540 Chemie
Refine
Year of publication
Document Type
- Doctoral Thesis (206)
- Article (3)
Has Fulltext
- yes (209)
Is part of the Bibliography
- no (209)
Keywords
- Biokatalyse (17)
- Enzym (14)
- Proteindesign (11)
- Biopharmazie (10)
- Wirkstofffreisetzung (9)
- Biotechnologie (7)
- Cytotoxizität (7)
- Ribozym (7)
- Pharmazeutische Technologie (6)
- Biochemie (5)
Institute
- Institut für Chemie und Biochemie (109)
- Institut für Pharmazie (75)
- Institut für Pharmakologie (19)
- Institut für Physik (2)
- Mathematisch-Naturwissenschaftliche Fakultät (2)
- Institut für Geographie und Geologie (1)
- Institut für Immunologie u. Transfusionsmedizin - Abteilung Transfusionsmedizin (1)
- Klinik und Poliklinik für Innere Medizin (1)
Publisher
- ACS publications (1)
- Wiley (1)
Autoclaved aerated concrete (AAC) is a building material that combines heat insulation
properties with sufficient mechanical strength for masonry construction. Compared to
ordinary concrete, the matrix is highly porous (>50%) and hardened by a hydrothermal curing
process at 150°C - 200°C. During this process, quartz sand and portlandite react to form first
calcium silicate hydrates (C-(A)-S-H) with Ca/Si ratios <1.3 and then tobermorite. Especially
tobermorite, which has a much larger crystallite size than C-(A)-S-H, provides improved
mechanical strength. This reaction sequence is influenced by many parameters and
additives of which calcium sulfate is probably the most important. Despite several attempts to
investigate these hydrothermal reactions, the actual reaction mechanism involved when
adding sulfate ions is not fully understood. It has been suggested that the addition of ca.
1.5 wt% significantly improves the mechanical properties due to the enhanced formation and
arrangement of tobermorite in the porous matrix. Since the sulfate content in AAC waste is
exceeding regulatory threshold for low-quality reuse in some countries, the aim of this study
was to investigate in detail the reaction mechanisms involving sulfate addition. Such
knowledge may open up the possibility to improve AAC production and to avoid the need for
sulfate addition. To achieve this goal, this research work focused on investigating the
hydrothermal curing process to determine the sequence of hydrothermal reactions and the
spatial distribution of the phases formed. For this purpose, a new setup for in situ X-ray
diffraction was specifically designed to study hydrothermal reactions and to conduct time
intensive experiments on a normal laboratory diffractometer. In order to quantitatively
evaluate the in situ measurements by Rietveld analysis using TOPAS, it was also necessary
to develop atomistic structure models for C-(A)-S-H phases. This was made possible by
adopting a supercell approach that was previously used to describe turbostratically stacked
clay minerals. The structure models, derived from tobermorite, are placed in an otherwise
empty supercell to simulate the C-(A)-S-H nanostructure. Adopting these methodological
advances, it was possible to obtain absolute phase quantities from in situ data and to track
the reaction kinetics of the hydrothermal curing process. These results were then combined
with ex situ X-ray diffraction and scanning electron microscopy. Confirming previous studies,
the major effect of sulfate ions was the formation and decomposition of hydroxylellestadite. It
was further revealed that C-(A)-S-H formation was delayed during hydroxylellestadite
formation, which is supposed to support the silicate ion diffusion and hence the tobermorite
formation at a stage critical for improved hardening of AAC. This can be linked to the
formation of lower amounts of capillary pores in the range of 1-5 µm, as observed by
scanning electron microscopy, and therefore a lower concentration of inherent defects that
resulted in the improved mechanical properties. This research work highlights how important the spatial distribution of crystallites is for the properties of a building material and how this
distribution can be influenced by small alterations in reaction chemistry.
This dissertation explores and tries to unravel the fundamental basis of G-quadruplex end-folding as well as G-quadruplex interactions with small molecules by thermodynamic and structural approaches. Selective targeting of G-quadruplexes with ligands remains elusive, either because the ligand has
considerable binding affinity for other DNA structures or because it fails to discriminate between different G-quadruplex topologies. Unique structural motifs on the G-quadruplex may enhance or inhibit ligand binding to the G-quadruplex. For such aspects, it is necessary to understand the effect of G-quadruplex motifs or elements on the end-folding in order to better tune certain G-quadruplex topologies as model systems. Importantly for targeting G-quadruplex with ligands, motifs called Quadruplex-duplex (QD) junctions and interfaces are shown to be a binding hotspot
for various G-quadruplex ligands containing an intercalator motif. Binding affinity and selectivity of the ligands are discussed with the support of the NMR structures.
Biorelevante In-vitro-Freisetzungsmodelle werden u. a. für das Screening neuartiger Formulierungen, zur Etablierung von In-vitro-/In-vivo-Korrelationen und zur Vorhersage des In-vivo-Verhaltens einer applizierten Darreichungsform angewendet. Die Entwicklung von In-vitro-Freisetzungsmodellen für peroral verabreichte Arzneiformen fokussierte bisher vorwiegend auf die Abbildung der gastrointestinalen Physiologie eines gesunden, „durchschnittlichen“ Erwachsenen. Patientenspezifische Faktoren, wie z. B. das Alter, Erkrankungen oder Geschlecht sowie individuelle Unterschiede, die die gastrointestinalen Verhältnisse und folglich auch das Freisetzungsverhalten einer peroral applizierten Arzneiform beeinflussen können, wurden bisher kaum berücksichtigt. Der Fokus dieser Arbeit lag auf der Entwicklung und Etablierung von patientenspezifischen, bioprädiktiven In-vitro-Freisetzungsmodellen für perorale Darreichungs-formen unter Berücksichtigung der gastrointestinalen Gegebenheiten zweier unterschiedlicher Patientenpopulationen: pädiatrische Patienten und Parkinson-Patienten.
Eine wichtige Voraussetzung für eine sichere und wirksame perorale Arzneimitteltherapie bei pädiatrischen Patienten sind altersgerechte Darreichungsformen sowie eine geeignete Einnahmepraxis. Peroral applizierte Arzneimittel werden pädiatrischen Patienten häufig zusammen mit Applikationsvehikeln verabreicht, um die Einnahme der Arzneimittel zu erleichtern. Es muss jedoch bei einer solchen Anwendungspraxis sichergestellt werden, dass die eingenommene Arzneiform mit dem jeweiligen Applikationsvehikel kompatibel ist. Die Beurteilung der Kompatibilität ist anhand klinischer In-vivo-Studien an gesunden Kindern jedoch aufgrund ethischer Bedenken kaum möglich. Zur Evaluierung der Kompatibilität könnten In-vitro-Freisetzungsmethoden als eine mögliche Alternative eingesetzt werden. Im ersten Teil der vorliegenden Arbeit wurden pädiatrische In-vitro-Freisetzungsmodelle entwickelt, um zu evaluieren, ob die Stabilität und das In-vivo-Freisetzungsverhalten der neuartigen Alkindi®-Formulierung durch Co-Verabreichung mit alterstypischen Applikationsvehikeln beeinträchtigt werden. Zur Beantwortung dieser Fragestellung wurden im Anschluss an eine intensive Literaturrecherche Physiologie-basierte In-vitro-Modelle auf Basis der Mini-Paddle-Apparatur entwickelt. In der ersten Studie wurde die In-vitro-Wirkstofffreisetzung nach simulierter Applikation der Alkindi®-Formulierung mit typischen Applikationsvehikeln für Kinder unter 6 Jahren, d. h. Muttermilch, Formulamilch und Vollmilch, untersucht. In der zweiten In-vitro-Studie wurde der Altersbereich der adressierten Patientenpopulation auf 2 - 16 Jahre verändert und eine Reihe weiterer flüssiger sowie halbfester Applikationsvehikel, wie z. B. Orangensaft und Joghurt, verwendet. In beiden Studien konnte deutlich gezeigt werden, dass die Alkindi®-Formulierung ein robustes Freisetzungsverhalten aufwies und kompatibel mit den untersuchten Matrices war. Auf Grundlage der Ergebnisse der In-vitro-Untersuchungen wurde geschlussfolgert, dass die In-vivo-Freisetzung und die Bioverfügbarkeit der untersuchten Arzneiform nicht durch die untersuchten Applikationsvehikel beeinflusst werden und folglich diese Vehikel zur gemeinsamen Einnahme mit der Alkindi®-Formulierung geeignet sind. Diese Beobachtungen wurden darüber hinaus durch publizierte Ergebnisse einer korrespondierenden In-vivo-Studie in Erwachsenen bestätigt.
Der zweite Teil der Arbeit befasste sich mit der Entwicklung eines neuartigen, Parkinson-spezifischen und Physiologie-basierten In-vitro-Freisetzungsmodells. Für die Entwicklung von biorelevanten In-vitro-Modellen zur Simulation der luminalen Bedingungen im Gastrointestinal-trakt einer spezifischen Patientenpopulation sind umfangreiche Kenntnisse über die jeweiligen gastrointestinalen In-vivo-Bedingungen und deren Variabilität unerlässlich. Im Rahmen einer Literaturrecherche wurde der aktuelle Wissensstand zu den gastrointestinalen Gegebenheiten in Parkinson-Patienten recherchiert, ausgewertet und zusammengefasst. Die Ergebnisse der Literaturstudie machen deutlich, dass sich die gastrointestinalen Bedingungen von Parkinson-Patienten teilweise erheblich von gesunden Erwachsenen unterscheiden. Das bedeutendste gastrointestinale Merkmal von Parkinson-Patienten ist die beeinträchtigte Motilität des Gastrointestinaltrakts, was sich u. a. in einer Verlangsamung der Magenentleerung sowie der intestinalen Passage äußert. Demgegenüber steht jedoch ein großer Mangel an Daten für eine Reihe von gastrointestinalen Parametern. Dies betrifft z. B. die Zusammensetzung und physiko-chemischen Eigenschaften der luminalen Flüssigkeiten des Gastrointestinaltrakts.
Als geeignete In-vitro-Testplattform wurde die USP-3-Apparatur – auch als Eintauchender Zylinder (Europäisches Arzneibuch, Ph. Eur.) und Reciprocating cylinder (Ph. Eur. und US-amerikanisches Arzneibuch, USP) bezeichnet – ausgewählt, da sich diese Testplattform insbesondere zur Untersuchung von Darreichungsformen mit modifizierter Wirkstofffreisetzung eignet und bereits in einer Vielzahl von analytischen Laboren etabliert ist. Die Nutzung der kompendialen USP-3-Apparatur ließ aufgrund der geringen Variationsmöglichkeiten keine Simulation typischer Motilitätsmuster im humanen Gastrointestinaltrakt zu und eignete sich noch weniger für die Entwicklung und Etablierung von individuellen, patientenspezifischen Motilitätsprofilen. Um diese technischen Limitationen zu überwinden, wurde für die Weiterentwicklung des arzneibuchkonformen Modells ein Lastenheft erstellt, welches detaillierte Anforderungen für die Entwicklung der neuen Testapparatur enthielt. Auf Grundlage des beschriebenen Übersichtsartikels und unter Anwendung einer auf Basis des Lastenheftes modifizierten USP-3-Apparatur wurden unter besonderer Berücksichtigung von Motilität, Passagezeiten und Flüssigkeitsvolumina Parkinson-spezifische In-vitro-Freisetzungsmodelle entwickelt. Für ausgewählte modifiziert freisetzende Levodopa-Fertigarzneimittel wurde anschließend eine vergleichende Serie von In-vitro-Freisetzungsuntersuchungen unter Anwendung von Parkinson-spezifischen- oder „standardmäßigen“ Testmodellen durchgeführt, wobei letztere die gastrointestinalen Gegebenheiten eines „durchschnittlichen“, gesunden Erwachsenen simulierten. Für eine Beurteilung der Aussagekraft der entwickelten Parkinson-spezifischen Testmodelle wurden die generierten In-vitro-Freisetzungsdaten aus den Parkinson-spezifischen- und den „standardmäßigen“ Freisetzungsuntersuchungen in ein In-silico-PBPK-Modell implementiert und die jeweiligen simulierten Plasmakonzentrations-Zeit-Profile von Levodopa anschließend mit klinischen, durchschnittlichen In-vivo-Daten korreliert. Für PBPK-Modelle mit integrierten Parkinson-spezifischen In-vitro-Freisetzungsdaten wurde eine höhere Prädiktivität des In-vivo-Verhaltens der untersuchten Levodopa-Darreichungsformen beobachtet. Es konnte gezeigt werden, dass die entwickelten Parkinson-spezifischen In-vitro-Modelle ein vielversprechendes und prädiktives Instrument zur Vorhersage der In-vivo-Wirkstofffreisetzung von modifiziert freisetzenden Levodopa-Darreichungsformen darstellen. Der diskutierte methodische Ansatz der vorliegenden Studie könnte zukünftig das Screening neuartiger Formulierungen deutlich optimieren und somit zu einer verbesserten Arzneimitteltherapie für Parkinson-Patienten, aber auch für andere spezifische Patientengruppen beitragen
Um zukünftige Untersuchungen des im bekannten chemical space unterrepräsentierten Strukturmotivs 3,4-disubstituierter bzw. 3,4-verbrückter 1H-Indol-Derivate zu ermöglichen sollte im Zuge der praktischen Arbeiten, welche dieser Dissertation zugrunde liegen, eine Reihe bisher nicht literaturbekannter Verbindungen dieser Substanzklasse, auch unter Verwendung von Multikomponentenreaktionen, dargestellt und charakterisiert werden. Weitere Untersuchungen zur Derivatisierung und Modifikation des Strukturmotivs sollten durchgeführt werden und im Idealfall zu einem weiteren Ringschluss an den tricyclischen Substraten führen. Relevante Verbindungen sollten anschließend in einer Reihe von (internationalen) Screening-Kampagnen und bei Kooperationspartnern hinterlegt werden, um langfristig eine nähere Charakterisierung ihrer physikochemischen und pharmakologischen Eigenschaften zu erreichen, welche gegebenenfalls zur weiteren Optimierung des Strukturmotivs für spezifischere Anwendungen führen kann.
Im Rahmen der vorliegenden Arbeit ist es gelungen drei Substanzbibliotheken verschiedener Grundkörper darzustellen und zu charakterisieren. Dabei handelt es sich um 13 Derivate der cyclischen Bisamide vom 5-Oxo-1,3,4,5-tetrahydropyrrolo[4,3,2-gh]isochinolin-3-carboxamid-Typ, welche sich durch Ugi-MCR aus einem geeigneten bifunktionellen Reagenz, sowie verschiedenen primären Aminen und Isocyaniden in Anlehnung an die Arbeiten von Mironov et al. synthetisieren ließen. Weiterhin konnten, ausgehend von den tricyclischen Verbindungen vom 2-Methyl-5-oxo-1,3,4,5-tetrahydrobenzo[cd]indol-3-carbonsäure- und 2-Methyl-1,3,4,5-tetrahydrobenzo[cd]indol-3-carbonsäure-Typ, welche nach einer modifizierten Vorschrift nach Böshagen et al. erhalten werden konnten, zwei weitere Substanzbibliotheken mit 33 bzw. 24 individuellen Amid-Derivaten hergestellt werden. Dabei konnte durch Verwendung geeigneter Substrate nach der Amidkupplung die Freilegung eine basischen funktionellen Gruppe in einigen Verbindungen erreicht werden, welche die Bildung eines Hydrochlorid-Salzes ermöglichte und dadurch die Wasserlöslichkeit der neuen Verbindungen deutlich zu erhöhen vermag.
Auch gelang durch Einsatz des ökologisch äußerst vorteilhaften Lösungsmittels Dihydrolevoglucosenon die Entwicklung einer „grüneren“ Vorschrift zur Synthese dieser Substanzen, welche auf den Einsatz des, aus ökologischen und gesundheitlichen Gründen kritisch zu hinterfragenden, Lösungsmittels N,N-Dimethylformamid verzichtet.
Die Untersuchungen zur weiteren strukturellen Modifikation der erhaltenen 3,4-verbrückten 1HIndol- Derivate verlief nicht mit dem erhofften Erfolg, da viele Untersuchungen zu dieser Thematik unter anderem mittels Diels-Alder-Reaktion und Olefin-Metathese nicht zu isolierbaren Produkten führten. Allerdings konnte durch Diamin-vermittelte Ringschlussreaktion von 3-Formyl-1H-indol- 4-carbonsäuremethylester letztlich eine Synthesevorschrift zur Darstellung tetracyclischer Derivate erhalten werden. Die aus diesen Versuchen hervorgegangene Verbindung konnte ebenfalls im Rahmen dieser Arbeit zur Kristallisation gebracht und am Institut für Biochemie der Universität Greifswald im Arbeitskreis für Synthetische und Strukturelle Biochemie röntgendiffraktometrisch untersucht werden, was zur Bestätigung der angenommenen Konstitution führte.
Erste Evaluationen der biologischen Aktivität der dargestellten Verbindungen konnten bereits im Arbeitskreis Pharmazeutische Bioanalytik der Universität Greifswald vorgenommen werden: Dabei wurden die relevanten Verbindungen mittels MTT-Assay auf eventuelle Zytotoxizität hin untersucht. Die Ergebnisse legen nahe, dass von den meisten untersuchten Verbindungen keine Zytotoxizität ausgeht, wobei dies allerdings, aufgrund der Limitationen des MTT-Assay im Bezug auf diese Aussage, in weiteren Untersuchungen abschließend geklärt werden sollte. Weiterhin konnte für einige der synthetisierten Verbindungen eine Inhibition der Arachidonat-5-Lipoxygenase (5-LOX) mit IC50-Werten im einstelligen mikromolaren Bereich in vitro nachgewiesen werden. Der genaue Mechanismus der Inhibition, ebenso wie eine eventuell vorhandene Selektivität gegenüber anderen Arachidonat-Lipoxygenasen soll Gegenstand zukünftiger Untersuchungen, unter anderem am isolierten Enzym 5-LOX und in Homogenaten, sein. Darüber hinaus konnte ein großer Teil der synthetisierten Verbindungen im Molekülarchiv „Compound Platform“ (ComPlat) des Karlsruhe Institut für Technologie (KIT) hinterlegt werden, wo sie einer Vielzahl von potentiellen Kooperationspartnern zur Verfügung stehen. Erste Ergebnisse einer solchen Kooperation mit der Arbeitsgruppe Prof. Dr. Fahrer der Technischen Universität Kaiserslautern sollen zeitnah in einer gemeinsamen Publikation veröffentlicht werden. DesWeiteren konnten 40 Verbindungen in der „Testing4Ag“-Kampagne des Unternehmens Bayer Crop Science untergebracht werden, wo ihre Wirkung auf ein breites Spektrum von Schädlingen, Pilzen und Unkräutern evaluiert werden soll. Die Ergebnisse dieser Testungen stehen zum Zeitpunkt der Niederschrift dieser Arbeit noch aus. Eine Hinterlegung von 40 Substanzen in der EU-OPENSCREEN-Plattform, einer non-profit-Abteilung des European Research Infrastructure Consortium (ERIC) wird vorbereitet.
In vitro assays play a crucial role in the biopharmaceutical assessment of drugs. During the past two decades, biorelevant media became an indispensable tool to forecast the in vivo solubility and dissolution of pharmaceutical drug candidates, and to assess absorption risks like low solubility or drug precipitation. Nevertheless, in vitro set-ups are still a simplification of the conditions in the human GI tract. This thesis aimed to shed light on some of the remaining open questions, aiming at providing a better understanding of the effects of biorelevant media on solubility, dissolution, and precipitation processes, and providing guidance for a more streamlined usage in the future. The results of this work can be outlined in brief as follows: First, a new design of experiment-based method development was introduced which increased the robustness and accuracy of derivative UV spectrophotometric methods for drug quantification in biorelevant precipitation assays. Second, based on this new approach, the impact of SIF powder aging on the supersaturation and precipitation behavior of the model drug ketoconazole was investigated. Recommendations on the use of biorelevant media for precipitation assays were developed to further improve the reproducibility of transfer experiments and to enhance data reliability. Third, it was investigated under which circumstances the physiological bicarbonate buffer should be applied to Fasted State Simulated Intestinal Fluid medium for in vitro solubility, dissolution, and precipitation testing to resemble the in vivo conditions.
Marine algae are essential for fixation of carbon dioxide, which they transform into complex polysaccharides. These carbohydrates are degraded e.g., by marine Bacteroidetes and the understanding of their decomposition mechanism can expand our knowledge how marine biomasses can be accessed. This understanding then gains insights into the marine carbon
cycle. This thesis summarizes the current knowledge of marine enzymatic polysaccharide degradation in review Article I and extents a previously discovered ulvan degradation pathway in Article II with the description of a novel dehydratase involved in the ulvan degradation pathway. This enlarged ulvan-degradation pathway can be used to generate fermentable sugars from the algal derived polysaccharide ulvan. A potential biorefinery process is proposed in Article III, where B. licheniformis was engineered to degrade ulvan, thus establishing the initial steps for a microbial cell factory development. In addition to ulvan, also plenty of other complex carbohydrate sources are present in the ocean. The enzymatic elucidation principles previously developed were thus adapted towards a new marine carbohydrate. In Article IV a xylan utilization pathway was elucidated, using enzymes present in Flavimarina Hel_I_48 as model bacterium. The Flavimarina genome contains two separated genome clusters which potentially targets xylose containing polymers reflecting the diversity and adaptions towards different marine xylan-like substrates. Besides, marine Bacteroidetes are adapted towards decomposition of methylated polysaccharide, e.g., porphyran, via demethylation catalyzed by cytochrome P450 monooxygenases. This reaction results in the formation of toxic formaldehyde and thus the marine Bacteroidetes require formaldehyde detoxification principles. The analysis of potential formaldehyde detoxification mechanisms revealed a marine RuMP pathway (Article V) and a novel auxiliary activity of an alcohol dehydrogenase of which the encoding gene is adjacent to the demethylase cluster (Article VI).
The relevance of cold atmospheric plasmas (CAPs) in biomedicine has recently grown. The potential of CAPs has been discussed in multiple scientific works, highlighting its effectiveness in promoting wound healing, limiting cancer progression, and for sterilization of surfaces. Main bioactive molecules, such as reactive oxygen and nitrogen species (RONS), are proposed as key candidates in these processes. Indeed, the generation of cold plasma induces noble gas ionization which, reacting with atmospheric air molecules, generates species such as singlet oxygen, atomic oxygen radicals, nitric oxide radicals. Although molecular simulations have been conducted, the mechanism of action on biological molecules, as well as the possibility to tune plasmas to produce specific species cocktails (e.g., with different degree of oxidation power) has been not fully unleashed. In this dissertation, presented in form of 5 published scientific articles, focus has been placed on the interaction of plasmas with peptides and proteins, which are main biological effectors in cellular compartments. Precisely, through the development of liquid chromatography coupled mass spectrometry (LC-MS) methods, the effects of plasmas on peptides and proteins in form of oxidative post-translational modifications (oxPTMs) has been investigated. The characterization of these oxPTMs has been performed by treating peptide or protein aqueous solutions and on porcine skin tissues. It has been found that, introducing small amounts of different gases (oxygen, nitrogen, or both) or even water molecules, can made CAPs tunable tools to produce oxygen-species dominating effects versus nitrogen-species dominating effects. In addition to this, it was found that the amino acid position in a peptide or protein influences the quality and quantity of the resulting oxPTMs. Besides this, other important parameters like driven gases, admixture gases or treatment duration were identified as relevant factors for the modification of amino acids in the peptide structure. By comparing the effects between peptide solutions and complex matrices such as porcine skin, water has been identified as a valid vehicle to transport and amplify the plasma chemistry. In an experimental study, the inactivation of a protein (PLA2) was observed after CAP treatment and together with simulation studies, the specific dioxidation of tryptophane W128 was detected as a potential explanation for this inactivation, indicating the strong impact of plasma on biological targets. In summary, oxidative modifications found in peptide solutions were observed also in complex protein structures and sample matrices. In conclusion, this work provides a starting point for future studies of oxidative modifications in complex models and may thus be helpful for further investigations in the fields of plasma medicine and redox chemistry.
This work investigated the enzymatic degradation of polyethylene terephthalate (PET) (ArticlesI and II) and polyvinyl alcohol (PVA) (Article III). Physical or chemical degradation of plastic polymers is often performed under extreme conditions like high temperatures or pressure. In comparison to that, recycling of plastics with enzymes can be carried out at ambient temperatures and neutral pH. Enzymes themselves are non- toxic, environmentally friendly, and have been used successfully in a variety of industrial processes.
Enzymatic degradation of polyesters is well studied. Their heteroatomic backbone, which is connecting monomers via ester bonds offers a target for an enzymatic attack. Especially PET, one of the most common polyesters, has been in the focus of research. The first enzyme capable of degrading the polymer was found in 2005. Since then, researchers discovered several enzymes with similar functions and subjected them to enzyme engineering. Improving the enzyme's substrate affinity, activity, and stability aims at making PET recycling more efficient. Article I provides an overview of limitations that enzymatic PET recycling is still facing and the research carried out to overcome them. More precisely, enzyme−substrate interactions, thermostability, catalytic efficiency, and inhibition caused by oligomeric degradation intermediates are summarized and discussed in detail.
Article II further addresses one of the above-mentioned limitations, namely product inhibition of PET hydrolyzing enzymes. We elucidated the crystal structure of TfCa, a carboxylesterase from Thermobifida fusca (T. fusca), and applied semi-rational enzyme engineering. The article discusses the structure-function relationship of TfCa based on the apo-structure as well as ligand-soaked structures. Furthermore, it compares the structures of TfCa and MHETase, another PET hydrolase helper enzyme. Lastly, we determined the substrate profile of the carboxylesterase based on terephthalate-based oligo-esters of various lengths and one ortho-phthalate ester. In a dual enzyme system, TfCa degraded intermediate products derived from the PET hydrolysis of a variant of PETase hydrolase from Ideonella sakaiensis (I. sakaiensis). The dual enzyme system utilized PET more efficiently in comparison to solely PETase due to relieved product inhibition. Since TfCa successfully degraded oligomeric intermediates, the reaction not only released terephthalic acid as the sole product but also increased the overall product yield.
While PET contains an ester bond that can be attacked and hydrolyzed by esterases or lipases, PVA consists of a homoatomic C-C-backbone with repeating 1,3-diol units. The polymer is water soluble with remarkable physical properties such as thermostability and viscosity. PVA is often described as biodegradable, but microbial degradation is slow and frequently involves cost-intensive cofactors. In this study, we present an improved PVA polymer with derivatized side chains and an enzyme cascade that can degrade not only modified but also unmodified PVA in a one-pot reaction. The enzyme cascade consists of a lipase, an alcohol dehydrogenase (ADH), and a Baeyer-Villiger monooxygenase (BVMO). In comparison to the scarcely published research on PVA degradation with free enzyme, this cascade is not only independent from the frequently required cofactor pyrroloquinoline quinone (PQQ) but, in principle, contains an in vitro cofactor recycling mechanism.
Ziel der Arbeit war es, Mono-Dithiolen-Vanadiumkomplexe zu synthetisieren, die als Katalysatoren in Oxidationsreaktion von prochiralen Sulfiden zu chiralen Sulfoxiden getestet werden sollten.
Es konnten verschiedene Ansätze entwickelt werden, die vielversprechend waren, um durch weitere Forschung Mono-Dithiolen-Vanadiumkomplexen erhalten zu können.
Insbesondere konnte eine universell anwendbare Syntheseroute für die Verwendung von aliphatischen Dithiolenen in der Komplexsynthese erfolgreich gezeigt werden. Außerdem wurden neue Kristallstrukturen verschiedener Dithiolen-Vanadiumkomplexe erhalten.
Die Dissertation beschreibt die Synthese verschiedener Nukleosidanaloga mit den notwendigen Modifizierungen und Funktionalitäten für einen Einsatz in der Phosphoramidit-basierten chemischen Oligonukleotidsynthese an fester Phase. Im Rahmen der Arbeit wurde ein nicht-kanonisches Desoxyadenosinderivat ausgehend von Allopurinol hergestellt. Außerdem wurden verschiedene Azid-modifizierte Nukleoside synthetisiert und Untersuchungen zur Herstellung eines Borono-modifizierten Adenosinderivats durchgeführt. Des Weiteren wurde ein Verfahren zur Bestimmung der Stabilität der Azidogruppe unter Standardbedingungen der Phosphoramidit-basierten chemischen Oligonukleotidsynthese demonstriert.