Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 1 of 3
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-65054

Pivotal Role of Fatty Acid Synthase in c-MYC Driven Hepatocarcinogenesis

  • Hepatocellular carcinoma (HCC) is a deadly form of liver malignancy with limited treatment options. Amplification and/or overexpression of c-MYC is one of the most frequent genetic events in human HCC. The mammalian target of Rapamycin Complex 1 (mTORC1) is a major functional axis regulating various aspects of cellular growth and metabolism. Recently, we demonstrated that mTORC1 is necessary for c-Myc driven hepatocarcinogenesis as well as for HCC cell growth in vitro. Among the pivotal downstream effectors of mTORC1, upregulation of Fatty Acid Synthase (FASN) and its mediated de novo lipogenesis is a hallmark of human HCC. Here, we investigated the importance of FASN on c-Myc-dependent hepatocarcinogenesis using in vitro and in vivo approaches. In mouse and human HCC cells, we found that FASN suppression by either gene silencing or soluble inhibitors more effectively suppressed proliferation and induced apoptosis in the presence of high c-MYC expression. In c-Myc/Myeloid cell leukemia 1 (MCL1) mouse liver tumor lesions, FASN expression was markedly upregulated. Most importantly, genetic ablation of Fasn profoundly delayed (without abolishing) c-Myc/MCL1 induced HCC formation. Liver tumors developing in c-Myc/MCL1 mice depleted of Fasn showed a reduction in proliferation and an increase in apoptosis when compared with corresponding lesions from c-Myc/MCL1 mice with an intact Fasn gene. In human HCC samples, a significant correlation between the levels of c-MYC transcriptional activity and the expression of FASN mRNA was detected. Altogether, our study indicates that FASN is an important effector downstream of mTORC1 in c-MYC induced HCC. Targeting FASN may be helpful for the treatment of human HCC, at least in the tumor subset displaying c-MYC amplification or activation.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Jiaoyuan Jia, Li Che, Antonio Cigliano, Xue Wang, Graziella Peitta, Junyan Tao, Sheng Zhong, Silvia Ribback, Matthias Evert, Xin Chen, Diego F. Calvisi
URN:urn:nbn:de:gbv:9-opus-65054
DOI:https://doi.org/10.3390/ijms21228467
ISSN:1422-0067
Parent Title (English):International Journal of Molecular Sciences
Publisher:MDPI
Place of publication:Basel
Document Type:Article
Language:English
Date of first Publication:2020/11/11
Release Date:2022/11/22
Tag:FASN; c-Myc; hepatocellular carcinoma; lipogenesis; mouse models
GND Keyword:-
Volume:21
Issue:22
Page Number:22
Faculties:Universitätsmedizin / Institut für Pathologie
Licence (German):License LogoCreative Commons - Namensnennung