Volltext-Downloads (blau) und Frontdoor-Views (grau)

Bitte verwenden Sie diesen Link, wenn Sie dieses Dokument zitieren oder verlinken wollen: https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-65063

The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy

  • The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/- , Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/- . Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author: Vaishnavi Venugopalan, Alaa Al-Hashimi, Maren Rehders, Janine Golchert, Vivien Reinecke, Georg Homuth, Uwe VölkerORCiD, Mythili Manirajah, Adam Touzani, Jonas Weber, Matthew S. Bogyo, Francois Verrey, Eva K. Wirth, Ulrich Schweizer, Heike Heuer, Janine Kirstein, Klaudia Brix
URN:urn:nbn:de:gbv:9-opus-65063
DOI:https://doi.org/10.3390/ijms22010462
ISSN:1422-0067
Parent Title (English):International Journal of Molecular Sciences
Publisher:MDPI
Place of publication:Basel
Document Type:Article
Language:English
Date of first Publication:2021/01/05
Release Date:2022/11/22
Tag:autophagy; cathepsins; lysosomal biogenesis; monocarboxylate transporter 8; thyroid auto-regulation
GND Keyword:-
Volume:22
Issue:1
Page Number:13
Faculties:Universitätsmedizin / Interfakultäres Institut für Genetik und Funktionelle Genomforschung (UMG)
Licence (German):License LogoCreative Commons - Namensnennung