder
Beschichten mit elektromagnetischen und fluidischen Methoden. In allen Artikeln dieser
Dissertation wurde die Tauchmethode verwendet. Durch zyklische Wiederholung der
Abscheidungsschritte kann die Dicke der PEM leicht gesteuert werden. Die Oberflächen und
Grenzflächen des Films können mit der LbL Technik auch durch die elektrostatische
Wechselwirkung zwischen positiv und negativ geladenen Polyelektrolyten modifiziert werden.
Auf diese Weise lassen sich einige Eigenschaften des Films optimieren, beispielsweise
Oberflächenadhäsion und Biokompatibilität, z. B. in der Gewebezüchtung oder es kann
eine Monoschicht als Barriere an der Grenzfläche des Films adsorbiert werden, um die
Diffusion von Molekülen im Film zu begrenzen z.B. bei Aufnahme oder Freisetzen von
Medikamenten.
Daher wurde die Rolle einiger Faktoren, wie die molare Masse der Polyelektrolyte und das
Vorhandensein von Salzionen in der Präparationslösung auf die interne Struktur sowie die
Oberfläche der PEMs untersucht.
Für alle Untersuchungen dieser Dissertation wurde das häufig verwendete Modell-System aus
dem positiv geladenen Polyelektrolyten Polydimethyldiallylammonium (PDADMA), und dem
negativ geladenen Polyelektrolyten Polystyrolsulfonat (PSS), verwendet. Die Dicke der Filme
wurde mit Röntgenreflektometrie, Ellipsometrie, UV-Vis-NIR-Spektrometrie bestimmt die
interne Struktur mit Neutronenreflektometrie und die Oberflächentopografie mit Rasterkraftmikroskopie
(eng. AFM) und Rasterelektronenmikroskopie (eng. SEM).
In Artikel 1 wurde mit Hilfe der Neutronenreflektometrie die Struktur des Filmes und die
Diffusion des Polyanions PSS (DPSS) senkrecht zur PEM Oberfläche untersucht. Variiert wurde
die molare Masse des Polykations PDADMA und die Salzkonzentration der
Präparationslösung. PEMs wurden aus drei verschiedenen NaCl-Konzentrationen in der
Abscheidelösung hergestellt: 10 mmol/L, 100 mmol/L und 200 mmol/L. Die Salzkonzentration
in der Polyelektrolytlösung bestimmt die Konformation der Polyelektrolyte während der
Adsorption. Die Ketten werden weniger flach adsorbiert, wenn mehr Salzionen in der
Adsorptionslösung vorhanden sind und die Filme werden dicker.
Die Diffusion nahm mit zunehmender molarer Masse von PDADMA in Filmen, die aus 10
mmol/L, 100 mmol/L und 200 mmol/L hergestellt wurden, um mindestens drei Größenordnungen
ab, denn die Zunahme der Kettenlänge, erhöht den Vernetzungsgrad im Film. Dabei zeigten Filme aus 10 mmol/L (NaCl) mit einer niedrigen molaren Masse von PDADMA
die größte Diffusion (DPSS = 4.9 × 10−20 m2/s). Der Diffusionskoeffizient DPSS als Funktion des
Polymerisationsgrades folgt zwei Potenzgesetzen mit einem Übergang bei einem
Polymerisationsgrad von 288. Bei kürzeren Ketten stimmt der Exponent des Potenzgesetzes
gut mit dem Modell der Sticky Reptation überein. Bei längeren Ketten war der Exponent viel
größer, was vermuten lässt, dass die PSS-Ketten in einem zunehmend komplexen
Polymernetzwerk gefangen sind. Wir verstehen den Übergang als Verschränkungsgrenze für
das untersuchte System.
Bei PEMs, die aus 100 mmol/L hergestellt wurden, konnte kein Potenzgesetz festgestellt
werden. DPSS nahm sprunghaft um drei Größenordnungen ab, wenn die molare Masse von
PDADMA von 45 kDa auf 72 kDa erhöht wurde.
In Artikel 2 wurden die Oberfläche von PEMs aus Polyelektrolyten unterschiedlicher molarer
Massen untersucht. Die Oberflächenrauhigkeit und die Dicke des Films wurden mit
Röntgenreflektometrie und Ellipsometrie bestimmt. Die Oberflächentopografie wurde mit AFM
und SEM aufgenommen. Alle PEMs wurden aus PE-Lösungen mit 0,1 mol/L NaCl hergestellt.
Die Oberfläche der PEM, präpariert aus langem PSS und kurzem PDADMA oder langem PSS
und langem PDADMA, war immer flach. Bei einer Filmzusammensetzung aus langen
Polykationen (Mw (PDADMAlang) = 322 kDa) und kurzen PSS Molekülen (Mw (PSSkurz) = 10,7
kDa) wurden drei Wachstumsregime identifiziert: exponentiell, parabolisch und linear. Im
exponentiellen Wachstumsregime bildet sich nach etwa sieben Beschichtungsschritten von
PDADMA/PSS (eng. bilayers, bl) eine granulare Oberflächenstruktur aus mit einer
Oberflächenrauigkeit von 1,6 nm und einer lateralen Periodizität von 70 nm. Mit zunehmender
Schichtzahl nimmt die Oberflächenrauhigkeit sowie die laterale Periodizität zu. Im
parabolischen Wachstumsbereich aggregieren die Strukturen zu Säulen, mit einer
Oberflächenrauigkeit bis zu 23 nm und einer lateralen Periodizität bis zu 210 nm. Im linearen
Wachstumsregime sind die säulenförmigen Domänen vollständig ausgebildet und die
Oberflächenstruktur ändert sich nicht mehr. Diese Strukturen wurden schon während der
Präparation, bereits vor dem Trocknen beobachtet. Dies zeigt, dass sich die Strukturen
während der Abscheidung von PDADMA/PSS bilden.
Bei Beobachtungen im Vakuum (SEM) war im linearen Bereich die Säulenstruktur bei der
PDADMA terminierten PEM ausgeprägter als bei der PSS terminierten.
Diese Strukturen bilden sich nur im Film mit anfänglichem exponentiellem Wachstum, d.h.
wenn kurzen Ketten durch den ganzen Film diffundieren können. Das legt nahe, dass es für
die Strukturbildung nicht ausreicht, dass der Polyelektrolyt kurz ist, sondern dass es auch
beweglich sein muss. Um dies näher zu untersuchen wurde in Manuskript 1 die molare Masse des PSS variiert. Es
wurden PEMs aus langem 322 kDa PDADMA und kurzem 6,5 kDa und 3,9 kDa PSS
hergestellt und mit den Messungen von PEMs aus 10,7 kDa PSS verglichen.
Die Verkürzung von PSS hat subtile Auswirkungen auf den Filmaufbau und die
Selbststrukturierung. Für PEM aus PSS mit einer molaren Masse von 6,5 kDa konnten nur
zwei Wachstumsregime ermittelt werden: ein exponentielles und ein lineares Wachstumsregime.
Der Übergang vom exponentiellen zum linearen Wachstum erfolgte bei 28
Doppelschichten. Bei PEMs, die aus 3,9 kDa PSS hergestellt wurden, wurde bis zu 29 bl nur
ein exponentielles Wachstum beobachtet. Dies zeigt, dass eine Verringerung der molaren
Masse von PSS das exponentielle Wachstum auf eine größere Anzahl von abgeschiedenen
Doppelschichten ausdehnt. Dies ist auf die zunehmende PSS-Diffusion zurückzuführen.
In allen Filmen wurden Selbststrukturierungen beobachtet. Der Abstand und die Höhe der
säulenartigen Domänen nehmen mit jeder abgeschiedenen PDADMA/PSS-Doppelschicht
deutlich zu. Der durchschnittliche Domänenabstand ändert sich weniger und korreliert mit den
vertikalen Wachstumsregimen. Der Domänenabstand schwankt zwischen 70 nm und 750 nm.
Die größten lateralen Abstände und ein längeres exponentielles Wachstumsregime wurden
mit dem kürzesten PSS (3,9 kDa) erreicht, was auf die hohe Mobilität des PSS zurückgeführt
wird. Die Domänenhöhe ist immer kleiner als der Domänenabstand. Wenn die PEM mit
PDADMA terminiert ist, sind die Oberflächenrauhigkeit und der durchschnittliche Abstand
größer als bei PSS terminierten Filme in Wasser und nach dem Trocknen.
Darüber hinaus wurden zwischen den Domänen Filamente beobachtet. Die Filamente
bestehen aus PDADMA/PSS-Komplexen. Eine mögliche Vermutung ist, dass diese Komplexe
zwischen den Domänen diffundieren und ihren Abstand anpassen.
Die Oberflächenstruktur des Films aus PSS 10,7 kDa zeigt eine symmetrische gaußförmige
Höhenverteilung in allen drei Wachstumsregimen von 5 bis 40 bl. Für die kurze PSS war eine
solche Verteilung nur bis 15 bl (6,5 kDa) bzw. 20 bl (3,9 kDa) zu beobachten. Danach wurde
für 6,5 kDa schiefe Verteilung mit Ausläufern zu größeren Höhen beobachtet. 3,9 kDa PSS
zeigte dann sogar eine bimodale Höhenverteilung.
Die lineare Ladungsdichte von PDADMA ist etwa halb so groß wie die von PSS. Folglich
adsorbiert PDADMA in einer bürstenartigen Konformation. Wenn die oberste Schicht
PDADMA ist, dann ist das PDADMA-Molekül nicht fest an die Oberfläche gebunden. Daher ist
die durch die Oberflächenspannung erzeugte Kraft für PDADMA groß genug, um zu einer
Veränderung der Oberflächenmorphologie und folglich zu einer kleineren Gesamtoberfläche
zu führen.Außerdem sind die Domänen in 1 M NaCl-Lösung stabil, schrumpfen aber in 2 M NaCl enorm,
während ihr Abstand leicht zunimmt.
Diese Untersuchungen zeigten, dass die Mobilität des Polyelektrolyten PSS die
Voraussetzung für den Aufbau einer strukturierten Oberfläche in einem PEM-System aus
PDADMA/PSS ist. Diese Ergebnisse zeigten auch, dass die Verkürzung der Kette der PSS Moleküle
die Herstellung von Filmen erleichtert, deren Dicke und Selbststrukturierung je nach
dem gewünschten Zweck angepasst werden kann. Solche Filme können in der Medizin und
Biologie als geeignetes Substrat zur Optimierung der Adsorption von Zellen und anderen
Molekülen oder als Nanofilter effektiv eingesetzt werden.
In dieser Dissertation konnte ich zeigen, wie die Verkürzung der Kette der PSS-Moleküle zur
Bildung einer lateralen selbststrukturierten Oberfläche führt und wie die zunehmende Mobilität
der PSS-Moleküle die Oberflächenmorphologie signifikant beeinflusst.
In this work, 2-dimensional measurements in the THz frequency range with self-made spintronic THz emitters were presented. The STE were used to optimize the spatial resolution and determine the magnetization in geometric shapes. At the beginning, various combinations of FM and NM layers were produced and measured to achieve an optimal composition of the STE. The layer thickness of the ferromagnetic CoFeB layer and the nonmagnetic PT layer was also varied. The investigations have shown that a layer combination of 2 nm thick CoFeB and 2 nm thick Pt, applied to a fused silica glass substrate and covered with a 300 nm thick SiO2 layer, emits the highest THz amplitude. Based on these, a structured sample, consisting of an STE and an additional layer system of 5 nm Cr and 100 nm Au, was produced. Further, three wedge-shaped structures were removed from the gold layer by an etching process so that the THz radiation generated by the STE can pass through these areas. This enables the optimization of the resolution of the system. For this purpose, the sample was moved perpendicular to the laser beam by two stepping motors with a step size of 5 μm and imaged 2-dimensionally. By reducing the step size to 0.2 μm, the beam diameter could be measured at the edge of the structure using the knife-edge method. Based on this measurement, the resolution of the system could be determined as 5.1 ± 0.5 μm at 0.5 THz, 4.9 ± 0.4 μm at 1 THz, and 5.0 ± 0.5 μm at 1.5 THz. These results are confirmed by simulations considering the propagation of THz wave packets through the SiO2. The expansion of the FWHM of the waves, passing through the 300 nm thick layer, is about 1%. Only a SiO2 layer with a thickness in the μm range occurs an expansion of around 10%. This shows that it is possible to perform 2-dimensional THz spectroscopy with a resolution in the dimension of the exciting laser beam by using near-field optics. Afterward, the achieved spatial resolution was used to investigate the influence of external magnetic fields on the STE and the emitted THz radiation. By implementing a pair of coils above the sample, an external magnetic field could be applied parallel to the pattern. The used sample was designed in such a way that only certain geometric areas on the fused silica glass substrate were coated with an STE so that THz radiation is emitted only in those areas. The 2-dimensional images show the geometric structures for f = 1.0 THz and f = 1.5 THz clearly. By applying a permanent, positive magnetic field (+M), a positive course of the THz amplitude can be seen. A rotation of the magnetic field by 180° (-M) leads to a reversal of the orientation of the emitted THz radiation, whereby the magnetic field does not influence the corresponding frequency spectrum. By using minor loops, the sample was demagnetized by the constant reduction of the magnetic field strength with alternating magnetic field direction. The 2-dimensional representation of the pattern with a step size of 10 μm shows that the sample was demagnetized since both, positively and negatively magnetized structures, could be imaged. In addition, in the 2nd row from the top, a completely demagnetized circle and a rectangle with a division into two domains can be seen. These structures have both positive and negative magnetized areas, which are separated by a domain wall. To investigate this in more detail a 2-dimensional measurement of the divided regions was made with a step size of 2.5 μm. These images confirm the division of the structures into positive and negative domains, separated by a domain wall, which was verified by Kerr-microscope measurements. Both data show a similar course of the domains and the domain wall. However, to be able to examine the domain wall more precisely using 2-dimensional THz spectroscopy, the resolution of the system must be improved to a range of a few nm, because the expected domain wall width is between 𝑙𝑊 = 12.56 nm and 𝑙𝑊 = 125.6 nm. The improved resolution would make it possible to image foreign objects, such as microplastics in biological cells or tissue. For this purpose, different plastics, such as polypropylene, polyethylene, and polystyrene, were investigated in the THz frequency range up to 4 THz. While no specific absorption could be determined for PP, characteristic absorption peaks were found for PE and PS. The energy of the photons with a frequency of about 2.2 THz excites lattice vibrations in the PE. Therefore, this frequency is specifically absorbed, and the intensity in the transmission spectrum is lower than for other frequencies. PS absorbs especially THz radiation with a frequency of 3.2 THz. In addition, all of the investigated plastics are mostly transparent for THz radiation, which makes imaging of these materials feasible. Based on these basic properties, it will be possible to image and identify these types of plastic.
In this work, spatial distributions for reactive stable and transient species that are involved
in the reaction cycle of H2O2, a key species for biomedical applications, were
determined directly in the effluent of a kINPen-sci plasma jet. The small diameter
of cold atmospheric pressure plasma jets and their operation at atmospheric pressure
that causes strong quenching reactions make diagnostics challenging. Here, various diagnostic
techniques have been employed and adapted for the use in the effluent of a
cold atmospheric pressure plasma jet, which were laser atomic absorption spectroscopy
(LAAS) at 811.5 nm for the detection of Ar(3P2), picosecond two-photon absorption
laser-induced fluorescence spectroscopy (ps-TALIF) at 225 nm and 205 nm for the
detection of O and H atoms, respectively, and continuous wave cavity ring-down spectroscopy
(cw-CRDS) at 1.506 µm for the detection of HO2, and cw-CRDS at 8000 µm
for the detection of H2O2. All these methods provide absolute number densities. In
this work, spatial distributions within the small diameter of the effluent of a CAPJ
were obtained, which have not been reported so far literature. In order to overcome the
line-of-sight limitations of CRDS, radial scans were performed and transformed into a
spatial distribution by using Abel inversion.
Based on the determined spatial density distributions for H atoms, O atoms, HO2
radicals, and H2O2 molecules, together with the investigated impact of humidity in the
feed gas on the excitation dynamics and the production of Ar(3P2), and finally on a
comparison of the experimental results to a plasma chemical and reacting flow model,
three different zones with varying reaction kinetics were identified. The densities close
to the nozzle of the kINPen-sci plasma jet were dominated by reactions within the
plasma zone including the dissociation of H2O added to the Ar feed gas and O2 that
was presumably transferred into the plasma zone by counter-propagating ionisation
waves. Notably, also the larger molecules, such as HO2 and H2O2 were mainly formed
within the plasma zone of the plasma jet. Between 1.5 mm and 5 mm below the nozzle,
the atomic species and molecular radicals generated in the plasma zone were consumed
by chemical reactions with the surrounding gas, whose composition was controlled by
applying a gas curtain. At further distances from the nozzle, where typically biological
samples are positioned, only H2O2 and HO2 were observed.
With this work, it is successfully demonstrated that even for the small diameters of
cold atmospheric pressure plasma jets the determination of spatial profiles for reactive
transient and stable species is possible within the effluent. By combining the experimental
results, important insights into the formation and consumption of H2O2 and its
precursors were gained, which are essential for the understanding of use of plasmas in
biomedical applications.
The biomechanical (Young's modulus, adhesion force, deformability) properties of platelets depend on the cytoskeleton and have an undisputed influence on physiological and pathological processes such as hemostasis and thrombosis. The alterations of these biomechanical properties can be used as label-free diagnostic markers in initiation or progressive diseases such as MYH9-inherited disease. Therefore, the focus of my thesis was to investigate the relationship between the changes in platelet cytoskeleton proteins and the resulting biomechanical properties using biophysical methods.
In the first chapter of my thesis I focused on my review of the biophysical methods that are most commonly used to assess and quantify the biomechanical properties of platelets. In this review, I provide an in-depth insight into the governing principles and instrumentation setup and discuss relevant examples applied to platelet mechanics. In addition, my review also summarizes the limitations of these biophysical methods and highlight latest improvements. The review covers the following techniques: micropipette aspiration, atomic force microscopy (AFM), scanning ion conductance microscopy (SICM), tensile force microscopy on hydrogel substrates, microcolumns, and deformable 3D substrates, and real-time deformability cytometry (RT-DC). This review is directed toward clinician scientists who are interested in exploring applications of single-cell based biophysical approaches in unraveling the role of platelet biomechanics in hemostasis and thrombosis research.
In the second chapter of my thesis, I present my research paper on the influence of commonly used ex vivo anticoagulants on the intrinsic biomechanical properties and functional parameters (e.g. activation profils) of human platelets. To comprehensively assess this, platelets obtained in different ex vivo anticoagulants such as ACD-A, Na-Citrate, K2-EDTA, Li-Heparin, and r-Hirudin were used, and their biomechanical properties were determined by real-time fluorescence and deformability cytometry (RT-FDC). Flow cytometry, and confocal laser scanning fluorescence microscopy were used to determine platelet function properties. K2-EDTA and Li-Heparin were found to affect platelet biomechanics by increasing actin polymerization of non-stimulated human platelets. This increased actin polymerization results in decreased platelet deformation. It is recommended that an ex vivo anticoagulant such as ACD-A, Na-Citrate, or r-Hirudin be chosen for the study of the cytoskeleton of human platelets and, if possible, that it not be exchanged, because comparability of results is not assured. Furthermore, I demonstrate the significance of choosing correct ex vivo anticoagulants in RT-FDC by showing that platelets from a healthy donor and a MYH9 patient with the E1841K point mutation differ in their deformation. This paper is the first comprehensive investigation at the single platelet level to establish the relevance of preanalytical standardization in platelet sample preparation for biomechanical studies.
The third chapter of my thesis is focused on the biomechanical analyses of platelets and thrombi from MYH9-related disease. Here I studied three Myh9 mouse lines with a point mutation in the Myh9 gene at positions 702, 1424, or 1841. Furthermore, two MYH9 patients (MYH9 p.D1424N, MYH9 p.E1841K) were examined. MYH9-related disease (MYH9-RD) presents with macrothrombocytopenia with a moderate bleeding tendency. It is caused by mutations in the MYH9 gene that lead to alteration of non-muscle myosin heavy chains type IIA (NMMHC IIA), resulting in disruption of the platelet cytoskeleton. Western blot analysis, flow cytometry, in vitro aggregometry, and transmission electron microscopy demonstrated that Myh9 point mutant mice have comparable primary function compared to the control group. The heterozygous point mutations in the Myh9 gene resulted in decreased platelet deformation (RT-FDC), decreased platelet adhesion to collagen (single platelet force spectroscopy-SPFS), and decreased platelet-platelet interaction forces (SPFS). Decreased platelet force (Micropost Arrays) results in softer thrombi (colloidal probe Spectroscopy), impaired clot retraction, and thus prolonged bleeding time. The R702C, D1424N, and E1841K mutations have a similar effect on platelet biomechanical functions, although the E1841K mutation had less impact on thrombus formation and stiffness. MYH9-RD patients have an increased risk of bleeding, and the antifibrinolytic drug tranexamic acid (TXA) is one way to control bleeding complications in these patients. It was shown that TXA treatment significantly reduced bleeding time in the three Myh9 mouse models, confirming that the enhanced bleeding phenotype due to decreased platelet forces in Myh9 mutant mice can be compensated by the addition of TXA.
With the biophysical methods and research results presented in my thesis, it is clear that it is essential to study the altered response of the platelet cytoskeleton by cytoskeletal mutations, biochemical, physical stimuli, or by pharmacological aspects. This will provide us with an opportunity to better understand the underlying mechanisms and thus contribute to better clinical treatment.
Kinetic modeling and infrared spectroscopy of charge carriers across the plasma-wall interface
(2022)
In this thesis, charge transport at the plasma-wall interface is investigated theoretically, on a semiclassical, microscopic level. Based on the Boltzmann and Poisson equations a set of equations is derived and numerically solved to model charge carriers both within a semiconducting wall and a gaseous plasma in front of it. While the plasma is considered collision-free, within the solid, phonon collisions, as well as recombination processes between conduction band electrons and valence band holes are considered. This results, for the first time, in a self-consistent modeling of both the gaseous electron-ion plasma and the electron-hole plasma in the solid on the same footing. Utilizing specific approximations for different physical scenarios, numerical solutions are presented both for the floating and the electronically contacted (biased) interface. In the latter case, the current voltage characteristic is calculated and shown to heavily depend on the charge kinetics within the wall.
Furthermore, we present optical methods to measure the wall charge noninvasively. These utilize the influence of the deposited surplus charges on the optical reflection coefficient of the surface. By calculating the optical response of these charges, we show that the magnitude of the surface charge can be inferred from the change in the reflectivity of the surface caused by the presence of the plasma. While nonlocal effects are considered, it is shown analytically and numerically that these can be neglected at the scales of the considered physical systems.
This work investigates turbulence in the core plasma of the optimised stellarator
Wendelstein 7-X. It focuses on experimental characterisation and
evaluation of the electrostatic micro-instabilities, which drive turbulent fluctuations,
and the saturation of turbulence by zonal flows. Expectations for
Wendelstein 7-X are formulated by reviewing theoretical work and with
the help of gyrokinetic simulations. The experimental analysis centres on
line-integrated density fluctuation measurements with the phase contrast
imagining diagnostic in electron cyclotron heated hydrogen discharges. An
absolute amplitude calibration was implemented, and a method for reliable
determination of dominant phase velocities in wavenumber-frequency
spectra of density fluctuations has been developed. Line-averaged density
fluctuation levels are observed to vary between magnetic configurations.
The wavenumber spectra exhibit a dual cascade structure, indicating fully
developed turbulence. The dominant instability driving turbulent density
fluctuations on transport relevant scales is identified as ion-temperaturegradient-
driven modes, which are mainly localised in the edge region of the
confined plasma. Despite the line-integrated nature of the measurement, the
localisation of density fluctuations is shown by comparing their dominant
phase velocity with the radial profile of the E × B rotation velocity due to
the ambipolar neoclassical electric field. Nonlinear gyrokinetic simulations
and a simplified plasma rotation model within a synthetic diagnostic confirm
the localisation. Oscillations of the dominant phase velocity indicate
the existence of zonal flows as a saturation mechanism of ion-temperaturegradient-
driven turbulence. A direct effect on turbulent density fluctuation
amplitudes and radial transport is observed.
The layer-by-layer method is a robust way of surface functionalization using a wide range of materials, e.g. synthetic and natural polyelectrolytes (PEs), proteins and nanoparticles. Thus, this method yields films with applications in diverse areas including biology and medicine. Sequential adsorption of different oppositely charged macromolecules can be used to prepare tailored films with controlled molecular organization. In biomedical research, electrically conductive coatings are of interest. In manuscript 1, we investigated films sequentially assembled from the polycation poly (diallyldimethyl-ammonium) (PDADMA) and modified carbon nanotubes (CNTs), with CNTs serving as the electrically conductive material. We assume that charge transport occurs through CNT contacts. We showed that with more than four CNT/PDADMA bilayers, the electrical conductivity is constant and independent of the number of CNT/PDADMA bilayers. A conductivity up to 4∙10^3 S/m was found. It is possible to control the conductivity with the CNT concentration of the CNT deposition suspension. A higher CNT concentration resulted in thicker CNT/PDADMA bilayers, but in a lower conductivity per bilayer. We suspect that an increased CNT concentration leads to a rapid CNT adsorption without the possibility to rearrange themselves. If PDADMA then adsorbs on the disordered CNTs in the next deposition step, the average thickness of the polymer layer is thicker than on the more ordered CNT layer from the dilute solution. This leads to an increased PE monomer/CNT ratio and lower conductivity. More polycations between the CNT layers leads to less CNT contacts. Thus, the controlled composition of films can be used to fulfill specific requirements.
For many applications of polyelectrolyte multilayers (PEMs), cheap PEs with a broad distribution of molecular weights are used. It was unknown whether the distribution of molecular weights of the PE in the adsorption solution is maintained during the adsorption process and hence in the film. To investigate this, the PSS adsorption solution in article 2 consisted of a binary mixture of short and long poly (styrene sulfonate) (PSS). A good model system to study layered films in terms of composition are PDADMA/PSS multilayers. Neutron reflectivity and in-situ ellipsometry measurements were carried out to determine the PSS composition in the film and the growth regimes. At a mole fraction of long PSS of 5 % or more in solution, the exponential growth (which is characteristic of short PSS) is totally suppressed, and only long PSS is deposited in the resulting multilayer. Variation of adsorption time of PSS showed that short PSS first adsorbs to the surface but is displaced by long PSS. Between 0 and 5 % of long PSS in the adsorption solution exponential growth occurs. The fraction of short PSS in the film continuously decreases with the increase of long PSS in the adsorption solution. In the assembly of films prepared from binary PSS mixtures, the short PSS leaves the film through adsorption/desorption steps both during PSS adsorption and during PDADMA adsorption (as PDADMA/PSS complexes). Both techniques show that the composition of the film does not correspond to that of the deposition solution. The composition and thus the properties of the resulting multilayer are influenced by the choice of adsorption time. Moreover, we conclude that a multilayer grown from a polydisperse polyelectrolyte contains fewer mobile low molecular weight polymers than the deposition solution.
In manuscript 1 and article 2, the composition of multilayers was studied. In manuscript 1 adsorption kinetics were important for the arrangement of CNTs on the surface. In article 2, the adsorption kinetics, i.e. the diffusion of the polyelectrolytes to the surface, was also investigated. In article 3, we investigated the influence of the composition of the film as well as the preparation condition on the mobility of PEs in the film. The molecular weight of the polycation PDADMA and the NaCl concentration of the deposition solution were varied. The vertical PSS diffusion constant D_PSS within the PDADMA/PSS multilayers was measured using neutron reflectivity. The salt concentration of the preparation solution defines the polymer conformation during deposition. The molecular weight of the polycation determines the degree of intertwining. Together, both parameters determine the polyanion-polycation coupling and thus the PSS mobility within the network. Log−log display of D_PSS vs the molecular weight of PDADMA and fits to two power laws (D_PSS ∝ X_n(PDADMA)^(-m) ∝ M_w(PDADMA)^(-m)) reveals for films built from 10 or 200 mM NaCl a kink. Below and above the kink, the dependence of D_PSS on M_w(PDADMA) can be described by different power laws. For Χ_n(PDADMA) < X_n,kink(PDADMA) ≈ 288, the exponents are consistent with the predictions of the sticky reptation model. X_n(PDADMA) ≈ 288 is the entanglement limit. For Χ_n(PDADMA) > X_n,kink(PDADMA) ≈ 288, the decrease of D_PSS with M_w(PDADMA) is larger than below the entanglement limit, which is indicative of sticky reptation and entanglement. The PSS diffusion constant of films built from 100 mM NaCl drops three orders of magnitude when increasing the molecular weight of PDADMA from 45 kDa to 72 kDa. To figure out if an immobile PSS fraction exists in the film built from 72 kDa PDADMA (beyond the entanglement limit), the film was annealed at different conditions in article 4: both temperature and salt concentration were varied. For data analysis, the simplest model with two PSS fractions with different diffusion constants was used. These diffusion constants increase as the temperature of the surrounding solution is increased. As assumed in article 3, an immobile PSS fraction exists when annealing at room temperature. At higher annealing temperatures, at least two diffusion processes must be distinguished: the diffusion of the highly mobile PSS fraction through the entire film and a slow PSS fraction, mowing in a limited way. The choice of preparation conditions determines whether a polyelectrolyte multilayer can intermix completely. It is not clear if complete intermixing will ever occur for films built with PDADMA beyond the entanglement limit. It is possible that the diffusion is more complex. Long-term measurements will clarify this question. Calculating scattering length density profiles with subdiffusive behavior would be interesting and is a challenge for the future. Furthermore, immobile fractions are only visible with long annealing times. We hypothesize that an immobile or nearly immobile fraction is present whenever the dependence of D_PSS on the molecular weight of PDADMA cannot be described by the sticky reptation. To verify this hypothesis, further studies are necessary.
All results presented and discussed in the manuscript and articles show that by varying the preparation conditions, tailored films can be built. The composition of the film is also determined by the adsorption kinetics. In addition, the mobility of the PEs within the multilayers can be controlled by varying the conformation, mingling and entanglement of the chains within the film. The influence of the salt concentration in the preparation solution on the growth regimes during film formation is part of our future research. It is planned to investigate films built of different PDADMA molecular weights under varied annealing conditions to better understand the mobile and immobile fractions.
This thesis discusses three publications in the field of dusty plasmas.
In the first section, measurements of the ir absorption of silica nanoparticles confined in an argon radiofrequency plasma discharge using a Fourier transform infrared spectrometer have been performed. By varying the gas pressure of the discharge and duty cycle of the applied radiofrequency voltage, a shift of the absorption peak of silica is observed. This shift is attributed to charge-dependent absorption features of silica. The charge-dependent shift has been calculated for silica particles, and from comparisons with the experiment the particle charge has been retrieved using the infrared phonon resonance shift method. With the two different approaches of changing the gas pressure and altering the duty cycle, one is able to deduce a relative change of the particle charge with pressure variations and an absolute estimate of the charge with the duty cycle.
In the second part, infrared (IR) absorption spectra of melamine-formaldehyde (MF) microparticles confined in an rf plasma are studied at different plasma conditions. Several absorption peaks have been analysed in dependence of plasma power and their temporal evolution. For comparison, the IR absorption spectra of heated MF microparticles without plasma exposition are used to determine the general influence of the temperature on the IR spectra. Measuring the temperature of the particles inside the plasma shows that the temperature is not the only process changing the particles' IR spectra. Chemical changes of the MF particles with increasing plasma power influence the absorption peak structure.
Finally, experiments on dust clusters trapped in the sheath of a radio frequency discharge have been performed for different magnetic field strengths ranging from a few milliteslas to 5.8 T. The dynamics of the dust clusters are analyzed in terms of their normal modes. From that, various dust properties such as the kinetic temperature, the dust charge, and the screening length are derived. It is found that the kinetic temperature of the cluster rises with the magnetic field, whereas the dust charge nearly remains constant. The screening length increases slightly at intermediate magnetic field strengths. Generally, the dust properties seem to correlate with magnetization parameters of the plasma electrons and ions, however only to a small degree.
This thesis describes how the data of the Langmuir probes in the Wendelstein 7-X (W7X) Test Divertor Unit (TDU) were evaluated, checked for consistency with other diagnostics and used to analyse plasma detachment.
Langmuir probes are an electronic diagnostic, and were among the first to be used in plasma physics to determine particle fluxes, potentials, temperatures and densities.
W7X is a large, advanced stellarator, magnetic confinement fusion experiment, operated at the Max-Planck-Institut for Plasma Physics(IPP) in Greifswald, Germany.
Its TDU is an uncooled graphite component, shaped and positioned to intercept the convective heat load of the plasma.
Detachment describes a desirable operation state of strongly reduced loads on this component.
The evaluation of Langmuir probe data relies heavily on models of the sheath, formed at the interface between plasma and a solid surface, to infer plasma parameters from the directly measured quantities.
Multiple such models are analysed, generalised, and adapted to our use case.
A detailed comparison is made to determine the most suitable model, as this choice strongly affects the predicted parameters.
Special attention is paid to uncertainties on the parameters, which are determined using a Bayesian framework.
From the inferred parameters, heat and particle fluxes are calculated.
These are also indirectly measured by two other, camera-based diagnostic systems.
Observations are compared to test the validity of assumptions and calculations in the evaluation of all three diagnostics by checking their results for consistency.
The first comparison, with the infrared emission camera system, shows good agreement with theoretical predictions and reported measurements of the sheath transmission factor, for which we derive and measure a value in W7X.
Parameter dependencies in the quality of this agreement hint at remaining issues.
The second comparison, with the Hydrogen alpha photon flux camera system, shows significant discrepancy with expectations.
These are argued to originate from systematic differences in the measurement locations, which are quantified and related to the magnetic topology.
Langmuir probe observations of individual discharges are analysed to discuss conditions under which detachment occurs, transition into that state and fluctuations observed prior to and during it.
A spatial parametrisation of the data is developed and used to facilitate this.
These observations contribute to the larger aim of understanding particle balance control and fusion plasma edge processes.