540 Chemie
Refine
Year of publication
Document Type
- Doctoral Thesis (200)
- Article (3)
Has Fulltext
- yes (203)
Is part of the Bibliography
- no (203)
Keywords
- Biokatalyse (17)
- Enzym (14)
- Proteindesign (11)
- Biopharmazie (8)
- Wirkstofffreisetzung (8)
- Biotechnologie (7)
- Cytotoxizität (7)
- Ribozym (7)
- Biochemie (5)
- RNS (5)
Institute
- Institut für Chemie und Biochemie (107)
- Institut für Pharmazie (72)
- Institut für Pharmakologie (19)
- Institut für Physik (2)
- Mathematisch-Naturwissenschaftliche Fakultät (2)
- Institut für Immunologie u. Transfusionsmedizin - Abteilung Transfusionsmedizin (1)
- Klinik und Poliklinik für Innere Medizin (1)
Publisher
- ACS publications (1)
- Wiley (1)
The relevance of cold atmospheric plasmas (CAPs) in biomedicine has recently grown. The potential of CAPs has been discussed in multiple scientific works, highlighting its effectiveness in promoting wound healing, limiting cancer progression, and for sterilization of surfaces. Main bioactive molecules, such as reactive oxygen and nitrogen species (RONS), are proposed as key candidates in these processes. Indeed, the generation of cold plasma induces noble gas ionization which, reacting with atmospheric air molecules, generates species such as singlet oxygen, atomic oxygen radicals, nitric oxide radicals. Although molecular simulations have been conducted, the mechanism of action on biological molecules, as well as the possibility to tune plasmas to produce specific species cocktails (e.g., with different degree of oxidation power) has been not fully unleashed. In this dissertation, presented in form of 5 published scientific articles, focus has been placed on the interaction of plasmas with peptides and proteins, which are main biological effectors in cellular compartments. Precisely, through the development of liquid chromatography coupled mass spectrometry (LC-MS) methods, the effects of plasmas on peptides and proteins in form of oxidative post-translational modifications (oxPTMs) has been investigated. The characterization of these oxPTMs has been performed by treating peptide or protein aqueous solutions and on porcine skin tissues. It has been found that, introducing small amounts of different gases (oxygen, nitrogen, or both) or even water molecules, can made CAPs tunable tools to produce oxygen-species dominating effects versus nitrogen-species dominating effects. In addition to this, it was found that the amino acid position in a peptide or protein influences the quality and quantity of the resulting oxPTMs. Besides this, other important parameters like driven gases, admixture gases or treatment duration were identified as relevant factors for the modification of amino acids in the peptide structure. By comparing the effects between peptide solutions and complex matrices such as porcine skin, water has been identified as a valid vehicle to transport and amplify the plasma chemistry. In an experimental study, the inactivation of a protein (PLA2) was observed after CAP treatment and together with simulation studies, the specific dioxidation of tryptophane W128 was detected as a potential explanation for this inactivation, indicating the strong impact of plasma on biological targets. In summary, oxidative modifications found in peptide solutions were observed also in complex protein structures and sample matrices. In conclusion, this work provides a starting point for future studies of oxidative modifications in complex models and may thus be helpful for further investigations in the fields of plasma medicine and redox chemistry.
This work investigated the enzymatic degradation of polyethylene terephthalate (PET) (ArticlesI and II) and polyvinyl alcohol (PVA) (Article III). Physical or chemical degradation of plastic polymers is often performed under extreme conditions like high temperatures or pressure. In comparison to that, recycling of plastics with enzymes can be carried out at ambient temperatures and neutral pH. Enzymes themselves are non- toxic, environmentally friendly, and have been used successfully in a variety of industrial processes.
Enzymatic degradation of polyesters is well studied. Their heteroatomic backbone, which is connecting monomers via ester bonds offers a target for an enzymatic attack. Especially PET, one of the most common polyesters, has been in the focus of research. The first enzyme capable of degrading the polymer was found in 2005. Since then, researchers discovered several enzymes with similar functions and subjected them to enzyme engineering. Improving the enzyme's substrate affinity, activity, and stability aims at making PET recycling more efficient. Article I provides an overview of limitations that enzymatic PET recycling is still facing and the research carried out to overcome them. More precisely, enzyme−substrate interactions, thermostability, catalytic efficiency, and inhibition caused by oligomeric degradation intermediates are summarized and discussed in detail.
Article II further addresses one of the above-mentioned limitations, namely product inhibition of PET hydrolyzing enzymes. We elucidated the crystal structure of TfCa, a carboxylesterase from Thermobifida fusca (T. fusca), and applied semi-rational enzyme engineering. The article discusses the structure-function relationship of TfCa based on the apo-structure as well as ligand-soaked structures. Furthermore, it compares the structures of TfCa and MHETase, another PET hydrolase helper enzyme. Lastly, we determined the substrate profile of the carboxylesterase based on terephthalate-based oligo-esters of various lengths and one ortho-phthalate ester. In a dual enzyme system, TfCa degraded intermediate products derived from the PET hydrolysis of a variant of PETase hydrolase from Ideonella sakaiensis (I. sakaiensis). The dual enzyme system utilized PET more efficiently in comparison to solely PETase due to relieved product inhibition. Since TfCa successfully degraded oligomeric intermediates, the reaction not only released terephthalic acid as the sole product but also increased the overall product yield.
While PET contains an ester bond that can be attacked and hydrolyzed by esterases or lipases, PVA consists of a homoatomic C-C-backbone with repeating 1,3-diol units. The polymer is water soluble with remarkable physical properties such as thermostability and viscosity. PVA is often described as biodegradable, but microbial degradation is slow and frequently involves cost-intensive cofactors. In this study, we present an improved PVA polymer with derivatized side chains and an enzyme cascade that can degrade not only modified but also unmodified PVA in a one-pot reaction. The enzyme cascade consists of a lipase, an alcohol dehydrogenase (ADH), and a Baeyer-Villiger monooxygenase (BVMO). In comparison to the scarcely published research on PVA degradation with free enzyme, this cascade is not only independent from the frequently required cofactor pyrroloquinoline quinone (PQQ) but, in principle, contains an in vitro cofactor recycling mechanism.
Ziel der Arbeit war es, Mono-Dithiolen-Vanadiumkomplexe zu synthetisieren, die als Katalysatoren in Oxidationsreaktion von prochiralen Sulfiden zu chiralen Sulfoxiden getestet werden sollten.
Es konnten verschiedene Ansätze entwickelt werden, die vielversprechend waren, um durch weitere Forschung Mono-Dithiolen-Vanadiumkomplexen erhalten zu können.
Insbesondere konnte eine universell anwendbare Syntheseroute für die Verwendung von aliphatischen Dithiolenen in der Komplexsynthese erfolgreich gezeigt werden. Außerdem wurden neue Kristallstrukturen verschiedener Dithiolen-Vanadiumkomplexe erhalten.
Die Dissertation beschreibt die Synthese verschiedener Nukleosidanaloga mit den notwendigen Modifizierungen und Funktionalitäten für einen Einsatz in der Phosphoramidit-basierten chemischen Oligonukleotidsynthese an fester Phase. Im Rahmen der Arbeit wurde ein nicht-kanonisches Desoxyadenosinderivat ausgehend von Allopurinol hergestellt. Außerdem wurden verschiedene Azid-modifizierte Nukleoside synthetisiert und Untersuchungen zur Herstellung eines Borono-modifizierten Adenosinderivats durchgeführt. Des Weiteren wurde ein Verfahren zur Bestimmung der Stabilität der Azidogruppe unter Standardbedingungen der Phosphoramidit-basierten chemischen Oligonukleotidsynthese demonstriert.
Enzymes are well-known for being remarkably selective catalysts. They are often able to catalyse reactions for certain molecules while leaving other similar molecules completely unchanged. Nevertheless, many enzymes are capable of catalysing other reactions and/or transforming other substrates than their physiologically relevant activities. This phenomenon is referred to as enzyme promiscuity and it is thought to play an important role in the emergence of novel functions by providing a starting point for divergent evolution towards different enzymatic activities. It is important for enzymes to be selective to avoid harmful side-products and increase reaction efficiency, but often catalysts are not optimised beyond what is required for their function. Life profits from the cross-reactivity and enzyme promiscuity through accidental discovery of new helpful molecules and pathways, while using regulation to quickly adapt to changing circumstances.
Enzymes are grouped together with other similar proteins into structural families and superfamilies. Members of a structural family share significant structural elements and often have similar catalytic mechanisms. However, they often catalyse very different chemical reactions and accept a variety of different substrates. Promiscuous activities are common within superfamilies, where the primary function of one family member is often found as promiscuous activity in other family members. Together with the structural similarities, this prevalent cross-reactivity suggests a common evolutionary origin. One of the largest structural superfamilies is the α/β-hydrolase-fold family. Despite sharing a highly conserved core structure, this superfamily is catalytically diverse and spans several distinct enzyme classes including hydrolases, acyltransferases, oxidoreductases, lyases, and isomerases. Epoxide hydrolases and dehalogenases of the α/β-hydrolase-fold family even share the same Asp/Glu-His-Asp catalytic triad and form similar covalent alkyl-enzyme reaction intermediates, yet they are known for attacking either epoxides or C-X bonds with perfect chemoselectivity. Although promiscuity is often observed within the α/β-hydrolase fold family and despite their mechanistic similarities, no α/β-hydrolases were known that exhibit both epoxide hydrolase and dehalogenase activity simultaneously.
The versatility of the catalytic triads used by α/β-hydrolases makes these enzymes attractive targets for the conversion of catalytic activity through protein engineering. Several attempts were made to introduce dehalogenase activity in an epoxide hydrolase, and after several rounds of designing and screening different variants of the epoxide hydrolase PaeCIF from Pseudomonas aeruginosa, minor dehalogenase activity was detected for some of the variants. However, despite promising first results it proved extremely difficult to reliably reproduce the results, primarily due to expression problems and low sensitivity of the halide detection assays that were available at the time. Since the conversion proved to be more difficult than expected (unpublished data), it was decided to investigate other potential protein scaffolds.
Considering the prevalence of catalytic promiscuity among members of the α/β-hydrolase-fold superfamily, and the close relationship and catalytic similarities between epoxide hydrolases and dehalogenases, it seemed odd that no enzyme is known to have both epoxide hydrolase and dehalogenase activity. We argued that it is highly probable that a promiscuous epoxide hydrolase-dehalogenase enzyme exists, but it simply has not been found yet due to the absence of sensitive high-throughput halide assays and not screening the right set of enzymes. Although several established assays were available for the determination of dehalogenase activity, these assays suffer major drawbacks. For example, one of the most popular assays, the Iwasaki assay, is not very sensitive and uses extremely toxic chemicals, while pH assays like the phenol red assay are inherently unreliable and insensitive due to the low buffer concentrations employed107,114. Thus, a new assay for the screening of dehalogenase activity through the selective detection of halides was developed115. The halide oxidation assay provides a safer, more reliable, and most importantly, much more sensitive method to detect dehalogenase activity.
Using molecular phylogenetics, we studied the evolutionary relationship between epoxide hydrolases and dehalogenases to identify interesting extant epoxide hydrolases. Molecular phylogenetics uses a multiple sequence alignment of the amino acid or nucleotide sequences of extant enzymes to construct a phylogenetic tree. At first, we tried using a large dataset with almost 3,500 putative epoxide hydrolase and dehalogenase sequences, but we quickly realised the resulting phylogenetic tree was impractical. Most of the sequences in this large dataset were not characterised experimentally but annotated automatically based on their sequence similarity to a rather limited number of characterised sequences. Although automated annotations can be used as predictions for catalytic activity, they are often wrong. As we were particularly interested in the interface of both epoxide hydrolase and dehalogenase activities, we needed more certainty and a change in direction was necessary.
Instead of trying to filter the α/β-hydrolase fold database, experimentally characterised sequences were collected through literature research. This smaller dataset consisting of characterised sequences resulted in a phylogenetic tree containing 45 epoxide hydrolases, 30 haloalkane dehalogenases and 7 haloacetate dehalogenases from a variety of different organisms. Ancestral sequence reconstruction was attempted for several interesting nodes in this phylogenetic tree. By combining the multiple sequence alignment, the evolutionary relationships from the phylogenetic tree, and evolutionary models, a hypothetical sequence of the theoretical ancestor can be determined. Unfortunately, it was difficult to get good soluble protein expression with the ancestral sequences and despite our best efforts it was not possible to obtain reliable and reproducible screening results. Instead of trying to improve protein expression and purification protocols for the ancestral sequences, we decided to focus on screening extant sequences with the newly developed halide oxidation assay to find a promiscuous epoxide hydrolase-dehalogenase.
In addition to reconstructing ancestral sequences, eight extant epoxide hydrolases could be selected for screening towards dehalogenase activity and as promising potential engineering scaffolds from this phylogenetic tree. The eight selected epoxide hydrolases were screened for dehalogenase activity with several haloalkane substrates and the epoxide hydrolase CorEH from Corynebacterium sp. C12 was found to exhibit promiscuous dehalogenase activity. Interestingly, the measured concentrations of bromide for the initial hit with CorEH were only 150-250 nM, well below the lowest detection limit of 20 µM achievable in microtiter plate format with the Iwasaki assay. This means that the dehalogenase activity of CorEH would probably not have been detected were it not for the development of the sensitive halide oxidation assay.
CorEH is an epoxide hydrolase that can also catalyse the dehalogenation of haloalkanes, particularly bromoalkanes such as 1-bromobutane and 1-bromohexane. The dehalogenase activity of wild-type CorEH with 1-bromobutane (0.25 nmol·min-1·mg-1) is about 4,000-fold lower than the average activity of several natural dehalogenases with two halide-stabilising residues (1 μmol·min-1·mg-1) and approximately 400-fold lower compared to the dehalogenases with a single halide-stabilising residue. The crystal structure of CorEH was determined to 2.2 Å. Our structure-function studies suggest that the dehalogenase activity of CorEH probably stems from the presence of at least one halide-stabilising residue. Unfortunately, this could not be confirmed experimentally via mutagenesis as the W100A variant lost both the dehalogenase and epoxide hydrolase activity in equal measure, making it difficult to demonstrate that W100 is involved in halide stabilisation. The loss of both activities for variant W100A can possibly be explained by the secondary function of the tryptophan; removal of W100 might lead to the incorrect positioning of the catalytic nucleophile for the nucleophilic attack involved in both epoxide hydrolysis and dehalogenation. Nevertheless, computational modelling of Michaelis-Menten complexes, utilising the crystal structure of CorEH, supports the hypothesis that the tryptophan W100 is involved in halide stabilisation in CorEH. Based on docking studies, the epoxide ring-opening tyrosine is also close enough to form hydrogen bonds to stabilise the substrate. However, it is also possible that like several characterised haloalkane dehalogenases, CorEH only uses a single residue to stabilise the halide. Removal of the tryptophan at the primary halide-stabilising position resulted in the loss of both activities, likely due to the loss of its secondary function to properly position the catalytic nucleophile. Substitution of the uncommon tryptophan in the HGxP-motif with phenylalanine does not completely remove the dehalogenase activity. Nevertheless, it causes a significant drop in both haloalkane dehalogenase and epoxide hydrolase activities, indicating that this residue is important for catalysis or the structural integrity of CorEH.
Enzyme promiscuity plays an important role in enzyme evolution and the diversification of enzymes. Several researchers have attempted to interconvert epoxide hydrolase and dehalogenase activity, or to find an enzyme with both activities, without success. It would be hard to maintain the view that promiscuity is a fundamental property crucial to enzyme evolution if we could not observe promiscuity between two enzyme classes with such similar reaction mechanisms. Our findings show that dual epoxide hydrolase and dehalogenase activity can occur in one natural protein scaffold. We believe that we succeeded because we used a phylogenetic analysis of characterised sequences to select the right subset of epoxide hydrolases to investigate and due to the much more sensitive halide assays not available to those before us. The versatility of the catalytic triad in α/β-hydrolases combined with the variety of possible supporting residues found in both epoxide hydrolases and dehalogenases shows that catalytic mechanisms can be flexible. This flexibility allows space for diversification of catalytic residues without loss of function, giving rise to novel (promiscuous) functions and new cross-reactivities.
The hairpin ribozyme is a small Mg2+-dependent catalytic RNA molecule able to catalyze the trans-cleavage of an RNA substrate via a reversible trans-esterification mechanism. In this study, the cleavage activities of several fragmented hairpin ribozyme systems were examined. Due to the complex catalytic structure of the hairpin ribozyme, a new boronic acid ester was used as a covalent linkage to hold the folding of the functional system. It has been demonstrated the possibility of replacing the phosphodiester linkage, at specific positions, with a boronic acid ester to restore or improve the catalytic activity of fragmented hairpin ribozyme.
Monodithiolenkomplexe des Wolframs und des Molybdäns des Typs [M(CO)2(dt)(PP)] (M= Mo, W; dt= Dithiolen; PP= Bisphosphan) waren bisher nur wenig zugänglich und entsprechend kaum untersucht. Im Rahmen dieser Arbeit wurden diverse Variationen an Dithiolen- und Phosphan-Liganden eingeführt und die erhaltenen Komplexe umfassend charakterisiert. Ein besonderer Fokus wurde hierfür auf die redoxbasierte Reaktivität dieser spannenden Komplexklasse gelegt, sodass eine Aktivierung von molekularem Stickstoff im Rahmen einer Kleinmolekülaktivierung ermöglicht werden sollte. Während der Untersuchungen konnte ein erstes Beispiel für die Generierung eines Dithiolen-Sulfonium-Liganden basierend auf einer Reaktivität gegenüber dem Kleinmolekül Dichlormethan erhalten werden.
Long-chain aliphatic amines such as (S,Z)-hepta- dec-9-en-7-amine and 9-aminoheptadecane were synthesized from ricinoleic acid and oleic acid, respectively, by whole-cell cascade reactions using the combination of an alcohol dehydrogenase (ADH) from Micrococcus luteus, an engi- neered amine transaminase from Vibrio fluvialis (Vf-ATA), and a photoactivated decarboxylase from Chlorella variabilis NC64A (Cv-FAP) in a one-pot process. In addition, long chain aliphatic esters such as 10-(heptanoyloxy)dec-8-ene and octyl- nonanoate were prepared from ricinoleic acid and oleic acid, respectively, by using the combination of the ADH, a Baeyer– Villiger monooxygenase variant from Pseudomonas putida KT2440, and the Cv-FAP. The target compounds were produced at rates of up to 37 U g1 dry cells with conversions up to 90 %. Therefore, this study contributes to the preparation of industrially relevant long-chain aliphatic chiral amines and esters from renewable fatty acid resources.
Biocatalytic Production of Amino Carbohydrates through Oxidoreductase and Transaminase Cascades
(2019)
Plant-derived carbohydrates are an abundant renewable re- source. Transformation of carbohydrates into new products, in- cluding amine-functionalized building blocks for biomaterials applications, can lower reliance on fossil resources. Herein, bio- catalytic production routes to amino carbohydrates, including oligosaccharides, are demonstrated. In each case, two-step bio- catalysis was performed to functionalize d-galactose-contain- ing carbohydrates by employing the galactose oxidase from Fusarium graminearum or a pyranose dehydrogenase from
Agaricus bisporus followed by the w-transaminase from Chro- mobacterium violaceum (Cvi-w-TA). Formation of 6-amino-6- deoxy-d-galactose, 2-amino-2-deoxy-d-galactose, and 2-amino- 2-deoxy-6-aldo-d-galactose was confirmed by mass spectrome- try. The activity of Cvi-w-TA was highest towards 6-aldo-d-gal- actose, for which the highest yield of 6-amino-6-deoxy-d-galac- tose (67%) was achieved in reactions permitting simultaneous oxidation of d-galactose and transamination of the resulting 6- aldo-d-galactose.
Promiscuous Dehalogenase Activity of the Epoxide Hydrolase CorEH from Corynebacterium sp. C12
(2021)
Haloalkane dehalogenases and epoxide hydrolases are phylogenetically related and structurally homologous enzymes that use nucleophilic aspartate residues for an SN2 attack on their substrates. Despite their mechanistic similarities, no enzymes are known that exhibit both epoxide hydrolase and dehalogenase activity. We screened a subset of epoxide hydrolases, closely related to dehalogenases, for dehalogenase activity and found that the epoxide hydrolase CorEH from Corynebacterium sp. C12 exhibits promiscuous dehalogenase activity. Compared to the hydrolysis of epoxides like cyclohexene oxide (1.41 μmol min–1 mg–1), the dehalogenation of haloalkanes like 1-bromobutane (0.25 nmol min–1 mg–1) is about 5000-fold lower. In addition to the activity with 1-bromobutane, dehalogenase activity was detected with other substrates like 1-bromohexane, 1,2-dibromoethane, 1-iodobutane, and 1-iodohexane. This study shows that dual epoxide hydrolase and dehalogenase activity can be present in one naturally occurring protein scaffold.