Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 219
Back to Result List

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-106297

3D-QSAR Studies, Molecular Docking, Molecular Dynamic Simulation, and ADMET Proprieties of Novel Pteridinone Derivatives as PLK1 Inhibitors for the Treatment of Prostate Cancer

  • Overexpression of polo-like kinase 1 (PLK1) has been found in many different types of cancers. With its essential role in cell proliferation, PLK1 has been determined to be a broad-spectrum anti-cancer target. In this study, 3D-QSAR, molecular docking, and molecular dynamics (MD) simulations were applied on a series of novel pteridinone derivatives as PLK1 inhibitors to discover anti-cancer drug candidates. In this work, three models—CoMFA (Q² = 0.67, R² = 0.992), CoMSIA/SHE (Q² = 0.69, R² = 0.974), and CoMSIA/SEAH (Q² = 0.66, R² = 0.975)—of pteridinone derivatives were established. The three models that were established gave R²(pred) = 0.683, R²(pred) = 0.758, and R²(pred) = 0.767, respectively. Thus, the predictive abilities of the three proposed models were successfully evaluated. The relations between the different champs and activities were well-demonstrated by the contour chart of the CoMFA and CoMSIA/SEAH models. The results of molecular docking indicated that residues R136, R57, Y133, L69, L82, and Y139 were the active sites of the PLK1 protein (PDB code: 2RKU), in which the more active ligands can inhibit the enzyme of PLK1. The results of the molecular dynamic MD simulation diagram were obtained to reinforce the previous molecular docking results, which showed that both inhibitors remained stable in the active sites of the PLK1 protein (PDB code: 2RKU) for 50 ns. Finally, a check of the ADME-Tox properties of the two most active molecules showed that molecular N° 28 could represent a good drug candidate for the therapy of prostate cancer diseases.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Mohammed Er-rajy, Mohamed El fadili, Hamada Imtara, Aamir Saeed, Abid Ur Rehman, Sara Zarougui, Shaef A. Abdullah, Ahmad Alahdab, Mohammad Khalid Parvez, Menana Elhallaoui
URN:urn:nbn:de:gbv:9-opus-106297
DOI:https://doi.org/10.3390/life13010127
ISSN:2075-1729
Parent Title (English):Life
Publisher:MDPI
Place of publication:Basel
Document Type:Article
Language:English
Date of first Publication:2023/01/02
Release Date:2024/03/01
Tag:3D-QSAR; PLK1 inhibitors; anti-cancer; dynamic simulation; molecular docking
Volume:13
Issue:1
Article Number:127
Page Number:15
Faculties:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Pharmazie
Collections:Artikel aus DFG-gefördertem Publikationsfonds
Licence (German):License LogoCreative Commons - Namensnennung 4.0 International