Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 11 of 18
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-87055

Mass spectrometry based analyses of posttranslational protein modification in bacterial and viral (co)-infection

  • Posttranslational modifications are involved in the regulation of virtually all cellular processes, including immune response, nevertheless, they are also targets manipulated by invading pathogens. The first investigated example is protein citrullination which is an important posttranslational modification that acts on a multitude of processes like supervision of cell pluripotency and rheumatoid arthritis. Citrullination of targeted arginine residues is performed by the Peptidylarginine deiminase. Within the first published manuscript, being part of this thesis, it was possible to show the use of this posttranslational modification by the human pathogen Porphyromonas gingivalis to facilitate innate immune evasion at three distinct level. P. gingivalis was demonstrated to citrullinate proteins by Porphyromonas peptidylarginine deiminase resulting in diminished phagocytosis and subsequent killing by neutrophils. Furthermore, it was shown that citrullination of histone H3 enables P. gingivalis to survive in neutrophil extracellular traps and incapacitate the lysozyme-derived peptide LP9. The second investigated posttranslational modification is ubiquitination and its role in respiratory tract infections. Ubiquitination is the covalent attachment of a small protein that consisting of only 76 amino acids to the ε-amino group of lysine residues to posttranslational modify proteins. Acute infections of the lower respiratory tract such as viral and bacterial co-infections are among the most prevalent reasons of fatal casualties worldwide. Therefore, the interactions between host and pathogens resulting in the impairment of the hosts immune response and immune evasion of the pathogens, need to be elucidated. To get new insights in the infection driven changes in protein polyubiquitination and alterations in the abundance of ubiquitin E3 ligases involved in ubiquitination, cellular proteomes were monitored in detail by high resolution mass spectrometry. Therefore, the epithelial cell lines 16HBE14o- (Manuscript II) and A549 (Manuscript III) were co-infected with influenza A virus H1N1 and Streptococcus pyogenes or Staphylococcus aureus or with influenza A virus H1N1 and Streptococcus pneumoniae, respectively. Here, it could be shown in 16HBE14o- cells that co-infection of epithelial cells is not characterized by decreased cell survival and that observable effects on the proteome and ubiquitinome are mostly additive rather than synergistic. S. pyogenes infection affected the mitochondrial function, cell-cell adhesion, endocytosis and actin organization. Viral infection affected mRNA processing and Rho signaling. Viral and bacterial co-infection was detected to affect processes that were already affected by both of the corresponding single infections. No further pathways were strongly affected by the co-infection. A similar result has been observed in A549 cells co-infected IAV and S. pneumoniae. Overrepresented gene ontology terms depict the sum of those observed in the viral and bacterial single infection. Moreover, no significant change in cell survival upon co-infection compared to single bacterial infection was noticed for A549 cells either. This led to the suggestion that co-infection of investigated epithelial cells under examined conditions possesses additive rather than synergistic effect and thus, may not worsen the outcome of the infection within the studied conditions. Infections in other systems, may provide varying results and thus should be examined in future studies.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Thomas SuraORCiD
URN:urn:nbn:de:gbv:9-opus-87055
Title Additional (German):Massenspektrometrische Analysen der posttranslationalen Proteinmodifikation bei bakterieller und viraler (Ko-)Infektion
Referee:Prof. Dr. Dörte BecherORCiD, Prof. Dr. Andreas Pich
Advisor:Prof. Dr. Dörte Becher
Document Type:Doctoral Thesis
Language:English
Year of Completion:2023
Date of first Publication:2023/06/30
Granting Institution:Universität Greifswald, Mathematisch-Naturwissenschaftliche Fakultät
Date of final exam:2023/06/19
Release Date:2023/06/30
Tag:Proteomics; Ubiquitination
GND Keyword:Proteomics, Ubiquitin
Page Number:98
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Abteilung für Mikrobiologie und Molekularbiologie
DDC class:500 Naturwissenschaften und Mathematik / 570 Biowissenschaften; Biologie