590 Tiere (Zoologie)
Refine
Year of publication
Document Type
- Doctoral Thesis (55)
Has Fulltext
- yes (55)
Is part of the Bibliography
- no (55)
Keywords
- Evolution (6)
- Anpassung (4)
- Klimawandel (4)
- Phylogenie (4)
- Adaptation (3)
- Fledermäuse (3)
- Nervensystem (3)
- Ökologie (3)
- Aedes (2)
- Bicyclus anynana (2)
Institute
Adaptations, either structural, physiological, or behavioural are essential for the survival of species or individuals in changing environments. For animals that live in two distinct environments, adaptations only persist if they provide advantages in one or both media, and if the adaptations do not negatively interfere with other substantial life functions in any of the media. The ability to flexibly respond to rapid environmental changes within such adapted forms potentially provides safeguards, limiting adverse effects of any impact. This also applies to the sensory modalities of amphibious living vertebrates (e.g., seals (Pinnipedia), crocodilians (Crocodilia), penguins (Sphenisciformes)). They are evolutionarily very well adapted to the aquatic element for foraging but have also kept adaptations that enable them to live on land, where they perform major life history tasks like breeding. It is therefore likely that the hearing and vocal systems are also strongly impacted by living in water and air, as they have different acoustic properties. However, to date, the auditory perception and vocal flexibility of penguins have remained largely unexplored in both media. To address some gaps in our knowledge, this thesis focusses on three questions concerning the ability of penguins to hear in air and their vocal flexibility during the breeding season: 1) can penguins in the wild adjust vocal properties depending on the acoustic environment of their colony?; 2) can captive penguins be trained to perform hearing trials? and; 3) how well can penguins hear in air?
Gentoo penguins (Pygoscelis papua) live in large social breeding groups that can include different species. Because of differences in the acoustic environment of such colonies, the vocal characteristics of Gentoo penguins may differ between colonies that include multiple species and those where only Gentoo penguins breed. To examine differences in vocalisations, the vocal parameters of ecstatic display calls (e.g., frequency, structure, duration) were compared between individual Gentoo penguins breeding in colonies with Adélie (Pygoscelis adeliae) or Chinstrap penguins (Pygoscelis antarcticus) and those breeding in monospecific colonies. Gentoo penguin calls showed a lower frequency and narrower energy distribution when they bred in proximity to Adélie penguins but their calls did not vary when they bred in proximity to Chinstrap penguins, whose vocalisations are more distinct. Even though the underlying mechanisms remain unknown, these results suggest that Gentoo penguins can adjust the parameters of their vocalisations according to the social (and presumably acoustic) environment of their colonies. To validate that these vocal adjustments result from the acoustic environment encountered by penguins in their colony, it is essential to know precisely what they can hear in air.
The most sensitive method to examine the hearing capacity of animals is to train them for psychoacoustic measurements. Such training methods have, however, not yet been applied to penguins and there was considerable uncertainty whether the existing training methods (typically used for marine mammals and terrestrial birds) could be applied to penguins. Moreover, it was unknown how individual differences and environmental conditions could affect their trainability. In this thesis, I describe the successful training of four captive Humboldt penguins (Spheniscus humboldti) for psychoacoustic measurements over a 48-month period. Monitoring training progress revealed that their trainability depended on individuality, time of day, moult, pairing and daylength.
Penguins have an ear morphology evolved for an aquatic lifestyle. How this morphological adaptation might influence their auditory capabilities in air was previously unknown. Using psychophysical hearing tests in the afore-mentioned Humboldt penguins, I found that their hearing range at 50 % hit rate was below 76 dB rms re 20 μPa between 0.250 kHz and 10 kHz, with the most sensitive hearing at 2 kHz (mean threshold of 15.3 dB rms re 20 μPa, SD = 10.6 dB, n = 4). After a surprisingly rapid decline of sensitivity in all animals at 0.500 kHz (mean ± SD = 64.1 dB rms re 20 μPa ± 9 dB, n = 4), three of the animals consistently detected the 0.250 kHz frequency stimulus again at comparably low sound levels (mean ± SD = 36.8 dB rms re 20μPa ± 2.4 dB, n = 3). Specific aquatic adaptations of penguins therefore do not appear to have strongly limited their hearing capacity in air compared to other aquatic birds.
By combining my studies on two species, one in the wild and one in captivity, this thesis suggests that penguins may be able to adjust their vocal characteristics to the acoustic environment of their colony by adapting towards lower frequency vocalisations. This finding was supported by the unexpected sensitivity in the lower frequency range found here in the trained penguins. The range of acoustic flexibility required by each species for their ecological niche, could depend on morphological adaptations to a semi-aquatic lifestyle, and their phenotypic plasticity. This thesis provides hypotheses on the specific traits that could be involved, and that can now be further elucidated by targeted investigations.
Species range margins are highly dynamic, changing as a result of complex eco-evolutionary processes. Determining both the abiotic and biotic drivers and the species-specific traits underlying successful range expansions will be vital for predicting future distribution patterns, especially in the current era of anthropogenic environmental change. In pursuit of this knowledge, I used the rapid range expansion of the Mediterranean butterfly species Pieris mannii (MAYER, 1851) into Central Europe as a case study. Specifically, I was interested in studying the relative importance of niche tracking versus niche evolution and the contributions of genetic trait changes and (evolved) phenotypic plasticity within the context of niche evolution. Towards this end, I adopted a multi-methodological approach, including correlative species distribution models (to test for the role of niche tracking in response to climate change; Chapter 1) and common garden experiments. With the latter, I tested for niche evolution in host plant use behaviour, thermal tolerance and life-history traits by comparing replicated populations from P. mannii’s historical and newly established range (Chapter 2). I additionally used the tropical butterfly species Bicyclus anynana (Butler, 1879) to assess how reproductive behaviour is affected by the interaction of temperature and host plant quality, both prone to variations across the range of herbivorous insects (Chapter 3). The results from species distribution modelling revealed that niche tracking, driven by climate change, can be largely ruled out as the primary driver of P. mannii’s range expansion. There was, however, evidence for rapid niche evolution in various phenotypic and life history traits, including female host plant use behaviour. Females from the expanding populations showed increased flexibility in their acceptance and preference for different host plant species, potentially increasing the availability of favourable habitats as connecting “stepping stones” in space and time. The experiments with B. anynana yielded, moreover, interesting insights into temperature-dependent variations in reproductive output on different host plants (reduced fecundity on low-quality host plants under stressfully high-temperature conditions) and a potential trade-off between high selectivity and fecundity. The question of whether these patterns are prevalent in range-expanding species in natural settings warrants further in-depth examinations. Despite shifts in host use behaviour, expanding populations of P. mannii exhibited an enhanced cold tolerance, a trait considered essential for terrestrial ectotherms undergoing successful poleward range expansions in temperate regions. Heat tolerance, however, showed no significant variation across populations, which might indicate a relaxation of selection pressure on upper thermal tolerance limits at higher latitudes. Compared to populations of the ancestral distribution, individuals from range edge populations also exhibited an increased fecundity, frequently characterised as a key trait underlying successful range expansions. As mechanisms underlying trait changes, I identified both (increased and decreased) phenotypic plasticity, demonstrated by increased cold tolerance and accelerated larval development (in individuals of the expanding populations, developing under cool temperature conditions; Genotype x Environment interaction), and genetic trait changes, underlying shifts in host preference and fecundity in reproducing females of range edge populations. With the results of the present thesis, I demonstrate that successful range expansions can be driven by rapid niche evolution in multiple traits, which are associated with abiotic and biotic environmental characteristics. Thus, I highlight the importance of eco-evolutionary dynamics underlying the expression of species-specific "Expansive Phenotypes". Several open questions are discussed and the need for further research, especially concerning potential trade-offs and costs associated with trait expression during range expansion, is underlined.
Foraging behavior, neuroanatomy and neuroplasticity in cursorial and stationary hunting spiders
(2023)
The central nervous system (CNS) is the integration center for the coordination and regulation of
all body activities of animals and the source of behavioral patterns, behavioral plasticity and
personality. Understanding the anatomy and the potential for plastic changes of the CNS not only
widens the knowledge on the biology of the respective species, but also enables a more
fundamental understanding of behavioral and ecological patterns. The CNS of species with
different sensory ecologies for example, will show specific differences in the wiring of their CNS,
related to their lifestyle. Spiders are a group of mesopredators that include stationary hunting
species that build webs for prey capture, and cursorial hunting species that do not build capture
webs. These distinct lifestyles are associated with major differences in their sensory equipment,
such as size of the different eyes.
In this thesis, I aimed to answer if a cursorial mesopredator would change its behavior due to
different levels of perceived predation risk, and if this behavior would be influenced by individual
differences (chapter 1); how the visual pathways in the brain of the cursorial hunting jumping
spider Marpissa muscosa differs from that of the nocturnal cursorial hunting wandering spider
Cupiennius salei (chapter 2); to what degree the visual systems of stationary and cursorial hunting
spiders differ and whether CNS areas that process vibratory information show similar differences
(chapter 3); and finally if the CNS in stationary and cursorial hunting spiders shows different
patterns of neuroplasticity in response to sensory input and deprivation during development
(chapter 4).
In chapter 1, I found that jumping spiders adjust their foraging behavior to the perceived level of
risk. By favoring a dark over a light substrate, they displayed a background-matching strategy.
Short pulses of acute risk, produced by simulated bird overflights, had only small effects on the
behavior. Instead, a large degree of variation in behavior was due to among-individual differences
in foraging intensity. These covaried with consistent among-individual differences in activity,
forming a behavioral syndrome. Our findings highlight the importance of consistent amongindividual
differences in the behavior of animals that forage under risk. Future studies should
address the mechanisms underlying these stable differences, as well as potential fitness
consequences that may influence food-web dynamics.
In chapter 2, I found that the visual pathways in the brain of the jumping spider M. muscosa differ
from that in the wandering spider C. salei. While the pathway of the principal eyes, which are
responsible for object discrimination, is the same in both species, considerable differences occur
in the pathway of the secondary eyes, which detect movement. Notably, M. muscosa possesses
an additional second-order visual neuropil, which is integrating information from two different
secondary eyes, and may enable faster movement decisions. I also showed that the tiny posterior
median eye is connected to a first-order visual neuropil which in turn connects to the arcuate body
(a higher-order neuropil), and is thus not vestigial as suggested before. Subsequent studies should
focus on exploring the function of the posterior median eyes in different jumping spider species,
Foraging behavior, neuroanatomy, and neuroplasticity in cursorial and stationary hunting spiders
as they show considerable inter-specific size differences that may be correlated with a differing
connectivity in the brain.
In chapter 3, I described all neuropils and major tracts in the CNS of two stationary (Argiope
bruennichi and Parasteatoda tepidariorum) and two cursorial hunting spiders (Pardosa amentata
and M. muscosa). I found major differences in the visual systems of the secondary eyes between
cursorial and stationary hunting spiders, but also within the groups. A. bruennichi has specialized
retinula cells in two of the secondary eyes, which connect to different higher-order neuropils. P.
tepidariorum has only a single visual neuropil connected to all secondary eyes, and lacks
recognizable mushroom bodies. The neuroanatomy of CNS areas that process mechanosensory
information on the other hand, is remarkably similar between cursorial and stationary hunting
species. This suggests that the same major circuits are used for the processing of mechanosensory
information in both cursorial and stationary hunting spiders. Future studies on functional aspects
of sensory processing in spiders can build on the findings of our study.
In chapter 4, I found that developmental neuroplasticity in response to sensory input differs
between a cursorial (M. muscosa) and a stationary hunting spider (P. tepidariorum). While
deprivation of sensory input leads to a volume increase in several visual and mechanosensory
neuropils M. muscosa, neither sensory deprivation nor sensory enrichment had an effect on the
volume of neuropils in P. tepidariorum. However, exposure to mechanical cues during
development had an effect on the allometric scaling slope of the leg neuropils in both M. muscosa
and P. tepidariorum. Future studies should focus on the genetic and cellular basis of
developmental neuroplasticity in response to sensory input in order to explain the observed
patterns.
Increasing environmental changes primarily due to anthropogenic impacts, are affecting organisms all over the planet. In general, scientists distinguish between three different ways in which organisms can respond to environmental changes in their habitat: extinction, dispersal and adaptation. An example of organisms which are highly adaptable and can easily cope with new and changing environments are invasive species which are able to colonize new habitats with only few individuals. To successfully survive in their new environment, invasive species adapt fast to novel abiotic and biotic parameters, such as different temperature regimes. Phenotypic plasticity which enables organisms to quickly modify their phenotype to new environmental conditions, explains the success in adaptation of invasive species.
While underlying mechanisms of phenotypic plasticity are not fully understood, one possible “motor” of phenotypic plasticity is epigenetics. Especially DNA methylation could explain the fast changes of the organism’s phenotype due to plasticity when experiencing changing environments, as invasive species do. DNA methylation could even contribute to the adaptation of invasive species via phenotypic plasticity, especially with clonally reproducing species. Methods such as common garden experiments with clonally reproducing species are a useful tool to differentiate between phenotypic plasticity and genetic adaptation because the confusing effects of genetic variation are lowered in clonally reproducing species.
Our overall goal was to evaluate the genetic adaptive potential of New Zealand mud snail (Potamopyrgus antipodarum) populations from Europe since they went through an extreme bottleneck after colonizing Europe only 180-360 generations ago. Seemingly, two different clonal lineages colonized Europe because two 16 s rRNA and cytochrome b haplotypes were found across different European countries, haplotypes t and z. The NZMS is a highly successful invasive species that is nowadays nearly globally distributed. The shells of the NZMS show a habitat-dependent high variability and are a fitness-relevant trait. The high variability in shell morphology is due to both genetic variation and phenotypic plasticity. To disentangle genetic from environmental effects on the shell morphology NZMS, we conducted a common garden experiment. We kept asexually reproducing females from eleven European populations in climate cabinets with three different temperatures to produce offspring. We compared shell size and shape across three generations using the geometric morphometrics approach. Furthermore, we estimated reaction norms, maternal effects, broad-sense heritability, the coefficient of genetic variation (CVA) and evolvability (IA) in shell size and shape across different temperature conditions. Additionally, we investigated the reproductive rate of the parental generation.
Results showed that the shell morphology of the parental generation differed across populations. In contrast, the shell morphology of offspring generations became more similar. The reaction norms of the F1 generation were rather variable across the three temperatures. However, we were able to observe a haplotype-dependent pattern across the reaction norms suggesting a restricted genetic differentiation among NZMS in Europe. We detected high heritability values in size indicating a high genetic influence. Heritability values for shape were lower than in size. Generally, heritability varied slightly depending on temperature. Size seemed to have a higher evolvability than shape. However, the values of all our calculations were very low which indicates that the European NZMS populations are genetically diminished. The reproductive rate of the parental generation was rather haplotype than temperature dependent. In summary, we were able to display that the NZMS is capable to plastically adapt its shell morphology to different temperatures showing significant differences between the two haplotypes. Nevertheless, the low evolvability values indicate that little genetic variation has formed since the arrival of the NZMS in Europe and therefore, European NZMS seem to have a reduced ability to react to selection.
These results implied that phenotypic plasticity is important for the adaptation to different environmental conditions in the NZMS and maybe other molluscan species. Since classical experimental approaches can only describe the resulting phenotypes, we also intended to shed more light on the mechanistic side of environmentally induced phenotypic modifications using DNA methylation analysis. Although molluscs represent one of the most diverse taxa within the metazoan and are found in many different habitats, our knowledge of the DNA methylation in molluscs is scarce. Therefore, we aimed at deepening and summarizing our understanding about DNA methylation in molluscs. Publicly available molluscan genomic and transcriptomic data of all eight mollusc classes was downloaded to search for DNA methyltransferases (DNMTs 1-3) responsible for DNA methylation. Additionally, we estimated the normalized CpG dinucleotide content (CpG o/e) indicating the presence/absence and the frequency of DNA methylation in the genome. The CpG o/e ratio refers to the level of DNA methylation in the genome. Based on the sensitivity of methylated cytosines to mutate into thymine residues, species having a high germline methylation in genomic regions over evolutionary time, also have a lower CpG content, which is called CpG depletion. In contrary, species with a limited germline methylation in genomic regions over evolutionary time, show a higher CpG content and lack CpG depletion. The presence or absence of CpG depletion can be calculated with the CpG o/e ratio. Ultimately, the goal of our analyses was to gain insight into the evolution of methylation in molluscs.
We detected DNMTs in all eight mollusc classes and in most of the species. It is therefore plausible that the last common ancestor of molluscs has already had the enzymatic machinery which is needed for DNA methylation. However, various species did not possess the complete DNMT toolkit indicating evolutionary modification in DNA methylation. In general, we found a wide distribution of the bimodal CpG o/e pattern in six mollusc classes, resulting from CpG depletion. The genes in these groups seem to be divided into genes with a high degree of methylation and genes with a lower degree of methylation. This implies that DNA methylation seems to be rather common in molluscs. Species of Solenogastres and Monoplacophora were not or only sparsely methylated. It seems that those mollusc groups have undergone a reduction in DNA methylation. We hope that our investigations will demonstrate the lacking knowledge in epigenetics of molluscs and encourage scientist to execute and continue genetic studies on molluscs.
The need for the diversification of utilised species has emerged in the present aquaculture
production environment. Shifts in consumer interest, climate change-induced temperature
increases, and major fish disease outbreaks have put a strain on this industry. In this context,
the pikeperch (Sander lucioperca) has become a new target species for aquaculture in Central
Europe. This new aquaculture focus species exhibits high numbers of offspring, fast growth,
and high consumer acceptance. It can also effectively deal with higher temperatures and turbid
water. However, the rate of successful rearing is still low, as various developmental
transformations and environmental effects commonly lead to high mortality rates during the
early ontogenetic stages. The aim of this doctoral project was thus to obtain insight into
embryonic to larval developmental changes during pikeperch ontogeny. Specifically, the times
of change that influence survival were of focus. Based on the available literature, particular
attention was paid to general growth patterns and the connected developmental changes, the
determination of myogenesis gene marker expression changes, and the support of animal
welfare efforts for pikeperch rearing procedures. To achieve the aims of the study, a methodical
setup consisting of morphometric and developmental observations was combined with
transcriptome gene marker analysis for the different ontogenetic stages.
Three developmental phases were differentiated during the embryo-larval transition. Each of
these possessed distinct growth patterns with different growth rates. The intermediate
threshold phase showed internal organ development that focused on digestive, neuronal, and
heart tissues. Three activity phases of myogenesis were determined: during early embryonic
development, before hatching, and after hatching during the larval stages. Therefore, muscle
development seemed to be regulated to balance energy expenditures. Additionally, two
coinciding skeletogenic phases were found. Furthermore, a cell line from whole embryos was
developed to support the replacement of animals in future experimental setups. A software
system for video analyses was developed to support rearing procedures in aquaculture
facilities. This prototype can be used to automate the counting of specimens and thus allows
for faster responses to increasing mortalities. Based on the results of this thesis project, further
insights into the early development of pikeperches were obtained. This will facilitate the design
and adaptation of raising and husbandry protocols, which can help to further establish
pikeperch as an aquaculture species and support its application in modern recirculatory
systems.
In drei verschiedenen Teilanalysen wurden Erkenntnisse über die Wirksamkeit von Interventionsmaßnahmen gegen das Vorkommen und die Verbreitung von ESBL/AmpC-bildenden E. coli in der Hühnermast gewonnen. Literaturdaten und praktische Laborergebnisse, die teilweise selbst erhoben wurden, flossen in ein mathematisches Modell ein, um die Auswirkungen von Haltungsparametern und konkreten Interventionsmaßnahmen prädiktiv berechnen zu können. Die zusammengefassten Ergebnisse zeigen einen Einfluss der Maßnahmen „Competitive Exclusion“, „Reinigung und Desinfektion“ sowie den Haltungsparametern „Rasse“, „geringe Besatzdichte“ und „erhöhte Einstreumenge“ auf das Vorkommen von bestimmten ESBL/AmpC-bildenden E. coli. Zusätzlich zu den Einzelmaßnahmen wurden im Modell mehrere Kombinationen getestet, wobei zwei unterschiedlichen Szenarien verwendet wurden, entweder der Stall oder die Eintagsküken waren zu Beginn der Mastperiode positiv. Diese Kombinationen ergaben eine deutliche Reduktion der resistenten E. coli in den infizierten Tieren, in deren Ausscheidungen und in der Einstreu. In diesem Zusammenhang wären Daten aus tierexperimentellen Studien zu kombinierten Maßnahmen interessant. Weitere wissenschaftliche Ergebnisse könnten zu einem optimierten Modell beitragen, damit es die realen Bedingungen besser widerspiegelt. Zu einer weiteren Präzisierung könnte zum Beispiel die dezidierte mathematische Berechnung des Wachstums von resistenten E. coli in den unterschiedlichen Teilen des Gastrointestinaltrakts des Huhns und in der Einstreu führen, unter Berücksichtigung von pH-Wert und Temperatur. Ungeachtet dessen bietet die vorliegende Version des Modells eine nützliche Unterstützung bei der Vorhersage der Auswirkung unterschiedlicher Maßnahmen auf das Auftreten und die Verbreitung von ESBL/AmpC-bildenden E. coli in Masthuhnbetrieben. Diese Ergebnisse können zu einer umfassenden Quantitativen mikrobiologischen Risikobewertung (QMRA) beitragen, mittels derer die Effizienz von Risikominderungsmaßnahmen in der gesamten Broilerproduktionskette, von der Brüterei und Aufzucht über die Mast, Schlachtung, Verarbeitung und den Einzelhandel bis hin zum Verzehr - from farm to fork, bestimmt werden kann.
Species are the basic units of evolution and biodiversity, and the process of speciation has been one of the most important questions in biology. The evolution of species with common descent is considered to be mainly driven by natural and sexual selection. The material basis and mechanical cause of organismic evolution were recognized during the formation of the modern synthesis of the evolutionary theory in the early 20th century, providing the framework for speciation studies. During this period, the biological species concept was developed in the frame of population genetics, putting emphasis on the reproductive isolation between populations. The phylogenetic species concept developed in the 1980s, on the other hand, does not make any particular assumption about evolutionary or speciation processes. It defines species via their unique combination of character states which are compatible with phylogenetic practices. However, the aforementioned two species concepts are difficult to apply in alpha-taxonomy, where newly discovered species are largely described by the morphological (typological) species concept for practical reasons. Nevertheless, the description of morphological species provides the basis for further assessments of species delimitation via other species concepts and approaches. One of the tools for assisting the identification and discovery of animal species is DNA barcoding, which uses a standard region of mitochondrial DNA sequence as a universal DNA barcode. However, its assumption of intraspecific genetic distances being smaller than interspecific genetic distances does not always hold. Species-level poly-/paraphyly is prevalent due to the discrepancy between the phylogenies of mitochondrial DNA and species. This suggests that the application of DNA barcodes must be combined with an integrative taxonomic approach. Beside the application as a tool for assisting species identification, the information from mitochondrial DNA sequences opens up a window for looking into the complex history of species.
Sexual selection is a potential mechanism driving the evolution of species. It favors traits that increase mating probability and mating success. It can result from intrasexual competition, female preference or sexual conflict. However, previous comparative studies using the degree of sexual dimorphism as a proxy for the strength of sexual selection have yielded inconsistent results as to the relationship between sexual selection and species richness. A possible cause of the inferred low association are factors other than sexual selection, which can also lead to the evolution of sexual dimorphism, such as selection for increased female fecundity. In order to assess the effect of sexual selection on speciation, the lability and evolvability of traits need to be studied that are clearly under sexual selection.
The aim of this thesis is to improve the knowledge about dwarf spider (Erigoninae, Linyphiidae) diversity and taxonomy, and to assess the evolutionary patterns of dimorphic traits that are under sexual selection. I focused on the abundant and diverse male prosomal modifications in dwarf spiders that are linked to the transfer of secretions from the male to the female during courtship and mating (gustatory courtship). This approach explores the process of speciation and the role of sexual selection on species diversification. I described new erigonine species and revised the classification of known species based on phylogenetic analyses. I also applied X-ray micro-computed tomography (micro-CT) to investigate the distribution and evolutionary pattern of the gustatory glands to tease apart the evolution of prosomal shape and glandular equipment.
This cumulative thesis consists of three publications:
Publication 1: This publication aimed at contributing to the knowledge of erigonine diversity. The genus Shaanxinus previously contained only two species from China. I collected dwarf spiders from multiple locations in Taiwan from above-ground vegetations with a seldom applied collecting method. Inspection of the collected material resulted in the discovery of 13 Shaanxinus species. An additional species from Vietnam was described from a museum collection. I provided a revision of the genus Shaanxinus. A phylogenetic analysis using morphological characters was conducted for determining the possible generic synamomorphies. I also reconstructed the glandular distribution associated with male prosomal modifications, as well as the detailed structure of a male secondary sexual organ (pedipalp) by micro-CT. Furthermore, I conducted phylogenetic analyses based on sequences from two mitochondrial and one nuclear loci, and assessed the efficacy of different criteria in species identification using DNA barcoding. Distinction of morphologically similar species have been assisted by molecular data. The species level poly-/paraphyly found in mitochondrial DNA sequences caused the low efficacy of many distance- and tree-based species identification methods, while the nearest neighbor method showed high identification success. The non-monophyly is likely caused by instances of interspecific hybridization and recent parapatric speciation. The genus Shaanxinus thus lend itself as an ideal group for congeneric phylogeographic studies addressing the interactions between closely related species. Published in: Lin, S.-W., Lopardo, L., Haase, M. & Uhl, G. 2019. Taxonomic revision of the dwarf spider genus Shaanxinus Tanasevitch, 2006 (Araneae, Linyphiidae, Erigoninae), with new species from Taiwan and Vietnam. Organism Diversity & Evolution, 19, 211-276.
Publication 2: Sexually dimorphic prosomal modifications that are related to gustatory courtship occur in many dwarf spider species. These features evolved in the context of sexual selection, which has a potential effect on species diversification. In contrast to many
erigonine genera which present little variability in male prosomal traits, the genus Oedothorax presents higher diversity in male prosomal structures among species not only in the position and shapes of the modifications, but also in the degree of modification, ranging from absent to highly elaborated. This genus thus lends itself as a suitable target group for studying the effect of gustatory-courtship-related traits on species diversification. I conducted a revision of the 82 species previously belonging to this genus. Based on the result of a phylogenetic analysis, this genus was re-delimited with 10 species as Oedothorax sensu stricto, while taxonomic decisions were made for other species including synonymization with species from other genera and transferring species to other existing and newly defined genera. 25 species were deemed as “Oedothorax” incertae sedis. The reconstruction of character state evolution suggested multiple origins of specific prosomal modification types. Convergent evolution of these traits among different lineages suggests that sexual selection has played an important role in the species diversification of dwarf spiders. Published in: Lin, S.-W., Lopardo, L. & Uhl, G. 2021. Evolution of nuptial-gift-related male prosomal structures: taxonomic revision and cladistic analysis of the genus Oedothorax (Araneae: Linyphiidae: Erigoninae). Zoological Journal of the Linnean Society, XX, 1-168.
Publication 3: Although sexually dimorphic traits have inspired the concept of sexual selection as the driving force of their evolution, they might also have evolved due to other ecological factors. These factors include the sexual signal adaptation to the environment as well as sexual differences in ecological relations and parental investment. In contrast, the gustatory courtship in dwarf spiders is associated with sexually dimorphic male prosomal modifications, which have clearly evolved in the context of sexual selection. Multiple origins of various external prosomal modifications have been shown in erigonine phylogeny, but the evolutionary pattern of the associated glands has not been investigated. Our phylogenetic analysis incorporated the characters related to the glandular distribution in the male prosoma as well as the external shapes yielded from X-ray micro-computed-tomography showed a single origin of gland among the investigated erigonine taxa. The internal anatomy revealed previously undetected trait lability in attachments of muscles to the cuticular structures, as well as the presence/absence and differences in glandular distribution even in species without external modification. Our finding further supports that erigonine male prosomal traits are under divergent selection, and corroborates the argument that erigonines are a suitable group for investigating the effect of sexual selection on speciation. Published in: Lin, S.-W., Lopardo, L. & Uhl, G. 2021. Diversification through gustatory courtship: an X‑ray micro‑computed tomography study on dwarf spiders. Frontiers in Zoology, 18: 51.
The results of this thesis corroborate the importance of applying phylogenetic methods and an integrative approach in the description of new species, as well as in revising taxa which might not be monophyletic. Overall, the studies contributed to a more comprehensive knowledge about erigonine species diversity, phylogeny and the possible diversifying effect of sexual selection on male traits associated with gustatory courtship.
Bats are special: although they have a small body size, bats are extremely long-lived and have a low annual reproductive output, which puts them at the ‘slow’ end of the slow-fast continuum of mammalian life-histories. Species typically respond to climate change by genetic adaptation, range shifts or phenotypic plasticity. However, limited dispersal behavior in many bat species and long generation times make it very likely, that adaptive responses in bats are rather driven by phenotypic plasticity than by genetic adaptation or range shifts. Changing weather patterns, a higher frequency of extreme weather events and overall rising temperatures, caused by climate change, will impact phenology, energy supply and energy expenditure. In species where adult survival largely shapes population dynamics, it is thus of crucial importance to understand how climate change affects individual fitness and fitness relevant traits by altering behavior and development.
In my study, I investigated how weather impacts behavior, fitness and fitness relevant traits in free ranging Natterer’s bats from two geographical regions (south vs. north) in Germany. In the Nature Park Nossentiner/Schwinzer Heide (northern region, NSH), long-term data for investigations on population dynamics are partially collected by hibernation counts. Although counting hibernating bats is a regularly applied method, it is still unclear to which degree human visits in the hibernaculum trigger energy consuming arousals and thus increase energy expenditure. Thus, I first investigated if hibernation counts potentially threaten winter survival by assessing the number of energy consuming arousals of hibernating Natterer’s bats (Myotis nattereri) and two other bat species (Pipistrellus spp., Plecotus auritus) using thermal imaging. Additionally, I used light barriers in the hibernacula to investigate the relative impact of winter temperatures and human visits on flight activity of hibernating bats. Secondly, I investigated effects on survival and reproduction during summer by analyzing capture-mark-recapture data from summer roosts. Data from summer roosts have been collected since 2011 in Würzburg (WB, south) and 1990 in the Nature Park (NSH, north). Based on these data, I analyzed the effect of intrinsic (e.g. age) and extrinsic(e.g. different weather parameters) factors on individual survival probability and reproductive success. I further focused on the question if individual body size is a fitness relevant trait in Natterer’s bats and how body size of young bats is affected by summer temperatures.
During hibernation, ambient temperatures were the most important driver for bat activity and were positively correlated with the number of flight passes in the light barrier, suggesting that bats can exploit foraging opportunities more frequently during warm weather bouts. Monitoring caused only a small number of arousals and only a slight increase in activity, which was less severe on warmer days, when activity was generally higher. Thus, I propose that benefits of hibernation counts outweigh the costs of human presence in the hibernaculum and unlikely threaten winter survival in hibernating bats.
In spring, increased precipitation during a short time window strongly reduced the probability of successful reproduction in first-year females (females that returned from first hibernation, FY). In terms of timing, this sensitive period comprises the implantation or early pregnancy, a time before substantial investment into embryo development. Moreover, I identified a positive correlation between a large body size and reproductive success in FY females. Given the evidence that suitable weather conditions during early life support juvenile growth and thus a large body size, my findings suggest that reproduction may be condition dependent in young females. Reproductive success of older females was not affected by either weather or individual parameters. This suggests that older and experienced females can better deal with adverse conditions.
To examine if beneficial weather conditions are linked to a large body size, I investigated the effect of ambient temperatures during the growing season on body size. I found that higher ambient temperatures during summer led to larger individuals, however, only in the northern population. In the on average colder North, warmer summers may benefit juvenile growth by reducing thermoregulatory costs and increasing prey abundance, whereas in the general warmer South, this effect might not be visible or relevant. When I analyzed the link between body size and survival, I revealed that larger adult females have higher survival rates. Given the fact, that a large body size is a response to beneficial early life conditions, this demonstrates the impact of early life conditions on long lasting fitness effects.
The results of my research lead to the assumption that warmer ambient temperatures have positive effects on Natterer’s bats, both during winter and summer. However, increased activity in response to rising winter temperatures, as expected under climate change scenarios, could be a serious thread for hibernating bats, if food availability does not increase in the same amount as bat activity. During summer, warmer temperatures may have positive effects on juvenile development in northern regions, but this effect could be negative in more southern regions by exceeding heat tolerance and resulting in water stress. This research highlights, that investigating periods of weather sensitivity on a finer time scale and also in a spatial context is of crucial importance to gain a better understanding for mechanisms leading to the impacts of weather on fitness.
As the effects of anthropogenic climate change become more pronounced, it is critical to understand if and how species can persist in novel environments. Range-expanding species provide a natural experiment to study this topic: by studying the factors contributing to successful colonization of new habitats, we can gain insight into what influences organisms’ adaptive potential. The wasp spider, Argiope bruennichi, has expanded its range from warm, oceanic and Mediterranean climate zones (populations in this region are referred to as “ancestral” or “core”) into a new thermal niche, the continental climate of the Baltic States and Scandinavia (referred to as “expanding” or “edge”) within the last century. Past work demonstrated that the expanding populations are European in origin, but are more diverse than the ancestral populations, due to genetic admixture. This discovery led to the following questions, which are investigated in this dissertation: (i) Was the successful colonization of colder, more continental northern climates due to phenotypic plasticity or genetic adaptation? (ii) If A. bruennichi’s establishment of northern latitudes can be attributed to genetic adaptation, did selection act on standing genetic variation, on genetic variation introduced via admixture/introgression, on specific genomic regions, or on novel mutations? (iii) Is there a role of the microbiome in the A. bruennichi range expansion?
In Chapter 1, we assembled a chromosome-level genome for the species: the first such high-quality genome for a spider, which we made use of as a resource to provide the genomic context of single nucleotide polymorphisms in our primary study on genetic adaptation and phenotypic plasticity (Chapter 3). The genome assembly also opened the door to many new projects, such as the study presented in Chapter 2. In Chapter 2, the chromosome-level resolution of our assembly allowed us to identify the sex chromosomes in A. bruennichi. Due to the X1X20 sex chromosome system, where males have one copy of two X chromosomes, and females have two copies, the X chromosomes have a lower effective population size, and lower recombination rate, than autosomes. These characteristics give rise to the theoretical prediction of increased evolutionary rates in sex chromosomes. Knowing the identity of the sex chromosomes in our A. bruennichi genome assembly will allow us to test if there is stronger differentiation between populations on the X chromosomes.
Chapter 3 represents the central study of this dissertation. We performed a reciprocal transplant common garden experiment to assess plasticity and adaptation in cold tolerance traits, using spiderlings from the core of the range in France, and the edge of the range in Estonia. We combined this with data on clinal variation in adult phenotypes (body size, pigmentation, and fecundity) and genotypes in a transect across the European range. This study revealed a strong signature of genetic adaptation for increased cold tolerance in edge populations, and clear genetic differentiation of ancestral and expanding populations over a very short geographic distance, despite gene flow. We provide genome-wide evidence for adaptive introgression, and conclude that the A. bruennichi range
expansion was enabled by adaptive introgression, but has reached a poleward range limit.
Interactions with microbes shape all aspects of eukaryotic life. Endosymbiotic bacteria have been shown to alter the thermal tolerance of arthropod hosts, and influence dispersal behavior in spiders. With this background, in Chapter 4, we asked whether the microbiome might play a role in the rapid range expansion of A. bruennichi. We characterized the microbiome in various dissected tissues of spiders from two populations. Although we found no obvious differences between populations or tissues, this study yielded the discovery of a novel, dominant, vertically transmitted symbiont with astoundingly low similarity to all other sequenced bacteria. Since that discovery, we have found evidence of the unknown symbiont in A. bruennichi populations across the Palearctic (unpublished data), making it relatively unlikely to play a role in the range expansion.
By studying the establishment and subsequent differentiation of core versus edge populations of A. bruennichi following range expansion, we were able to gain insight into the evolutionary and ecological processes that allowed this species to successfully cope with novel environments. The rapidity with which local adaptation arose in A. bruennichi suggests that evolutionary adaptation to novel environments is possible over short time periods. However, this may only be possible in species with sufficient standing genetic variation, or with genetic variation introduced via admixture, as in A. bruennichi, which has important implications for our understanding of species responses in the face of ongoing global climate change.
Under the influence of human activities, increased climate variability induces changes in
multiple marine environments. Especially vulnerable are the coastal ecosystems where organisms
must cope with constant extreme changes of environmental drivers, such as temperature, salinity, pH,
and oxygen content. In coastal areas, brachyuran crabs are important animals that have a high impact
on ecosystem functioning and serve as a link in food webs and pelagic-benthic coupling. Larval stages
of crabs are crucial for population persistence and dispersal. They are generally more vulnerable to
changes of environmental drivers and failure to adapt to new conditions may result in population
collapse. To analyse the effects of multiple environmental drivers on larval performance and to
elucidate interspecific and intraspecific difference, this project examined larval performance in the
European shore crab Carcinus maenas. In this study, larvae of C. maenas from three native
populations (Cádiz: Cádiz Bay, Helgoland: North Sea, Kerteminde: Baltic Sea) were reared in a
factorial design consisting of different temperature (15-24 °C) and salinity treatments (20, 25, 32.5
PSU). Results demonstrated how descriptors of larval performance (growth, physiological, and
developmental rates, and survival) were affected by combined environmental drivers. Larval
responses to temperature and salinity showed contrasting patterns and differed among native
populations originating from distant or contrasting habitats, as well as within the populations. The
highest overall performance was recorded in the Cádiz population, while the Kerteminde population
had the lowest performance in most of tested traits. The interactive effects of multiple drivers differed
among the populations. In the Cádiz and Helgoland populations, higher temperatures mitigated the
effect of lower salinity while the Kerteminde population showed a maladaptive response when
exposed to lower salinity. Differences in performance showed better locally adapted populations (e.g.
Cádiz) that could acclimate faster, have better adaptive mechanisms or stronger dispersive abilities.
Because of their wider tolerance to increased temperature and decreased salinity, interactive effects
in particular populations may favour some populations in a changing climate, especially in coastal
habitats. Variation in larval performance showed complex interactions in larval performance and
highlighted the necessity to quantify inter-population responses to climate-driven environmental
change where responses of species should not be generalised. This study emphasizes the need for
inclusion of multiple traits, drivers, and populations in experimental studies to properly characterize
performance of marine coastal animals.